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Abstract 
 
There is great interest to develop proactive methods of cyber defense, in which future attack strategies are 
anticipated and these insights are incorporated into defense designs; however, little has been done to place 
this ambitious objective on a sound scientific foundation. Indeed, even fundamental issues associated with 
how the “arms race” between attackers and defenders actually leads to predictability in attacker activity, 
or how to effectively and scalably detect this predictability in the relational/temporal data streams 
generated by attacker/defender adaptation, haven’t been resolved. This LDRD project addressed many of 
these challenges and the results are briefly summarized here.  
We have characterized the predictability of attacker/defender coevolution and have leveraged our findings 
to create a framework for designing proactive defenses for large (organizational) networks. More 
specifically, this project applied rigorous predictability-based analytics to two central and complementary 
aspects of the network defense problem – attack strategies of the adversaries and vulnerabilities of the 
defenders’ systems – and used the results to develop a scientifically-grounded, practically-implementable 
methodology for designing proactive cyber defense systems. Briefly, predictive analysis of attack 
strategies involved first conducting predictability assessments to characterize attacker adaptation patterns 
in given domains, and then used these patterns to “train” adaptive defense systems capable of providing 
robust performance against both current and (near) future threats.  
The problem of identifying and prioritizing defender system vulnerabilities was addressed using statistical 
and machine learning to analyze a broad range of data (e.g., cyber, social media) on recently detected 
system vulnerabilities to “learn” classifiers that predict how likely it is that, and how soon, new 
vulnerabilities will be exploited. A variety of cyber threat case studies were developed and investigated 
throughout the project, one selected from the cyber security research community and one that is more 
comprehensive and of higher priority to SNL and to external national security partners.  
A sample of research results and application of this methodology are included in this report (as a series of 
peer-reviewed publications). For ease of reference the title and SAND number are included below. 
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Abstract  -- There is considerable interest in developing predictive capabilities for social diffusion processes, for 
instance to permit early identification of emerging contentious situations, rapid detection of disease outbreaks, or 
accurate forecasting of the ultimate reach of potentially “viral” ideas or behaviors. This paper proposes a new ap-
proach to this predictive analytics problem, in which analysis of meso-scale network dynamics is leveraged to gen-
erate useful predictions for complex social phenomena. We begin by deriving a stochastic hybrid dynamical systems 
(S-HDS) model for diffusion processes taking place over social networks with realistic topologies; this modeling 
approach is inspired by recent work in biology demonstrating that S-HDS offer a useful mathematical formalism 
with which to represent complex, multi-scale biological network dynamics. We then perform formal stochastic 
reachability analysis with this S-HDS model and conclude that the outcomes of social diffusion processes may de-
pend crucially upon the way the early dynamics of the process interacts with the underlying network’s community 
structure and core-periphery structure. This theoretical finding  provides the foundations for developing a machine 
learning algorithm that enables accurate early warning analysis for social diffusion events. The utility of the warning 
algorithm, and the power of network-based predictive metrics, are demonstrated through an empirical investigation 
of the propagation of political “memes” over social media networks. Additionally, we illustrate the potential of the 
approach for security informatics applications through case studies involving early warning analysis of large-scale 
protests events and politically-motivated cyber attacks.  

Keywords: social dynamics, predictive analysis, early warning, protest and mobilization, cyber security, security 
informatics.  

1. Introduction  
Understanding the way information, behaviors, innovations, and diseases propagate over social networks 
is of great importance in a wide variety of domains [e.g., 1-4], including national security [e.g., 5-13]. Of 
particular interest are predictive capabilities for social diffusion, for instance to enable early warning con-
cerning the emergence of a violent conflict or outbreak of an epidemic. As a consequence, vast resources 
are devoted to the task of predicting the outcomes of diffusion processes, but the quality of such predic-
tions is often poor. It is tempting to conclude that the problem is one of insufficient information. Clearly 
diffusion phenomena which “go viral” are qualitatively different from those that don’t or they wouldn’t 
be so dominant, the conventional wisdom goes, so in order to make good predictions we must collect 
enough data to allow these crucial differences to be identified.  

Recent research calls into question this intuitively plausible premise and, indeed, indicates that intui-
tion can be an unreliable guide to constructing successful prediction methods. For example, studies of the 
predictability of popular culture indicate that the intrinsic attributes commonly believed to be important 
when assessing the likelihood of adoption of cultural products, such as the quality of the product itself, do 
not possess much predictive power [14-16]. This research offers evidence that, when individuals are in-
fluenced by the actions of others, it may not be possible to obtain reliable predictions using methods 
which focus on intrinsics alone; instead, it may be necessary to incorporate aspects of social influence 
into the prediction process. Very recently a handful of investigations have shown the value of considering 
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even simple and indirect measures of social influence, such as early social media “buzz”, when forming 
predictions. This work has produced useful prediction algorithms for an array of social phenomena, in-
cluding markets [16-21], political and social movements [17,22], mobilization and protest behavior 
[23,24], epidemics [17,25], social media dynamics [26,27], and the evolution of cyber threats [28].  

Recognizing the importance of accounting for social influence, this paper proposes a predictive 
methodology which explicitly considers the way individuals influence one another through their social 
networks. It is expected that prediction algorithms which are based, in part, on network dynamics metrics 
will outperform existing methods and be applicable to a wider range of diffusion systems. We begin by 
developing a stochastic hybrid dynamical systems (S-HDS) model for diffusion processes taking place 
over social networks with realistic topologies. This modeling approach is inspired by recent work in biol-
ogy demonstrating that S-HDS offer a useful mathematical formalism with which to represent multi-scale 
biological network dynamics [29-33]. An S-HDS is a feedback interconnection of a discrete-state stochas-
tic process, such as a Markov chain, with a family of continuous-state stochastic dynamical systems [34]. 
Combining discrete and continuous dynamics in this way provides a rigorous, expressive, and computa-
tionally-tractable framework for modeling the dynamics of the complex, highly-evolved networks that are 
ubiquitous in biological systems [35], and we show in this paper that the S-HDS framework is also well-
suited to the task of modeling the network dynamics which underlie social diffusion.  

With the S-HDS model in hand, we then perform formal stochastic reachability analysis and con-
clude that the outcomes of social diffusion processes may depend crucially upon the way the early dy-
namics of the process propagates with respect to the underlying network’s 1.) community structure, that 
is, densely connected groupings of individuals which have only relatively few links to other groups [36], 
and 2.) core-periphery structure, reflecting the presence of a small group of “core” individuals that are 
densely connected to each other and are also close to the remainder of the network [36]. This theoretical 
finding leads to the identification of novel metrics for the community and core-periphery dynamics which 
should be useful early indicators of which diffusion events will propagate widely, ultimately affecting a 
substantial portion of the population of interest, and which will not. Prediction is accomplished with a 
machine learning algorithm [37] which is based, in part, on these network dynamics metrics.  

The paper makes three main contributions. First, we present a new S-HDS-based framework for 
modeling social diffusion on networks of real-world scale and complexity, enabling these dynamics to be 
appropriately represented as multi-scale phenomena. Second, we formulate predictive analysis problems 
as questions concerning the reachability of diffusion events, and present a novel “altitude function” meth-
od for assessing reachability without simulating system trajectories. The altitude function technique is 
both mathematically rigorous and computationally tractable, thereby permitting the derivation of prova-
bly-correct assessments for complex, large-scale systems. Third, the S-HDS model and altitude function 
analytics are used to characterize the importance of meso-scale network features, specifically network 
community and core-periphery structures, for understanding diffusion processes and predicting their fates. 
This characterization, in turn, forms the foundation for developing a new machine learning-based classifi-
cation algorithm which employs these network dynamics features for accurate early warning analysis. 
Additionally, we evaluate the efficacy of this early warning algorithm through three empirical case stud-
ies investigating: 1.) the propagation of political “memes” [38] over social media networks, 2.) warning 
analysis for large-scale mobilization and protest events, and 3.) early warning for politically-motivated 
cyber attacks. These empirical studies illustrate the effectiveness of the proposed early warning method-
ology and demonstrate the significant predictive power of meso-scale network metrics for social diffusion 
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processes. Moreover, the results indicate that the proposed algorithm provides a readily-implementable 
Web-based tool for early warning analysis for important classes of security-relevant diffusion events.  

2. Early Warning Methodology  
This section begins by defining the class of early warning problems of interest, then presents a brief, in-
tuitive summary of the proposed social diffusion modeling and predictive analysis procedure, and finally 
describes the early warning indicators identified through this analytic procedure and the warning algo-
rithm that is derived based on these results. A detailed mathematical presentation of the modeling and 
analysis methods is provided in Appendices One and Two.  

2.1 Problem Formulation  
The objective of this paper is to develop a scientifically-rigorous, practically-implementable methodology 
for performing early warning analysis for social diffusion events. Roughly speaking, we suppose that 
some “triggering event” has taken place or contentious issue is emerging, and we wish to determine, as 
early as possible, whether this event or issue will ultimately generate a large, self-sustaining reaction, in-
volving the diffusion of discussions and actions through a substantial segment of a population, or will 
instead quickly dissipate. An illustrative example of the basic idea is provided by the contrasting reactions 
to 1.) the publication in September 2005 of cartoons depicting Mohammad in the Danish newspaper 
Jyllands-Posten, and 2.) the lecture given by Pope Benedict XVI in September 2006 quoting controversial 
material concerning Islam. While each event appeared at the outset to have the potential to trigger signifi-
cant protests, the “Danish cartoons” incident ultimately led to substantial Muslim mobilization, including 
massive protests and considerable violence, while outrage triggered by the pope lecture quickly subsided 
with essentially no violence. It would obviously be very useful to have the capability to distinguish these 
two types of reaction as early in the event lifecycle as possible.  

In order to state the early warning problem more precisely, we make a few assumptions:  

• We suppose that the triggering event or emerging situation is given. Note that this is often the case in 
national security settings, and that additionally there exist techniques for discovering such events or 
issues in an automated or semi-automated manner [e.g., 24,27].  

• It is assumed that data are available which provide a view of the early reaction of a relevant popula-
tion to the trigger or issue of interest. These data can be only indirectly related to the event; for exam-
ple, in this paper the primary data source is social media discussions (e.g., blog posts) while the 
events of interest are “real-world” activities such as protests.  

• It is expected that the “customer” for the analysis provides at least qualitative definitions of the popu-
lation of interest and the scale of reaction for which a warning is desired. Thus, for instance, in the 
example above, it might be of interest to anticipate Muslim reaction to the triggering incident, and to 
obtain a warning alert if the reaction is likely to eventually include self-sustaining, violent protests.  

We formulate the early warning problem as a classification task. More specifically, given a trigger-
ing incident, one or more information sources which reflect (perhaps indirectly) the reaction to this trigger 
by a population of interest (e.g., social media discussions, intelligence reporting), and a definition for 
what constitutes an “alarming” reaction, the goal is to design a classifier which accurately predicts, as 
early as possible, whether or not reaction to the event will ultimately become alarming. Note that a more 
mathematically precise statement of this warning problem is given in Appendix Two. Observe that this 
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type of warning analysis is both important in applications and “easier” to accomplish than more standard 
prediction or forecasting goals. Consider, as a familiar non-security example, the case of movie success. It 
is shown in [14-16] that it is likely to be impossible to predict movie revenues, even very roughly, based 
on the intrinsic information available concerning the movie ex ante (e.g., personnel, genre, critic reviews). 
However, we have demonstrated that it is possible to identify early indicators of movie success, such as 
temporal patterns in pre-release “buzz”, and to use these indicators to accurately predict ultimate box of-
fice revenues [39]. Recent research indicates that this result holds more generally, so that it may be more 
scientifically-sensible in many domains to pursue early warning rather than ex ante prediction goals [14-
28].  

2.2 S-HDS Social Diffusion Model  
In social diffusion, individuals are affected by what others do. This is easy to visualize in the case of dis-
ease transmission, with infections being passed from person to person. Information, innovations, behav-
iors, and so on can also propagate through a population, as individuals become aware of a new piece of 
information or an activity and are persuaded of its relevance and utility through their social and infor-
mation networks. The dynamics of social diffusion can therefore depend upon the topological features of 
the pertinent networks, such as the presence of highly connected blogs in a social media network (see, 
e.g., [4]). Indeed, social scientists have developed extensive theories explaining the role of social net-
works in the dynamics of social diffusion and mobilization (see the books [2-4] and the references there-
in, and also Appendix One, for discussions of this work). This dependence suggests that, in order to un-
derstand the predictability of social diffusion phenomena and in particular to identify features which pos-
sess predictive power, it is necessary to conduct the analysis using social and information network models 
with realistic topologies.  

The social diffusion models examined in this study possess networks with three topological proper-
ties that are ubiquitous in real-world social and information networks and which have the potential to im-
pact diffusion dynamics [36]:  

• transitivity – the property that the network neighbors of a given individual have a heightened proba-
bility of being connected to one another;  

• community structure – the presence of densely connected groupings of individuals which have only 
relatively few links to other groups;  

• core-periphery structure – the presence of a small group of “core” individuals which are densely con-
nected to each other and are also close to the other individuals in the network.  
Additionally, we permit our network models to possess right-skewed degree distributions, in which 

most individuals have only a few network neighbors while a few individuals have a great many neigh-
bors, as such networks are common in online settings. The manner in which the communities and the 
core-periphery are arranged will be said to define the network’s meso-scale structure. For convenience of 
exposition, the subsets of individuals specified by a partitioning of the network into communities and into 
a core and periphery will sometimes be referred to as the partition elements, and the collection of these 
(community and core-periphery) subsets will be called the network partition.  

In order to deal effectively with networks possessing realistic topologies, and in particular to repre-
sent and analyze the way social dynamics is affected by the meso-scale structure, we model social diffu-
sion in a manner which explicitly separates the individual, or “micro”, dynamics from the collective dy-
namics. More specifically, we adopt a multi-scale modeling framework consisting of three network 
scales:  
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• a micro-scale, for modeling the behavior of individuals;  

• a meso-scale, which represents the interaction dynamics of individuals within the same network parti-
tion element (community or core/periphery);  

• a macro-scale, which characterizes the interaction between partition elements.  
The micro-scale quantifies the way individuals combine their own inherent preferences or attributes 

with the influences of others to arrive at their chosen courses of action. It is shown in Appendix One that 
separating the micro-scale dynamics from the meso- and macro-scale activity permits the dependence of 
this decision-making process on the social network to be characterized in a surprisingly straightforward 
way. The meso- and macro-scale components of the proposed modeling framework together quantify the 
way the decision-making processes of individuals interact to produce collective behavior at the population 
level. The role of the meso-scale model is to quantify and illuminate the manner in which behaviors with-
in each network partition element (communities, core or periphery), while the macro-scale model captures 
the interactions between these elements. The primary assumptions are that interactions between individu-
als belonging to the same network partition element can be modeled more simply than those between in-
dividuals from distinct partition elements, and that the latter interactions are constrained by the “meta-
network” which defines the dependencies between the partition elements.  

This perspective offers a number of advantages. For example, at the micro-scale it is possible to uni-
fy behaviors which appear different phenomenologically but actually possess equivalent dynamics. We 
show in Appendix One that the social dynamics associated with classical “utility-maximizing” behavior 
and those arising from individuals attempting to infer information by observing the actions of others can 
be represented with the same micro-scale model. Additionally, separating the individual and collective 
dynamics supports efficient and flexible model building and simplifies the process of estimating model 
components from empirical data [39]. Dividing the collective dynamics into meso- and macro-scales also 
provides a mathematically-tractable, sociologically-sensible means of representing complex social net-
work dynamics. For instance, because network communities are topological structures corresponding to 
localized social settings in the real world, determined by workplace, family, physical neighborhood, and 
so on, it is natural both mathematically and sociologically to model the interactions of individuals within 
communities as qualitatively different (e.g., more frequent and homogeneous) than those between com-
munities.  

Developing a mathematically-rigorous, expressive, scalable, and computationally-tractable frame-
work within which multi-scale social network diffusion models can be constructed is, of course, a chal-
lenging undertaking. Recent work in systems biology has demonstrated that stochastic hybrid dynamical 
systems (S-HDS) provide a useful mathematical formalism with which to represent biological network 
dynamics that possess multiple temporal and spatial scales [29-33]. An S-HDS is a feedback interconnec-
tion of a discrete-state stochastic process, such as a Markov chain, with a family of continuous-state sto-
chastic dynamical systems [34]. Thus the discrete system dynamics depends on the continuous system 
state, perhaps because different regions of the continuous state space are associated with different matri-
ces of Markov state transition probabilities, and the particular continuous system which is “active” at a 
given time depends on the discrete system state. Combining discrete and continuous dynamics in this way 
provides an effective framework for modeling the dynamics of the complex, highly-evolved networks that 
are ubiquitous in biological systems [35]. For example, the rigorous yet tractable integration of switching 
behavior with continuous dynamics enabled by the S-HDS model allows accurate and efficient represen-
tation of biological phenomena evolving over disparate temporal scales [29-31] and spatial scales [32,33].  
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Inspired by this work, in this paper we apply the S-HDS framework to social diffusion dynamics 
evolving over multiple network scales. Appendix One provides a detailed discussion of the proposed S-
HDS social diffusion model and demonstrates the effectiveness with which this formalism captures multi-
scale network dynamics. As an intuitive illustration of the way S-HDS enable complex network phenom-
ena to be efficiently represented, consider the task of modeling diffusion on a network that possesses 
community structure. As shown in Figure 1, this diffusion consists of two components: 1.) intra-
community dynamics, involving frequent interactions between individuals within the same community 
and the resulting gradual change in the concentrations of “infected” (red) individuals, and 2.) inter-
community dynamics, in which the “infection” jumps from one community to another, for instance be-
cause an infected individual “visits” a new community. S-HDS models offer a natural framework for rep-
resenting these dynamics, with the S-HDS continuous system modeling the intra-community dynamics 
(e.g., via stochastic differential equations), the discrete system capturing the inter-community dynamics 
(e.g., using a Markov chain), and the interplay between these dynamics being represented by the S-HDS 
feedback structure. A detailed description of the manner in which S-HDS models can be used to capture 
social diffusion on networks with realistic topologies is given in Appendix One.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Modeling diffusion on networks with community structure via S-HDS. The cartoon at top 
left depicts a network with three communities. The cartoon at right illustrates diffusion within a com-
munity k and between communities i and j. The schematic at bottom left shows the basic S-HDS feed-
back structure; the discrete and continuous systems in this framework model the inter-community and 
intra-community diffusion dynamics, respectively. 

discrete
system

continuous 
system

inputs

inputs

mode 
outputs

discrete
system

continuous 
system

inputs

inputs

mode 
outputs

discrete
system

continuous 
system

inputs

inputs

mode 
outputs

inter-community 
dynamics

intra-community 
dynamics

i

j

k

inter-community 
dynamics

inter-community 
dynamics

inter-community 
dynamics

intra-community 
dynamics

intra-community 
dynamics

i

j

k

i

j

k



 
7 

2.3 Predictability Assessment  
One hallmark of social diffusion processes is their ostensible unpredictability: phenomena from hits and 
flops in cultural markets to financial system bubbles and crashes to political upheavals appear resistant to 
predictive analysis (although there is no shortage of ex post explanations for their occurrence!). It is not 
difficult to gain an intuitive understanding of the basis for this unpredictability. Individual preferences 
and susceptibilities are mapped to collective outcomes through an intricate, dynamical process in which 
people react individually to an environment consisting largely of others who are reacting likewise. Be-
cause of this feedback dynamics, the collective outcome can be quite different from one implied by a 
simple aggregation of individual preferences; standard prediction methods, which typically are based on 
such aggregation ideas, do not capture these dynamics and therefore are often unsuccessful.  

