Application of FTIR for Quantification of Alkali in Cement

PDF Version Also Available for Download.

Description

Alkali-silica reaction (ASR) in cement is a major contributor to failure of cement structures around the world, causing increased repair costs and possible rebuild expenses. Alkali levels are indicative of the potential for ASR and are therefore measured and quantified. A linear correlation relating cement alkali concentration measured by X-ray fluorescence spectroscopy (XRF) and peak ratio measured by Fourier transform infrared spectroscopy (FTIR) is developed. Regression analysis of plots correlating alkali content measured by FTIR absorption band (750 cm-1/923 cm-1) ratio versus equivalent alkali (Na2O)e (%Na2O + 0.658 % K2O) quantified by XRF show linear correlation coefficient, R2, of 0.97. ... continued below

Creation Information

Springfield, Tyler May 2011.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 2980 times , with 51 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Springfield, Tyler

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Alkali-silica reaction (ASR) in cement is a major contributor to failure of cement structures around the world, causing increased repair costs and possible rebuild expenses. Alkali levels are indicative of the potential for ASR and are therefore measured and quantified. A linear correlation relating cement alkali concentration measured by X-ray fluorescence spectroscopy (XRF) and peak ratio measured by Fourier transform infrared spectroscopy (FTIR) is developed. Regression analysis of plots correlating alkali content measured by FTIR absorption band (750 cm-1/923 cm-1) ratio versus equivalent alkali (Na2O)e (%Na2O + 0.658 % K2O) quantified by XRF show linear correlation coefficient, R2, of 0.97. Results of this investigation are discussed in terms of microstructural disorder coefficient Cd which is a reactivity criterion for ASR-susceptible aggregates proposed by Bachiorrini [31]. XRF is a popular technique for alkali quantification but FTIR is faster, safer, and less expensive technique compared to XRF. Portable instrumentation is available for both techniques but FTIR systems are less expensive.

Subjects

Keywords

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2011

Added to The UNT Digital Library

  • May 17, 2012, 9:47 p.m.

Description Last Updated

  • Oct. 8, 2012, 4:41 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 1
Past 30 days: 51
Total Uses: 2,980

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Springfield, Tyler. Application of FTIR for Quantification of Alkali in Cement, thesis, May 2011; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc84280/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .