Radiation Field Simulation and Estimation Algorithms for a Mobile Sensor and a Stationary Unknown Source

G. A. Clark

August 10, 2012
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Radiation Field Simulation and Estimation Algorithms for a Mobile Sensor and a Stationary Unknown Source

June 5, 2009
Auspices and Disclaimer

Auspices

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
Radiation Field Simulation and Estimation Algorithms for a Mobile Sensor and a Stationary Unknown Source: Initial Results

May 13, 2009

Grace A. Clark
LLNL/NSED/Systems and Intelligence Analysis Section

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
We Have an Interdisciplinary Team

• Simon Labov (LLNL/GHS) Principal Investigator
• Tom Edmunds (LLNL/NSED): Systems Engineering
• Yiming Yao (LLNL/NSED): Simulations
• Larry Hiller (LLNL, Physics): Simulations, Algorithms, systems
• Maya Gokhale (LLNL/ CS): Networks
• Gardar Johannesson (LLNL/NSED): Algorithms
• Dale Sloan (LLNL): Physics
• Richard Wheeler (LLNL): Physics
• Karl E. Nelson (LLNL/NSED): Algorithms, physics
• Grace Clark (LLNL/NSED: Estimation/Detection Algorithms

• Garrett Jernigan (UCB): Algorithms
• Adel Ganem (Zontrak Inc., San Ramon, CA): Networks
• K. Mani Chandy (Caltech): Algorithms
• Annie Liu (Caltech): Algorithms
• Ryan McLean (Caltech): Algorithms
• Matt Wu (Caltech): Algorithms
Agenda

• Introduction
• Algorithm R&D Plans
• Technical Approach
• Current Results
• Discussion and Plans
Algorithm R&D Plans in Priority Order

- Derive and Implement the Background and Source Simulation Algorithms
- Document the Background and Source Simulation Algorithms
- Derive and Document the Proposed Backpropagation Algorithm

- Implement the Proposed Backpropagation Algorithm and possibly some others

- R&D for a new full inversion algorithm with proximity and energy constraints
 - For a single block of measurements
 - For multiple blocks of measurements

- Future Work:
 - Fold in attenuation away from the source: occlusions, shielding, etc.
 - Fold in asymmetric sources: occlusion near the source
Problem Definition
Problem Definition

Given:

• A Simple two-dimensional (planar) radiation field (no buildings, etc.)
 - A grid of radiation samples

• A single constant radiation point source

• A single mobile radiation sensor traveling along a planar trajectory one meter above the plane measuring counts per second at each grid point

• Measurements of the sensor position (GPS) along the trajectory

Goals:

• Estimate the radiation (counts/sec) at each point on the 2D grid based only upon the sensor measurements acquired along the sensor trajectory.

• Detect the source, estimate its location and estimate its radiation strength.
Lawrence Livermore National Laboratory

Derivation of the Algorithms for Simulating Background and Source Radiation

Grace A. Clark
Simulations Algorithms Derivation p.1

Problem Description: The Spatial Grid

\[\mathbf{p}(k) = \begin{bmatrix} p_1(k) \\ p_2(k) \end{bmatrix} \]

(From GPS)

\[\mathbf{x}(m) = \begin{bmatrix} x_1(m) \\ x_2(m) \end{bmatrix} = \begin{bmatrix} i \Delta \\ j \Delta \end{bmatrix} \]

= Location Vector of a Point on the Spatial Grid

\[k = \text{time or position index on the sensor trajectory} \]

\[\Delta = \text{spatial sample interval (m)} \]

(Assume \(\Delta_i = \Delta_j = \Delta \))

\[m = \text{position index on the spatial grid} \]

Injected Source Location

\[q = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} i \Delta \\ j \Delta \end{bmatrix} \]

Notation: The spatial grid has been converted to a vector (see next page)
NOTATION FOR POINTS ON THE SPATIAL GRID

LET

\[\mathbf{X} = \begin{bmatrix}
X_1 \\
\vdots \\
X_M
\end{bmatrix} = \begin{bmatrix}
X_1(i,j) \\
\vdots \\
X_M(i,j)
\end{bmatrix} \]

TREAT THE GRID AS A 2D ARRAY, THEN CONVERT IT TO A VECTOR

DO A LExicographic ORDERING AS IN MATLAB \(\mathbf{X}(:) \)

\(\Rightarrow \) A VECTOR FORMED BY RASTER-SCANNING BY COLUMNS

\[\mathbf{X}(:) = \begin{bmatrix}
X_C(1) \\
X_C(2) \\
\vdots \\
X_C(M)
\end{bmatrix} \]

\[\mathbf{X}(m) = \begin{bmatrix}
X_1(m) \\
X_2(m) \\
\vdots \\
X_M(m)
\end{bmatrix} \]

\(X_1(m) = \text{Row Coord.} \)
\(X_2(m) = \text{Column Coord.} \)

\[m = IJ \]
Let $X(m) = \begin{bmatrix} x_1(m) \\ x_2(m) \end{bmatrix}$ for $m = 1, 2, \ldots, M$.

- $x_1(m)$ = ROW INDEX
- $x_2(m)$ = COLUMN INDEX

$X^T(m) = \begin{bmatrix} x_1(m) \\ x_2(m) \end{bmatrix}$

$X = \begin{bmatrix} X^T(1) \\ X^T(2) \\ \vdots \\ X^T(M) \end{bmatrix}$

$X^T = \begin{bmatrix} x_1(1) & x_2(1) \\ x_1(2) & x_2(2) \\ \vdots & \vdots \\ x_1(M) & x_2(M) \end{bmatrix}$
DEFINITIONS

\[\Delta = \text{SPATIAL SAMPLING INTERVAL (METERS)} \]

\[i = 1, 2, \ldots, \quad I = \text{RAY INDEX ON THE SPATIAL GRID (SOUTH)} \]

\[j = 1, 2, \ldots, \quad J = \text{COLUMN INDEX (EAST)} \]

\[c_{s}(i, j) = \text{RADIATION (CARTIES) ON THE SPATIAL GRID = TRUTH (SIMULATED)} \]

\[\Omega = \begin{bmatrix} \omega(i,j) \end{bmatrix} = I \times J \text{ MATRIX OF RADIATION VALUES ON THE SPATIAL GRID} \]

\[\varphi(k) = \begin{bmatrix} \varphi_1(k) \\ \varphi_2(k) \end{bmatrix} = 2 \times 1 \text{ VECTOR OF LOCATION COORDINATES FOR THE SENSOR AT A GIVEN TIME AND POSITION ON ITS TRAJECTORY (FROM GPS) } \\
\text{AND POSITION FOR MEASUREMENT yi ON TRAJECTORY } \]

\[\varphi_1(k) = \text{SCALAR COORDINATE FOR SENSOR ALONG A ROW ON THE GRID} \]

\[\varphi_2(k) = \text{COLUMN } \]

\[\varphi_1(k) = i \Delta, \quad i = \text{ROW INDEX ON THE GRID} \]

\[\varphi_2(k) = j \Delta, \quad j = \text{COLUMN} \]
\[
\mathbf{q} = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = 2 \times 1 \text{ vector of the location of the point of interest on the spatial grid at a given position. We wish to estimate the radiation at this point of interest.}
\]

\[
q = \text{the position of a true point source (e.g., injected)}
\]

\[
k = \text{position index for a vector position on the sensor trajectory}
\]

\[
n = \text{time index} = 1, 2, \ldots, N \quad (k \text{ or } \ell \text{ used } "i")
\]

\[
t_n = nt = \text{time (seconds) at time index } n
\]

\[
t = \text{time sample interval (seconds)}
\]
\[R[\mathbf{p}(k), \mathbf{x}(m)] = \text{SCALAR EUCLIDEAN DISTANCE BETWEEN A POINT AT } \mathbf{p}(k) \text{ AT TIME OR POSITION } k \text{ AND A POINT } \mathbf{x}(m) \text{ ON THE SPATIAL GRID.} \]

\[\mathbf{p}(k) = \begin{bmatrix} p_1(k) \\ p_2(k) \end{bmatrix}, \quad \mathbf{x}(m) = \begin{bmatrix} x_1(m) \\ x_2(m) \end{bmatrix} \]

\[R[\mathbf{p}(k), \mathbf{x}(m)] = \lVert \mathbf{p}(k) - \mathbf{x}(m) \rVert \]

\[= \sqrt{\mathbf{e}(k) - \mathbf{x}(m) \mathbf{e}(k) - \mathbf{x}(m)} \]

\[= \sqrt{\begin{bmatrix} p_1(k) - x_1(m) \\ p_2(k) - x_2(m) \end{bmatrix} \begin{bmatrix} p_1(k) - x_1(m) \\ p_2(k) - x_2(m) \end{bmatrix}} \]

\[\text{for } \mathbf{e} = [e_1, e_2]^T \]

\[\lVert \mathbf{e} \rVert = \langle e, e \rangle^{\frac{1}{2}} \]

\[= (e^T e)^{\frac{1}{2}} \]

\[= \sqrt{e^2 + e_2^2} \]

\[\text{Simulations Algorithms Derivation p.6} \]
Define

\[R \left[\mathbf{x}(k) , \mathbf{z} \right] = 11 \left| \mathbf{p}(k) - \mathbf{z} \right| \]

\[R \left[\mathbf{p}(k) , \mathbf{z} \right] = \frac{1}{2} \left(\mathbf{p}(k) - \mathbf{z} \right)^T \Sigma_{p}^{-1} \left(\mathbf{p}(k) - \mathbf{z} \right) \]

\[S(m) = \text{RADIATION VALUE (COUNTS/SEC) AT ONE METER ABOVE THE GRID PLANE} \]

\[= \frac{\text{COUNTS}}{\text{SEC}} \]

\[= \text{THIS IS WHAT WE WANT TO ESTIMATE} \]
Grace A. Clark, Ph.D.

Simulations Algorithms Derivation p.8

GACS Notes on How to Simulate the Mean of the Poisson Process to Make the Measurements $y(h)$

$y(h) = \text{Sensor measurement at position } h$

$\lambda(h) = \text{Poisson } \mu[\lambda(h)] = \text{A Poisson draw at position } h$

$\mu[\lambda(h)] = \sum_{m=1}^{M} \frac{\omega(m)}{R[\lambda(h), x(m)]^2 + 1} + \frac{\sigma(m)}{R[\lambda(h) - \bar{q}]^2 + 1}$

$\omega(m) = \text{Background radiation (cts/sec) at position } m$

$R[\lambda(h), x(m)] = \| \lambda(h) - x(m) \|$

$\sigma(m) = \text{Distance between the sensor position } \lambda(h) \text{ and the spatial position } x(m)$

$\sigma(m) = \text{Radiation (cts/sec) of the source at position } m$

$\frac{\sigma(m)}{\bar{q}} = \text{Position of the source}$
We wish to simulate the radiation as follows:

\[
s(\mathbf{r}) = \begin{cases}
0, & \text{no source} \\
S, & \text{injected constant source}
\end{cases}
\]

- \(s(\mathbf{r}) \geq 0 \) (always positive)

- A realistic range of values for simulation:
 - \(\mu \approx 40 \text{ counts/sec} \) for background mean
 - Range of \(\theta \) = \((+20, +80)\) over the map
How to simulate the BG RAD:

1. **RNG**
2. **BLURRING FILTER** with $1/r^2$ kernel
3. **W\&N**
 - $W \sim N[\mu, \sigma^2]$

$W(M) = \text{TRUE RAD (cm^3/sec)}$

Kernel width $\approx 5-10$ meters
Simulations of Background Radiation, Source Radiation and Sensor Measurements

Grace A. Clark
First Step in the Background Radiation Simulation:
Construct a 2D Gaussian Distributed Array

\(W = \text{Gaussian Distributed Radiation Field to be Lowpass Filtered in the Next Step with a } 1/R^2 \text{ Filter Kernel to Form the "True" Radiation Field.}\)

This represents one realization of a draw from the Gaussian RNG.
Simulated Background Radiation Field: Gaussian Array
Convolved with a “1/R^2” 2D Filter Kernel:
Background Radiation Field + Injected Poisson Point Source Radiation

\[Y_{\text{inj}} = \text{BACKGROUND RADIATION FIELD } + \text{ SOURCE RADIATION (counts/sec)} \]

Y_{\text{inj}} = What the truth would look like once the radiation is transported to all the grid points.

This represents one realization of a draw from the Gaussian RNG.
Background Radiation + Point Source Location + Sensor Trajectory
\(U = \text{Mean of the Poisson BG Measurements and} \)
\(U_{\text{inj}} = \text{Mean of the Source Measurements Along the Sensor Trajectory} \)
Y = Poisson BG Measurements and
Yinj = Poisson Source Measurements Along the Sensor Trajectory
Conclusions and Plans

- Derive and Implement the Background and Source Simulation Algorithms
- Document the Background and Source Simulation Algorithms
- Derive and Document the Proposed Backpropagation Algorithm

 - Implement the Proposed Backpropagation Algorithm and possibly some others

 - R&D for a new full inversion algorithm with proximity and energy constraints
 - For a single block of measurements
 - For multiple blocks of measurements

- Future Work:
 - Fold in attenuation away from the source: occlusions, shielding, etc.
 - Fold in asymmetric sources: occlusion near the source
Clark_DNDA_Results_2
Preliminary Radiation Field Estimation Results
Using the Back Propagation Algorithm
June 5, 2009
Preliminary Results for the Backpropagation algorithm with Simulated Data

• This is the first radiation map result estimated using the Back Propagation algorithm
• I have not yet had time to validate the results
• The program was cancelled today, so I am documenting the results I have to date
Experiment E2: Backpropagation Algorithms to Estimate the Radiation Field

Grace A. Clark
Background Plus Sensor Trajectory and Source

Y bkg = Simulated Background Field Overlaid with
The Line = the Location Vector = p of the Sensor Platform Trajectory
The Star Depicts the Location of the Injected Source
This represents one realization of a draw from the Gaussian RNG

Source Location is Denoted by the Star
Histogram of the Simulated Background
Histogram of the Simulated Injected Source

Histogram of γ_{inj} = the Simulated Injected Array

Theoretically Optimal Number of bins = $\log_2(N_{samples})+1 = 18$
Mean of the Simulated Poisson Measurements

- *U = Mean of the Poisson Measurements and U injected = Mean of the Injected Source Along the Sensor Trajectory (two vectors of means vs. distance)*
- *This represents one realization of a draw from the Gaussian RNG*
Simulated Measurements Along the Trajectory

- $Y = \text{Poisson Draw Measurement}$ and $Y_{\text{injected}} = \text{Poisson Draw Injected Source}$
- Along the Sensor Trajectory (two vectors of means vs. distance)
- This represents one realization of a draw from the Gaussian RNG to Make U
- and one draw each from a Poisson Process to Make Y and Y_{inj}

Graph:
- Y (Measured Radiation)
- Y Injected (Injected Radiation)

Counts/sec vs. Distance (meters) or Time
Histogram of the Sensor Measurement (w / Source)
$A(m)$, $B(m)$ and $S(m)$, where $S = A./B$

$S(m)$ denotes the Estimated Radiation at Grid Position m
Estimated Radiation Map Using Back Propagation

- Red = High
- Blue = Low
Histogram of the Estimated Radiation Map

Histogram of SS = the Estimated Rad Field Array SS
\[y = Y = \text{Measurements for Background Only (No Source)} \]

Theoretically Optimal Number of bins = \(\log_2(N_{\text{samples}}) + 1 = 16 \)
Conclusions and Plans

• Derive and Implement the Background and Source Simulation Algorithms

• Document the Background and Source Simulation Algorithms

• Derive and Document the Proposed Backpropagation Algorithm

• Implement the Proposed Backpropagation Algorithm and possibly some others

• R&D for a new full inversion algorithm with proximity and energy constraints
 - For a single block of measurements
 - For multiple blocks of measurements

• Future Work:
 - Fold in attenuation away from the source: occlusions, shielding, etc.
 - Fold in asymmetric sources: occlusion near the source