This section provides a brief, intuitive introduction to a systematic approach to assessing the predict-
ability of social diffusion processes and identifying process observables which have exploitable predictive 
power (see Appendix Two, and also [17,39], for the mathematical details). Consider a simple model for 
product adoption, in which individuals combine their own preferences and opinions regarding the availa-
ble options with their observations of the actions of others to arrive at their decisions about which product 
to adopt. As discussed above, it can be quite difficult to determine which characteristics of the process by 
which adoption decisions propagate, if any, are predictive of things like the speed or ultimate reach of the 
propagation [15-17]. In Appendix Two we propose a mathematically rigorous approach to predictability 
assessment which, among other things, permits identification of features of social dynamics which should 
have predictive power. We now summarize this assessment methodology.  

The basic idea behind the proposed approach to predictability analysis is simple and natural: we as-
sess predictability by answering questions about the reachability of diffusion events. To obtain a mathe-
matical formulation of this strategy, the behavior about which predictions are to be made is used to define 
the system state space subsets of interest (SSI), while the particular set of candidate measurables under 
consideration allows identification of the candidate starting set (CSS), that is, the set of states and system 
parameter values which represent initializations that are consistent with, and equivalent under, the pre-
sumed observational capability. As a simple example, consider an online market with two products, A and 
B, and suppose the system state variables consist of the current market share for A, ms(A), and the rate of 
change of this market share, r(A) (ms(B) and r(B) are not independent state variables because ms(A) + 
ms(B) = 1 and r(A) + r(B) = 0); let the parameters be the advertising budgets for the products, bud(A) and 
bud(B). The producer of item A might find it useful to define the SSI to reflect market share dominance 
by A, that is, the subset of the two-dimensional state space where ms(A) exceeds a specified threshold 
(and r(A) can take any value). If only market share and advertising budgets can be measured then the CSS 
is the one-dimensional subset of state-parameter space consisting of the initial magnitudes for ms(A), 
bud(A), and bud(B), with r(A) unspecified (the one-dimensional “uncertainty” in the CSS reflects the fact 
that r(A) is not measurable).  

Roughly speaking, the proposed approach to predictability assessment involves determining how 
probable it is to reach the SSI from a CSS and deciding if these reachability properties are compatible 
with the prediction goals. If a system’s reachability characteristics are incompatible with the given predic-
tion question – if, say, “hit” and “flop” states in the online market example are both fairly likely to be 
reached from the CSS – then the situation is deemed unpredictable. This setup permits the identification 
of candidate predictive measurables: these are the measurable states and/or parameters for which predict-
ability is most sensitive (see Appendix Two). Continuing with the online market example, if trajectories 
with positive early market share rates r(A) are much more likely to yield market share dominance for A 
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than are trajectories with negative early r(A), then the situation is unpredictable (because the outcome 
depends sensitively on r(A) and this quantity is not measured). Moreover, this analysis suggests that mar-
ket share rate is likely to possess predictive power, so it may be possible to increase predictability by add-
ing the capacity to measure this quantity.  

A key element of this approach to predictability assessment is the proposed method of estimating the 
probability of reaching the SSI from a CSS. Note that in a typical assessment such estimates must be 
computed for several CSS in order to adequately explore the space of candidate predictive features, so 
that it is crucial to perform these estimates efficiently. In Appendix Two we develop an “altitude func-
tion” approach to this reachability problem, in which we seek a scalar function of the system state that 
permits conclusions to be made regarding reachability without computing system trajectories. We refer to 
these as altitude functions to provide an intuitive sense of their analytic role: if some measure of “alti-
tude” is low on the CSS and high on an SSI, and if the expected rate of change of altitude along system 
trajectories is nonincreasing, then it is unlikely for trajectories to reach this SSI from the CSS. Moreover, 
the difference in altitudes between the CSS and SSI gives a measure of the probability of reaching the 
latter from the former. Because the reach probability is computed for sets of states without simulating sys-
tem trajectories, the altitude function method offers an extremely efficient way to explore the space of 
candidate predictive features.  

We have applied the predictability assessment methodology summarized above to the social diffu-
sion prediction problem, and we now summarize the main conclusions of this study; a more complete dis-
cussion of this investigation is given in Appendix Two. The analysis uses the mathematically rigorous 
predictability assessment procedure summarized above, in combination with empirically-grounded S-
HDS models for social dynamics, to characterize the predictability of social diffusion on networks with 
realistic degree distributions, transitivity, community structure, and core-periphery structure. The main 
finding of the study, from the perspective of the present paper, is that the predictability of these diffusion 
models depends crucially upon social and information network topology, and in particular on the commu-
nity and core-periphery structures of these networks. 

In order to describe these theoretical results more quantitatively and leverage them for prediction, it 
is necessary to specify mathematical definitions for network communities and core-periphery structure. 
There exist several qualitative and quantitative definitions for the concept of community structure in net-
works. Here we adopt the modularity-based definition proposed in [40], whereby a good partitioning of a 
network’s vertices into communities is one for which the number of edges between putative communities 
is smaller than would be expected in a random partitioning. To be concrete, a modularity-based partition-
ing of a network into two communities maximizes the modularity Q, defined as  

Q = sT B s / 4m, 

where m is the total number of edges in the network, the partition is specified with the elements of vector 
s by setting si = 1 if vertex i belongs to community 1 and si = −1 if it belongs to community 2, and the ma-
trix B has elements Bij = Aij − kikj / 2m, with Aij and ki denoting the network adjacency matrix and degree 
of vertex i, respectively. Partitions of the network into more than two communities can be constructed 
recursively [40]. Note that modularity-based community partitions can be efficiently computed for large 
social networks, and can be constructed even with incomplete network topology data [39].  

With this definition in hand, we are in a position to present the first candidate predictive feature 
nominated by the theoretical predictability assessment: the presence of early diffusion activity in numer-
ous distinct network communities should be a reliable predictor that the ultimate reach of the diffusion 
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will be large (see Appendix Two). In what follows, propagation dynamics which possess this characteris-
tic will be said to exhibit significant early dispersion across network communities. Note that this measure 
should be more predictive than the early volume of diffusion activity (the latter has recently become a 
fairly standard measure [e.g., 19,20]). A cartoon illustrating the basic idea behind this result is given in 
Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analogously to the situation with network communities, there exists a wide range of qualitative and 

quantitative descriptions of the core-periphery structure found in real-world networks. Here we adopt the 
characterization of network core-periphery which results from k-shell decomposition, a well-established 
technique in graph theory that is summarized in, for instance, [41]. To partition a network into its k-shells, 
one first removes all vertices with degree one, repeating this step if necessary until all remaining vertices 
have degree two or higher; the removed vertices constitute the 1-shell. Continuing in the same way, all 
vertices with degree two (or less) are recursively removed, creating the 2-shell. This process is repeated 
until all vertices have been assigned to a k-shell. The shell with the highest index, the kmax-shell, is 
deemed to be the core of the network.  

Given this definition, we are in a position to report the second candidate predictive feature nominat-
ed by our theoretical predictability assessment: early diffusion activity within the network kmax-shell 
should be a reliable predictor that the ultimate reach of the diffusion will be significant (see Appendix 
Two). In particular, this measure should be more predictive than the early volume of diffusion activity. 
An intuitive illustration of this result is depicted in Figure 3. 

 
 
 
 
 
 

Figure 2. Early dispersion across communities is predictive. The cartoon illustrates the predic-
tive feature associated with community structure: social diffusion initiated with five “seed” indi-
viduals is much more likely to propagate widely if these seeds are dispersed across three com-
munities (left) rather than concentrated within a single community (right). Note that in Appendix 
Two this result is established for networks of realistic scale and not simply for “toy” networks 
like the one shown here.  
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2.4 Early Warning Method  
We are now in a position to present an early warning method which is capable of accurately predicting, 
very early in the lifecycle of a diffusion process of interest, whether or not the process will propagate 
widely. We adopt a machine learning-based classification approach to this problem: given a triggering 
incident, one or more information sources which reflect the reaction to this trigger by a population of in-
terest, and a definition for what constitutes an “alarming” reaction, the goal is to learn classifier that accu-
rately predicts, as early as possible, whether or not reaction to the event will ultimately become alarming. 
The classifier used in the empirical studies described in this paper is the Avatar ensembles of decision 
trees (A-EDT) algorithm [42]. Other classification algorithm were also explored to allow the robustness 
of the proposed early warning approach to be evaluated, and these alternative methods produced qualita-
tively similar results [39]. Prediction accuracy in all tests is estimated using standard N-fold cross-
validation, in which the set of diffusion events of interest is randomly partitioned into N subsets of equal 
size, and the A-EDT algorithm is successively “trained” on N−1 of the subsets and “tested” on the held-
out subset in such a way that each of the N subsets is used as the test set exactly once.  

A key aspect of the proposed approach to early warning analysis is determining which characteristics 
of the social diffusion event of interest, if any, possess exploitable predictive power. We consider three 
classes of features:  

• intrinsics-based features – measures of the inherent properties and attributes of the “object” being 
diffused;  

• simple dynamics-based features – metrics which capturing simple properties of the diffusion dynam-
ics, such as the early extent of the diffusion and the rate at which the diffusion is propagating;  

• network dynamics-based features – measures that characterize the way the early diffusion is progress-
ing relative to topological properties of the underlying social and information networks (e.g., commu-
nity structure).  

Figure 3. Early diffusion within the core is predictive. The cartoon illustrates the predictive 
feature associated with k-shell structure: social diffusion initiated with three “seed” individuals 
is much more likely to propagate widely if these seeds reside within the network’s core (left) 
rather than at its periphery (right). Note that in Appendix Two this result is established for 
networks of realistic scale and not simply for “toy” networks like the one shown here.  
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Consider, as an illustrative example, the diffusion of “memes”, that is, short textual phrases which 
propagate relatively unchanged online (e.g., ‘lipstick on a pig’). Suppose it is of interest to predict which 
memes will “go viral”, appearing in thousands of blog posts, and which will not. In this case, intrinsic-
based features could include language measures, such as the sentiment or emotion expressed in the text 
surrounding the memes in blog posts or news articles. Simple dynamics-based features for memes might 
measure the cumulative number of posts or articles mentioning the meme of interest at some early time τ 
and the rate at which this volume is increasing. Network dynamics-based features might count the cumu-
lative number of network communities in a blog graph GB that contain at least one post which mentions 
the meme by time τ and the number of blogs in the kmax-shell of GB that, by time τ, contain at least one 
post mentioning the meme. Alternatively, in the case of an epidemic, the intrinsic-based features could 
include the infectivity of the pathogen, simple dynamics-based features might capture the number of indi-
viduals infected by the disease in the early stages of the outbreak, and network dynamics-based features 
could include metrics that characterize the way the epidemic is progressing over the communities of rele-
vant social and transportation networks.  

The proposed approach to early warning analysis is to collect features from these classes for the 
event of interest, input the feature values to the (trained) A-EDT classifier, and then run the classifier to 
generate the warning prediction (i.e., a forecast that the event is expected to become ‘alarming’ or remain 
‘not alarming’). In the algorithm presented below this procedure in specified in general terms; more spe-
cific instantiations of the procedure are presented in the discussions of the three case studies in Section 3. 
In what follows it is assumed that the primary source of information concerning the event of interest is 
social media, as that is emerging as a very useful data source for predictive analysis [e.g., 17-24,26,27]. 
However, the analytic process is quite similar when other data sources (e.g., intelligence reporting) are 
employed [24].  

Thus we have the following early warning algorithm:  
Algorithm EW  
Given: a triggering incident, a definition for what constitutes an ‘alarming’ reaction, and a set of social 
media sites (e.g., blogs) B which are relevant to early warning task.  
Initialization: train the A-EDT classifier on a set of events which are qualitatively similar to the triggering 
event of interest and are labeled as ‘alarming’ or ‘not alarming’ according to the definition given above 
(see the case study discussions for additional details on this training process).  
Procedure:  
1. Assemble a lexicon of keywords L that pertain to the triggering event under study.  
2. Conduct a sequence of blog graph crawls and construct a time series of blog graphs GB(t). For the 

lexicon L and each time period t, label each blog in GB(t) as ‘active’ if it contains a post mentioning 
any of the keywords in L and ‘inactive’ otherwise.  

3. Form the union GB = ∪tGB(t), partition GB into network communities and into k-shells, and map the 
partition element structure of GB back to each of the graphs GB(t).  

4. Compute the values of appropriate measures for the intrinsics, simple dynamics, and network dynam-
ics features for each of the graphs GB(t).  

5. Apply the A-EDT classifier to the available time series of features, that is, the features obtained from 
the sequence of blog graphs {GB(t0), …, GB(tp)}, where t0 and tp are the triggering event time and pre-
sent time, respectively. Issue an early warning alert if the classifier output is ‘alarming’.  
We now offer additional details concerning this procedure; more application-specific discussions of 

the methodology are provided in the case studies in Section 3. Identifying appropriate keywords in Step 1 



 
12 

can be accomplished with the help of subject matter experts and also through various automated means 
(e.g., via meme analysis [38,27]). Step 2 is by now standard, and various tools exist which can perform 
these tasks [e.g., 43]. In Step 3, blog network communities are identified with a modularity-based com-
munity extraction algorithm applied to the blog graph [40], while the decomposition of the graph into its 
k-shells is achieved through standard methods [41]. The particular choices of metrics for the intrinsics, 
simple dynamics, and network dynamics features computed in Step 4 tend to be problem specific, and 
typical examples are given in the case studies below. It is worth noting, however, that we have found it 
useful in a range of applications to quantify the dispersion of activity over the communities of GB(t) using 
a blog entropy measure BE:  

BE(t) = −Σi fi(t) log(fi(t)), 

where fi(t) is the fraction of total posts containing one or more keywords and made during interval t which 
occur in community i. Finally, in Step 5 the feature values obtained in Step 4 serve as inputs to the A-
EDT classifier and the output is used to decide whether an alert should be issued.  

3. Case Studies  
This section applies Algorithm EW to three early warning case studies involving social phenomena that 
have proved to be both practically important and challenging to analyze: 1.) diffusion of information 
through social media, 2.) mobilization/protest events response to “triggering” incidents, and 3.) plan-
ning/coordination/execution of politically-motivated cyber attacks.  

3.1 Case Study One: Meme Diffusion  
The goal of this case study is to apply Algorithm EW to the task of predicting whether or not a given 
“meme”, that is, a short textual phrase which propagates relatively unchanged online, will “go viral”. Our 
main source of data on meme dynamics is the publicly available datasets archived at 
http://memetracker.org [44] by the authors of [38]. Briefly, the archive [44] contains time series data 
characterizing the diffusion of ~70 000 memes through social media and other online sites during the five 
month period between 1 August and 31 December 2008. We are interested in using Algorithm EW to dis-
tinguish successful and unsuccessful memes early in their lifecycle. More precisely, the task of interest is 
to classify memes into two groups – those which will ultimately be successful (acquire more than S posts) 
and those that will be unsuccessful (attract fewer than U posts) – very early in the meme lifecycle.  

To support an empirical evaluation of the utility of Algorithm EW for this problems, we downloaded 
from [44] the time series data for slightly more than 70 000 memes. These data contain, for each meme 
M, a sequence of pairs (t1, URL1)M, (t2, URL2)M, …, (tT, URLT)M, where tk is the time of appearance of the 
kth blog post or news article that contains at least one mention of meme M, URLk is the URL of the blog 
or news site on which that post/article was published, and T is the total number of posts that mention 
meme M. From this set of time series we randomly selected 100 “successful” meme trajectories, defined 
as those corresponding to memes which attracted at least 1000 posts during their lifetimes, and 100 “un-
successful” meme trajectories, defined as those whose memes acquired no more than 100 total posts. It is 
worth noting that, in assembling the data in [44], all memes which received fewer than 15 total posts were 
deleted, and that ~50% of the remaining memes have <50 posts; thus the large majority of memes are un-
successful by our definition (as well as according to the criteria of most applications [38,27]).  

Two other forms of data were collected for this study: 1.) a large Web graph which includes websites 
(URLs) that appear in the meme time series, and 2.) samples of the text surrounding the memes in the 

http://memetracker.org/�
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posts which contain them. More specifically, we sampled the URLs appearing in the time series for our 
set of 200 successful and unsuccessful memes and performed a Web crawl that employed these URLs as 
“seeds”. This procedure generated a Web graph, denoted GB, that consists of approximately 550 000 ver-
tices/websites and 1.4 million edges/hyperlinks, and includes essentially all of the websites which appear 
in the meme time series. To obtain samples of text surrounding memes in posts, we randomly selected ten 
posts for each meme and then extracted from each post the paragraph which contains the first mention of 
the meme. 

Recall that Algorithm EW employs three types of features: intrinsics-based, simple dynamics-based, 
and network dynamics-based. We now describe the instantiation of each of these feature classes for the 
meme problem. Consider first the intrinsics-based features, which for the meme application become lan-
guage-based measures. Each “document” of text surrounding a meme in its (sample) posts is represented 
by a simple “bag of words” feature vector x∈ℜ|V|, where the entries of x are the frequencies with which 
the words in the vocabulary set V appear in the document. A very simple way to quantify the sentiment or 
emotion of a document is through the use of appropriate lexicons. Let s∈ℜ|V| denote a lexicon vector, in 
which each entry of s is a numerical “score” quantifying the sentiment/emotion intensity of the corre-
sponding word in the vocabulary V. The aggregate sentiment/emotion score of document x can be com-
puted as  

score(x) = sTx / sT1, 

where 1 is a vector of ones. Thus score(.) estimates the sentiment or emotion of a document as a weighted 
average of the sentiment or emotion scores for the words comprising the document. (Note that if no sen-
timent or emotion information is available for a particular word in V then the corresponding entry of s is 
set to zero.)  

To characterize the emotion content of a document we use the Affective Norms for English Words 
(ANEW) lexicon, which consists of 1034 words that were assigned numerical scores with respect to three 
emotional “axes” – happiness, arousal, and dominance – by human subjects [45]. Previous work had iden-
tified this set of words to bear meaningful emotional content [45]. Positive or negative sentiment is quan-
tified by employing the “IBM lexicon”, a collection of 2968 words that were assigned {positive, nega-
tive} sentiment labels by human subjects [46]. This simple approach generates four language features for 
each meme: the happiness, arousal, dominance, and positive/negative sentiment of the text surrounding 
that meme in the (sample) posts containing it. As a preliminary test, we computed the mean emotion and 
sentiment of content surrounding the 100 successful and 100 unsuccessful memes in our dataset. On aver-
age the text surrounding successful memes is happier, more active, more dominant, and more positive 
than that surrounding unsuccessful memes, and this difference is statistically significant (p<0.0001). Thus 
it is at least plausible that these four language features may possess some predictive power regarding 
meme success.  

Consider next two simple dynamics-based features, defined to capture the basic characteristics of the 
early evolution of meme post volume:  
• #posts(τ) – the cumulative number of posts mentioning the given meme by time τ (where τ is small 

relative to the typical lifespan of memes);  
• post rate(τ) – a simple estimate of the rate of accumulation of such posts at time τ.  
Here we adopt a simple finite difference definition for post rate given by post rate(τ) = (#posts(τ) − 
#posts(τ/2)) / (τ/2); of course, more robust rate estimates could be used.  
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The simple dynamics-based measures of early meme diffusion defined above, while potentially use-
ful, do not characterize the manner in which a meme propagates over the underlying social or information 
networks. Recall that the predictability assessment summarized in Section 2.3 suggests that both early 
dispersion of diffusion activity across network communities and early diffusion activity within the net-
work core ought to be predictive of meme success. The insights offered by this theoretical analysis moti-
vate the definition of two network dynamics-based features for meme prediction:  
• community dispersion(τ) – the cumulative number of network communities in the blog graph GB that, 

by time τ, contain at least one post which mentions the meme;  
• #k-core blogs(τ) – the cumulative number of blogs in the kmax-shell of blog graph GB that, by time τ, 

contain at least one post which mentions the meme.  
These quantities can be efficiently computed using fast algorithms for partitioning a graph into its com-
munities and for identifying a graph’s kmax-shell [39]. Thus these features are readily computable even for 
very large graphs.  

We now summarize the results of this case study. First, using only the four language features with 
the A-EDT classifier to predict which memes will be successful yields a prediction accuracy of 66.5% 
(ten-fold cross-validation). Since simply guessing “successful” for all memes gives an accuracy of 50%, it 
can be seen that these simple language intrinsics are not very predictive. For completeness it is mentioned 
that the ANEW score for “arousal” and the IBM measure of sentiment are the most predictive of these 
four features. In contrast, the features characterizing the early network dynamics of memes possess signif-
icant predictive power, and in fact are useful even if only very limited early time series is available for use 
in prediction. More quantitatively, applying Algorithm EW with the four meme dynamics features pro-
duces the following results (ten-fold cross-validation):  
• τ = 12hr, accuracy = 84%, most predictive features: 1.) community dispersion, 2.) #k-core blogs, 3.) 

#posts;  
• τ = 24hr, accuracy = 92%, most predictive features: 1.) community dispersion, 2.) post rate, 3.) 

#posts;  
• τ = 48hr, accuracy = 94%, most predictive features: 1.) community dispersion, 2.) post rate, 3.) 

#posts.  
These results show that useful predictions can be obtained within the first twelve hours after a meme is 
detected (this corresponds to 0.5% of the average meme lifespan), and that accurate prediction is possible 
after about a day or two. Note also that, as has been found with other social dynamics phenomena [e.g., 
16-18], dynamics features appear to be more predictive than “intrinsics”, at least for the features em-
ployed here.  

It is worth mentioning that the fact that a particular meme goes viral does not imply that it will influ-
ence behavior in the real world. The next two case studies focus on the important issue of behavioral con-
sequences of information diffusion.  

3.2 Case Study Two: Mobilization and Protest  
There is considerable interest to develop methods for distinguishing successful mobilization and protest 
events, that is, mobilizations that become large and self-sustaining, from unsuccessful ones early in their 
lifecycle. It is natural to pose this question as an early warning problem and to approach it using Algo-
rithm EW. In order to examine the efficacy of this approach, we collected together fourteen recent events, 
each of which appeared at the outset to have the potential to trigger significant protests. This set of events 
contains seven triggering incidents which ultimately led to substantial mobilization, including massive 
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protests and significant violence, and seven triggers with reactions that subsided quickly with essentially 
no violence. Taken together, these events provide a useful setting for testing the applicability of Algo-
rithm EW to mobilization/protest phenomena.  

The events employed in this study are listed below.  
Triggers leading to significant mobilization/protest:  

• Quran desecration, May 2005;  
• first Danish cartoons, September 2005 to March 2006;  
• Egypt DVD release, October 2005;  
• France riots, October and November 2005;  
• anti-Ahmadiyya protests, June and July 2008;  
• U.S Republican National Convention, September 2008;  
• Israel/Gaza event, December 2008 to January 2009.  

Triggers not leading to significant mobilization/protest:  
• Abu Ghraib news release, April and May 2004;  
• Pope lecture, September 2006;  
• Salman Rushdie knighting, June 2007;  
• second Danish cartoons, February 2008;  
• U.S. Democratic National Convention, August 2008,  
• Bali bombers execution, November 2008;  
• Jakarta bombings/NM Top blog post, July 2009.  

This list is intended merely to identify the fourteen events under study; additional information concerning 
each incident is given in [39] and the references therein.  

As a preliminary examination of the possibility to obtain useful early warning indicators from analy-
sis of social media discussions of these events, we performed Steps 1-4 of Algorithm EW and then plotted 
the time series for two quantities: 1.) the volume of blog posts mentioning keywords relevant to the 
events (these keywords were obtained through a simple news search [39]), and 2.) the blog entropy meas-

ure BE(t) = −Σi fi(t) log(fi(t)) associated with the way online mentions of the keywords diffused over the 
blog graph. Illustrative time series plots are shown in Figure 4. Observe that in the case of the first Danish 
cartoons event (plot at right) the BE of relevant discussions (blue curve) experiences a dramatic increase a 
few weeks before the corresponding increase in volume of blog discussions (red curve); this latter in-
crease, in turn, takes place before any violence. In contrast, in the case of the pope event (plot at left), BE 
of blog discussions is small relative to the cartoons event, and any increase in this measure lags discus-
sion volume. Similar time series plots are obtained for the other twelve events, suggesting that network 
dynamics-based features, such as dispersion of discussions across blog network communities, may be a 
useful early indicator for large mobilization events.  

To examine this possibility more carefully, we applied Algorithm EW to the task of distinguishing 
triggers which led to large protests from those that did not. For simplicity, in this case study we did not 
use any intrinsics-based features (e.g., language metrics) in the A-EDT classifier, and instead relied upon 
the four dynamics-based features defined in Case Study One. In the case of the seven triggering events 
which led to protest behavior, the blog data made available to Algorithm EW was limited to posts made 
during the eight week period which ended two weeks before the protests began. For the seven triggers 
which did not lead to protests, the blog data included all posts collected during the eight week period im-
mediately following the triggering event.  
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Because the set of events in this case study included only fourteen incidents, we applied Algorithm 

EW with two-fold cross-validation. More specifically, the set of incidents was randomly partitioned into 
two equal subsets, the algorithm was trained on one subset of seven incidents and tested on the other sub-
set, and then the roles of the two data sets were switched. In this evaluation Algorithm EW achieved per-
fect accuracy, correctly distinguishing the ‘protest’ and ‘non-protest’ triggers. An examination of the pre-
dictive power of the four features used as inputs to the A-EDT classifier reveals that, as suggested by Fig-
ure 4, the community dispersion feature was the most predictive measure.  

3.2 Case Study Three: Cyber Attack Early Warning  
This case study explores the ability of Algorithm EW to provide reliable early warning for politically-
motivated distributed denial-of-service (DDoS) attacks. Toward this end, we first identified a set of Inter-
net “disturbances” that included examples from three distinct classes of events:  
1. successful politically-motivated DDoS attacks – these are the events for which Algorithm EW is in-

tended to give warning with sufficient lead time to allow mitigating actions to be taken;  
2. natural events which disrupt Internet service – these are disturbances, such as earthquakes and electric 

power outages, that impact the Internet but for which it is known that no early warning signal exists in 
social media;  

3. quiet periods – these are periods during which there is social media “chatter” concerning impending 
DDoS attacks but ultimately no (successful) attacks occurred.  

Including in the case study events selected from these three classes is intended to afford a fairly compre-
hensive test of Algorithm EW. For instance, these classes correspond to 1.) the domain of interest (DDoS 
attacks), 2.) a set of disruptions which impact the Internet but have no social media warning signal, and 
3.) a set of “non-events” which do not impact the Internet but do possess putative social media warning 
signals (online discussion of DDoS attacks).  

We selected twenty events from these three classes:  

Figure 4. Sample results for mobilization/protest case study. The illustrative time series plots shown 
correspond to the pope event (left) and first Danish cartoons event (right). In each plot, the red curve is 
blog volume and the blue curve is blog entropy; the Danish cartoon plot also shows two measures of 
violence (cyan and magenta curves). Note that while the volume and violence data are scaled to allow 
multiple data sets to be graphed on each plot, the scale for entropy is consistent across plots to enable 
cross-event comparison.  
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Politically-motivated DDoS attacks:  
• Estonia event in April 2007;  
• CNN/China incident in April 2008;  
• Israel/Palestine conflict event in January 2009;  
• DDoS associated with Iranian elections in June 2009;  
• WikiLeaks event in November 2010;  
• Anonymous v. PayPal, etc. attack in December 2010;  
• Anonymous v. HBGary attack in February 2011.  

Natural disturbances:  
• European power outage in November 2006;  
• Taiwan earthquake in December 2006;  
• Hurricane Ike in September 2008;  
• Mediterranean cable cut in January 2009;  
• Taiwan earthquake in March 2010;  
• Japan earthquake in March 2011.  

Quiet periods:  
Seven periods, from March 2005 through March 2011, during which there were discussions in social 

media of DDoS attacks on various U.S. government agencies but no (successful) attacks occurred.  
For brevity a detailed discussion of these twenty events is not given here; the interested reader is referred 
to [39] and the references therein for additional information on these disruptions.  

We collected two forms of data for each of the twenty events: cyber data and social data. The cyber 
data consist of time series of routing updates which were issued by Internet routers during a one month 
period surrounding each event. More precisely, these data are the Border Gateway Protocol (BGP) routing 
updates exchanged between gateway hosts in the Autonomous System network of the Internet. The data 
was downloaded from the publicly-accessible RIPE collection site [47] using the process described in 
[48] (see [48] for additional details and background information on BGP routing dynamics). The temporal 
evolution of the volume of BGP routing updates (e.g., withdrawal messages) gives a coarse-grained 
measure of the timing and magnitude of large Internet disruptions and thus offers a simple and objective 
way to characterize the impact of each of the events in our collection. The social data consist of time se-
ries of social media mentions of cyber attack-related keywords and memes detected during a one month 
period surrounding each of the twenty events. These data were collected using the procedure specified in 
Algorithm EW.  

As in the preceding case study, we performed a preliminary examination of the possibility to obtain 
useful early warning indicators from analysis of social media discussions by completing Steps 1-4 of Al-
gorithm EW and plotting the time series for two quantities: 1.) the volume of blog posts mentioning key-
words relevant to the events (these keywords were obtained through a simple news search [39]), and 2.) 

the blog entropy measure BE(t) = −Σi fi(t) log(fi(t)) associated with the way online mentions of the key-
words diffused over the blog graph. Illustrative time series plots corresponding to two events in the case 
study, the WikiLeaks DDoS attack in November 2010 and Japan earthquake in March 2011, are shown in 
Figure 5. Observe that the time series of BGP routing updates are similar for the two events, with each 
experiencing a large “spike” at the time of the event. The time series of blog post volume are also similar 
across the two events, with each showing modest volume prior to the event and displaying a large spike in 
activity at event time. However, the time series for blog entropy are quite distinct for the two events. Spe-
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cifically, in the case of the WikiLeaks DDoS the blog entropy (blue curve in Figure 5) experiences a dra-
matic increase several days before the event, while in the case of the Japan earthquake blog entropy is 
small for the entire collection period. Similar social media behavior is observed for all events in the case 
study, suggesting that network dynamics-based features, such as dispersion of discussions across blog 
network communities, may be a useful early indicator for large mobilization events.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To examine this possibility more carefully, we applied Algorithm EW to the task of distinguishing 

the seven DDoS attacks from the thirteen other events in the set. For simplicity, in this case study we did 
not use any intrinsics-based features (e.g., language metrics) in the A-EDT classifier, and instead relied 
upon the four dynamics-based features defined in Case Study One. Because the set of events in this case 

Figure 5. Sample results for the DDoS early warning case study. The illustrative time series plots 
shown correspond to the WikiLeaks event in November 2010 (top row) and the Japan earthquake in 
March 2011 (bottom row). For each event, the plot at left is the time series of BGP routing updates 
(note the large increase in updates triggered by the event). The plot at the right of each row is the time 
series of the social media data, with the red curve showing blog post volume and the blue curve depict-
ing blog entropy. Note that while post volume is scaled for convenient visualization, the scale for en-
tropy is consistent across plots to allow cross-event comparison.      
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study included only twenty incidents, we applied Algorithm EW with two-fold cross-validation, exactly 
as described in Case Study Two. In the case of DDoS events, the blog data made available to Algorithm 
EW was limited to posts made during the five week period which ended one week before the attack. For 
the six natural disturbances, the blog data included all posts collected during the six week period immedi-
ately prior to the event, while in the case of the seven non-events, the blog data included the posts collect-
ed during a six week interval which spanned discussions of DDoS attacks on U.S. government agencies.  

In this evaluation, Algorithm EW achieved perfect accuracy, correctly distinguishing the ‘attack’ and 
‘non-attack’ events. If the test is made more difficult, so that the blog data made available to Algorithm 
EW for attack events is limited to a four week period that ends two weeks before the attack, the proposed 
approach still achieves 95% accuracy, An examination of the predictive power of the four features used as 
inputs to the A-EDT classifier reveals that, as suggested by Figure 5, the community dispersion feature 
was the most predictive measure. It is worth emphasizing that, in this case study, accurately distinguish-
ing ‘attack’ from ‘non-attack’ events is equivalent to providing practically-useful early warning for attack 
events, because the data which serves as input to Algorithm EW reflects online discussions that took 
place prior to the events under investigation. 

4. Conclusions  
This paper presents a new approach to early warning analysis for social diffusion events. We begin by 
introducing a biologically-inspired S-HDS model for social dynamics on multi-scale networks, and then 
perform stochastic reachability analysis with this model to show that the outcomes of social diffusion 
processes may depend crucially upon the way the early dynamics of the process interacts with the under-
lying network’s meso-scale topological structures. This theoretical finding provides the foundations for 
developing a machine learning algorithm that enables accurate early warning analysis for diffusion 
events. The utility of the warning algorithm, and the power of network-based predictive metrics, are 
demonstrated through empirical case studies involving meme propagation, large-scale protests events, and 
politically-motivated cyber attacks.  
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A1. Appendix One: S-HDS Social Diffusion Model 

In this Appendix we propose a multi-scale structure for modeling social network dynamics, establish a 
few facts concerning this representation, and introduce an S-HDS formulation of the model that is well-
suited for predictive analysis.  

A1.1 Multi-Scale Social Dynamics Model  
In many social situations, people are influenced by the behavior of others, for instance because they seek 
to obtain the benefits of coordinated actions, infer otherwise inaccessible information, or manage com-
plexity in decision-making. Processes in which observing a certain behavior increases an individual’s 
probability of adopting that behavior are often referred to as positive externality processes (PEP), and we 
use that term here. PEP have been widely studied in the social and behavioral sciences and, more recently, 
by the informatics and physical sciences communities [e.g., 4]. In particular, social scientists have con-
structed theories which qualitatively and quantitatively explain these processes and their dependence on 
social networks [e.g., 2-4, 6, 18, 36, 49-52]. One result of this research is a recognition that the process by 
which preferences and opinions of individuals become the collective outcome for a group can be complex 
and subtle, and thus challenging to model and predict. People arrive at their decisions by reacting individ-
ually to an environment consisting largely of others who are reacting likewise, and one consequence of 
this feedback dynamics is that the collective outcome can be quite different from one implied by a simple 
aggregation of individual preferences.  

We model PEP in a manner which explicitly separates the individual, or “micro”, dynamics from the 
collective dynamics. More specifically, we adopt a modeling framework consisting of three modeling 
scales:  
• a micro-scale, for modeling the behavior of individuals;  
• a meso-scale, which represents the interaction dynamics of individuals within the same network parti-

tion element (community or core/periphery);  
• a macro-scale, which characterizes the interaction between partition elements.  
We now derive a few properties of the multi-scale model. The micro-scale quantifies the way individuals 
combine their own inherent preferences regarding the available options with their observations of the be-
haviors of others to arrive at their chosen courses of action. Interestingly, the dependence of this decision-
making process on the social network admits a straightforward characterization. Consider the common 
and important binary choice setting, in which N agents choose from a set O = {0,1} of options based in 
part on the choices made by others. Let oi ∈ {0,1} denote the selection of agent i and o = [o1 … oN]T ∈ ON 
represent the vector of choices made by the group. It is reasonable to suppose that agent i chooses be-
tween the options probabilistically according to some map POi: Ai × ON → [0,1], where POi is the proba-
bility that agent i chooses option 1, Ai measures i’s inherent preference for option 1, and POi is 
nondecreasing in Ai. In positive externality situations POi should also be “nondecreasing in o” in some 
sense, and we now make this notion precise. (For notational simplicity in what follows we suppress the 
dependence of POi on Ai.)  

Because it is defined in such general terms it may appear that the map POi could be a very compli-
cated function of the choices of the other agents. In fact, Theorem 1 indicates that this map must be trac-
table.  
Theorem 1: Given any POi there exists a vector wi = [wi1 … wiN]T ∈ ℜN, with wij ≥ 0 and Σj wij = bi, and 
a scalar function ri: [0, bi] → [0,1] such that POi(o) = ri(oTwi).  
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Proof: It is enough to prove that the wij can be chosen so oTwi: ON → [0, bi] is injective, since then ri can 
be constructed to recover any POi. One such choice for wi is wi = [20 21 … 2N−1]T, as then oTwi provides a 
unique (binary number) representation for each o.                                                                                        

We call ri the agent decision function and si = oTwi agent i’s social signal, and interpret the wij as defining 
a weighted social network for the group of N agents. Observe that Theorem 1 quantifies the way social 
influence is transmitted to an agent by her neighbors and highlights the importance of this signal in the 
decision-making process. The result also allows a simple characterization of positive externality agent 
behavior: for such behavior, ri is nondecreasing in si.  

The micro-scale model structure allows PEP behaviors which appear to be distinct to be represented 
within a unified setting. For example, the basic model readily accommodates two of the most common 
sources of PEP: 1.) utility-oriented externalities, in which the utility or value of an option is a direct func-
tion of the number of others choosing it, and 2.) information externalities, which arise from inferences 
made by an individual about decision-relevant information possessed by others.  
Example A1.1: utility-oriented externalities. Suppose each agent i has a utility function ui: O × [0, bi] 
→ ℜ+ which depends explicitly on i’s social signal si. The standard, albeit dated, example here is the fax 
machine, with the utility of owning a fax machine increasing with the number of others who own one. 
The key quantity considered by agent i when selecting between options 0 and 1 is the utility difference 
between the options, ∆ui(si) = ui(1,si) − ui(0,si). In positive externality situations ∆ui is increasing in si, and 
there exists a threshold social signal value s*, possibly with s* < 0 or s* > bi, such that a utility maximiz-
ing agent will choose option 0 if si < s* and option 1 if si ≥ s*.  
Example A1.2: information externalities. Suppose the utility to agent i of each option is independent of 
the number of other agents choosing that option but there exists uncertainty regarding this utility. To be 
concrete, assume that agent i’s utility depends on the “state of world” w ∈ {w0, w1}, so that ui = ui(oi,w), 
and there exists uncertainty regarding w. In this case, agent i may observe others’ decisions in order to 
infer w and then choose the option which maximizes his utility for this world state (as when a tourist 
chooses a crowded restaurant over an empty one in an unfamiliar city). Consider, for instance, the deci-
sion of whether to adopt an innovation of uncertain quality, and let the world state w1 signify that innova-
tion quality is such that adopting maximizes utility. In this situation it is reasonable for agent i to maxim-
ize expected utility and choose the option (adopt or not) oi* = argmaxo∈O Σw∈W P(w | si) ui(oi,w). If agent i 
uses Bayesian inference to estimate P(w1 | si) then we have a positive externality decision process and 
there exists a threshold value s* for the social signal such that agent i will choose option 0 if si < s* and 
option 1 if si ≥ s* [17].  
It can be seen that in these examples, different positive externality “drivers” lead to equivalent (threshold) 
micro-scale models.  

Taken together, the meso- and macro-scale components of the proposed modeling framework quanti-
fy the way agent decision functions interact to produce collective behavior at the population level. For 
convenience of exposition, in this Appendix we focus on network communities as the meso-scale struc-
ture of interest; however, all of the modeling results derived here also hold for the case of core-periphery 
structure . The role of the meso-scale model is to quantify and illuminate the manner in which agent deci-
sion functions interact within social network communities, while the macro-scale model characterizes the 
interactions of agents between communities. The primary assumption is that interactions between individ-
uals within social network communities can be modeled as “fully-mixed” – all pairwise interactions be-
tween individuals within a network community are equally likely – while interactions between communi-
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ties are constrained by the network defining the relationships between the communities. We argue below 
that this assumption is reasonable and useful.  

One advantage of identifying a scale at which agent interaction is (approximately) homogeneous is 
that this enables the leveraging of an extensive literature on collective dynamics. To be concrete, we de-
rive two examples. Consider first the social movement model proposed in [49,50]. In this model, each 
individual can be in one of three states: member (of the movement), potential member, and ex-member. 
Individuals interact in a fully-mixed way, with each interaction between a potential member and a mem-
ber resulting in the potential member becoming a member with probability β′, and each interaction be-
tween a member and an ex-member resulting in the member becoming an ex-member with probability δ1′; 
members also “spontaneously” become ex-members with probability δ2′. The connection between this 
representation and standard epidemiological models [1] is clear.  

Under the assumption of fully-mixed interactions at the meso-scale, standard manipulations yield the 
following representation for the social dynamics within network communities:  

                                          dP/dt  =  −βPM−(βPM)1/2η1(t), 

ΣH:                                            dM/dt  =  βPM+(βPM)1/2η1(t)−δ1ME−(δ1ME)1/2η2(t) −δ2M−(δ2M)1/2η3(t), 

                                          dE/dt  =  δ1ME+(δ1ME)1/2η2(t)+δ2M+(δ2M)1/2η3(t), 

where P, M, and E denote the fractions of potential members, members, and ex-members in the communi-
ty population, β, δ1, and δ2 are nonnegative constants related to the probabilities β′, δ1′, and δ2′ defined 
above, and the ηi(t) are appropriate random processes [e.g., 17]. The deterministic version of this basic 
model (i.e., with η1(t)=η2(t)=η3(t)≡0) is discussed by Hedstrom and coauthors in [49,50], and therefore 
we denote the model ΣH. The deterministic version is shown in [49] to provide a useful description for the 
local growth of a real world social movement.  

The second example incorporates the fact that innovations often have both enthusiasts and skeptics, 
each of whom may actively attempt to recruit the uncommitted. The model ΣH can be modified to account 
for this competition in recruitment:  

                                                       dP/dt = −β1PM1 − β2PM2, 

ΣB:                                                       dM1/dt = β1PM1 − δ1M1, 

                                                     dM2/dt = β2PM2 − δ2M2, 

                                                       dE/dt = δ1M1 + δ2M2, 

where P and E denote the fractions of potential members and ex-members, as before, M1 and M2 are 
members of the competing groups or movements, and β1, β2, δ1, and δ1 are nonnegative constants. A 
model of this basic form is proposed in Bettencourt and coworkers in [51] and thus we label it ΣB. The 
model can be fitted, with good agreement, to empirical data for the diffusion of Feynman diagrams (an 
innovation in physics) in the post World War II era [51]. Developing a stochastic version of ΣB, analogous 
to the representation ΣH, is straightforward [39].     

The meso-scale model describes the way individual agent decision functions interact to produce col-
lective behavior within social network communities. Individuals also interact with people from other 
communities, of course, and receive information from channels that transmit to many communities simul-
taneously (e.g., mass media). These inter-community interactions and “global” social signals are quanti-
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fied at the macro-scale level of the multi-scale modeling framework. The basic idea is simple and natural: 
we model interdependence between social network communities with a graph Gsc = {Vsc, Esc}, where Vsc 
and Esc are the vertex and edge sets, respectively, |Vsc| = K, each vertex v ∈ Vsc is a community, and each 
directed edge e = (v,v′) ∈ Esc represents a potential inter-community interaction. More specifically, an 
edge (v,v′) indicates that an agent in community v′ can receive decision-relevant information from one in 
community v. The way agents act upon this information is specified by their decision functions ri. The 
broadcast of global social signals to individuals is modeled as a community-dependent input uv to each 
individual in community v. Thus Gsc and the uv define the macro-scale model structure.  

A key task in deriving a macro-scale model is specifying the topology of Gsc, as this graph encodes 
the social network structure for the phenomenon of interest. The most direct approach to constructing Gsc 
is to infer communities directly from social network data, by partitioning the network so as to maximizing 
the graph modularity Qm. The main challenge with this method for building social community graphs is 
obtaining the requisite social network data. While this task is certainly nontrivial, availability of such data 
has increased dramatically over the past decade. For instance, social relationships and interactions in-
creasingly leave “fingerprints” in electronic databases (e.g., communication via email and cell phones, 
financial transactions), making convenient the acquisition, manipulation, storage, and analysis of these 
records [e.g., 4].  

Alternatively, demographics data can sometimes be used to define both the communities themselves 
(e.g., families, physical neighborhoods) and their proximity. The basic idea is familiar: individuals belong 
to social groups, which in turn belong to “groups of groups”, and so on, giving rise to a hierarchical or-
ganization of communities. For instance, in academics, research groups often belong to academic depart-
ments, which are organized into colleges, which in turn form universities, and so on. The proximity of 
two communities is specified by their relationship within the hierarchy, and this distance defines the like-
lihood that individuals from the two communities will interact. The probability of inter-community inter-
action, in turn, can be used to define the network community graph Gsc [39].  

A1.2 S-HDS Model Formulation  
We now show that the stochastic hybrid dynamical system formalism provides a rigorous, tractable, and 
expressive framework within which to represent multi-scale social dynamics models. Consider the fol-
lowing  
Definition A1.1: A stochastic hybrid dynamical system (S-HDS) is a feedback interconnection of a con-
tinuous-time, continuous state-dependent Markov chain {Q, Λ(x)} and a collection of stochastic differen-
tial equations indexed by the Markov chain state q:  

                                                                  {Q, Λ(x)}, 

ΣS-HDS:                                                  dx = fq(x,p)dt + Gq(x,p)dw, 

where q∈Q is the discrete state, x∈X⊆ℜn is the continuous state, p∈ℜp is a vector of system parameters, 
{fq} and {Gq} are sets of vector and matrix fields characterizing the continuous system dynamics, w is an 
m-valued Weiner process, and Λ(x) is the matrix of (x-dependent) Markov chain transition rates; the en-
tries of Λ(x) satisfy λqq′(x) ≥ 0 if q ≠ q′ and Σq′ λqq′(x) = 0 ∀q, and are related to the standard Markov state 
transition probabilities as follows [e.g., 34]:  
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A general discussion of S-HDS theory and applications is beyond the scope of this paper and may be 
found in, for instance, [34] and the references therein.  

We now develop an S-HDS representation for multi-scale social diffusion processes. It is assumed 
that:  
• the social system consists of N individuals distributed over K network communities;  
• individuals can influence each other via positive externalities;  
• intra-community interactions are fully-mixed;  
• inter-community interactions involve the (possibly temporary) migration of individuals from one 

community to another.  
The phenomenon of interest is the diffusion of innovations, in which an innovation of some kind (e.g., a 
new technology or idea) is introduced into a social system, and individuals may learn about the innova-
tion from others and decide to adopt it [e.g., 2]. By definition an innovation is “new”, and therefore it is 
supposed that initially only a few of the network communities have been exposed to it. An important task 
in applications is to be able to characterize the likelihood that the innovation will spread to a significant 
fraction of the population [17].  

We model social diffusion as follows:  
Definition A1.2: The multi-scale S-HDS diffusion model is a tuple  

ΣS-HDS, diff = {Gsc, Q×X, {fq(x),Gq(x),Hq(x)}q∈Q, Par, W, U, {Q, Λ(x)}} 

where  
• Gsc = {Vsc, Esc} is the social network community graph;  
• Q×X is the system state set, with Q and X ⊆ ℜn denoting the (finite) discrete and (bounded) continu-

ous state sets, respectively;  
• {fq(x),Gq(x),Hq(x)}q∈Q, Par, W, U is the S-HDS continuous system, a family of stochastic differential 

equations which characterizes the intra-community dynamics via vector field/ matrix families 
{fq},{Gq},{Hq}, system parameter vector p∈Par⊆ℜp, and system inputs w∈W⊆ℜm, u∈U⊆ℜr;  

• {Q, Λ(x)} is the S-HDS discrete system, a continuous-time Markov chain which defines inter-
community interactions via state set Q and transition rate matrix Λ(x).  
The social community graph Gsc defines the feasible community-community innovation diffusion 

pathways: if (v,v′) ∉ Esc then it is not possible for the innovation to spread directly from community v to 
community v′. The discrete state set Q = {0,1}K specifies which communities contain at least one adopter 
of the innovation by labeling such communities with a ‘1’ (and a ‘0’ otherwise). Thus, for example, state 
q = [1  0  0  … ]T indicates that community 1 has at least one adopter, community 2 and 3 do not, and so 
on. The continuous state space X has coordinates xij ∈ [0,1], where xij is the ith state variable for the con-
tinuous system dynamics evolving in community j. For consistency we use the first coordinate for each 
community, x1j, to refer to the fraction of adopters for that community. The continuous system dynamics 
is defined by a family of q-indexed stochastic differential equations {Σcs, q}q∈Q, with  

Σcs, q:                                           dx = fq(x,p)dt + Gq(x,p)dw + Hq(x,p)du, 

where w∈W is a standard Weiner process and u∈U is the exogenous input. Ordinarily w is interpreted as 
a stochastic “disturbance”, while u is employed to represent influences from “global” sources such as 
mass media. These dynamics quantify intra-community diffusion of the innovation of interest, for in-
stance through models of the form ΣH. The Markov chain matrix Λ(x) specifies the transition rates for 
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discrete state transitions q → q′ and depends on both Gsc and x (e.g., the rate at which community v will 
“infect” other communities depends upon the fraction of adopters in v). It is worth noting that the model 
ΣS-HDS, diff naturally accommodates both probabilistic (via w and the Markov chain dynamics) and set-
bounded (through parameter set Par) uncertainty descriptions, as this expressiveness is desirable in appli-
cations.  

A1.3 A Simple Example  
We now demonstrate the implementation of the proposed multi-scale S-HDS diffusion modeling frame-
work, and illustrate its efficacy, through a simple example; a more complex example, with more interest-
ing analytic goals, is investigated in Appendix Two below. Consider a social network consisting of two 
communities and a social movement process playing out on this network. We construct the social network 
using the method given in [52]. Briefly, a collection of N vertices is divided into two communities of 
equal size, denoted L and R (for ‘left’ and ‘right’, see Figure 6). For all vertex pairs, if both vertices be-
long to the same community then an edge is placed between them with probability pi, and if the vertices 
belong to different communities then they are connected with probability pe < pi. Increasing the ratio pi / 
pe makes the resulting network more “community-like” by increasing the relative intra-community edge 
density. Figure 6 shows two small example networks built in this way, with the network on the left corre-
sponding to a larger pi / pe ratio.  

The social movement dynamics evolving on this network is a “network version” of the model pro-
posed in [49]. Thus each individual can be in one of three states – member, potential member, and ex-
member – and individuals can change states in one of three ways: 1.) members persuade potential mem-
bers to whom they are linked to become members with probability β′, 2.) ex-members likewise influence 
neighboring members to become ex-members with probability δ1′, and 3.) members can spontaneously 
become ex-members with probability δ2′. For convenience of reference this “agent-based” system repre-
sentation is denoted ΣABM. 

It is straightforward to derive an S-HDS version of the social movement model ΣABM. Consider the 
diffusion model ΣS-HDS, diff = {Gsc, Q×X, {fq(x), Gq(x), Hq(x)}q∈Q, Par, W, U, {Q, Λ(x)}} specified in Defi-
nition A1.2. Note first that in this case the social network community graph Gsc is very simple, consisting 
of two vertices corresponding to communities L and R and an undirected edge connecting them. The con-
tinuous system state is x = [PL  ML  PR  MR]T∈X, where the subscripts indicate communities (note that the 
concentrations of ex-members, EL and ER, are not independent states because the total concentration sums 
to one on each community). We approximate the agent-based social movement dynamics within each 
network community with the fully-mixed model ΣH, that is, with a set of stochastic differential equations 
governing the evolution of the concentrations of members M and potential members P.  

It can be seen that ΣH together with the preceding discussion defines the model components X, 
{fq(x),Gq(x),Hq(x)}q∈Q, Par, W, U that make up the continuous system portion of ΣS-HDS, diff. Thus all that 
remains is to specify the discrete system {Q, Λ(x)}. The discrete state set Q = {00, 10, 01, 11} indicates 
which communities contain at least one movement member, so that for instance state q = 10 indicates that 
community L has at least one member and community R has no members. The Markov chain matrix Λ(x) 
specifies the transition rates for discrete state transitions q → q′. These rates depend on the continuous 
system state x because the likelihood that one community will “infect” the other depends upon the current 
concentrations of members, potential members, and ex-members in that community.  
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We examine the utility of the S-HDS social diffusion model constructed above by using this model 

to estimate the probability that a small set of “seed” members introduced into community L will lead to 
the movement growing and eventually propagating to community R. Because the model ΣS-HDS, diff is de-
rived from ΣABM, ΣABM is taken to be ground truth and ΣS-HDS, diff is deemed a useful approximation if the 
cascade probability estimates obtained using the S-HDS representation are in good agreement with those 
computed based on ΣABM. The following parameter values are chosen for ΣABM: N = 2000, β′ = 0.5, δ1′ = 
0.01, δ2′ = 0.1 (the results reported are not sensitive to variation in these values). We build 50 random re-

Figure 6. Sample results for ABM/S-HDS comparison study. The visualization at top is a cartoon of the 
basic setup, in which an innovation is introduced into one of the two network communities comprising a 
social system; possible outcomes include diffusion of the innovation throughout the community initially 
“infected” (left network, blue vertices are in state M) or across both communities (right network). The plot 
at bottom shows the probability of “global” diffusion as a function of inter-community interaction intensity 
for the models ΣABM (blue curve) and ΣS-HDS, diff (red curve).  
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alizations of the social network for each of 15 pi / pe ratios. The values for pi / pe are selected to generate a 
collection of 15 network sets whose topologies interpolate smoothly between networks with essentially 
disconnected communities (large pi / pe) and networks whose two communities are tightly coupled (small 
pi / pe). A “global” cascade is said to occur if an initial seed set of five movement members in community 
R, chosen at random, results in the diffusion of the movement to community L. The probability of global 
cascade at a given pi / pe ratio is computed by running 20 simulations on each of the 50 social network 
realizations associated with that pi / pe, and counting up those for which the innovation propagates to 
community L. The results of this simulation study are presented in the plot at the bottom of Figure 6, with 
the blue curve showing the probability estimates as a function of pi / pe ratio and the error bars corre-
sponding to ± 2 standard errors.  

We now investigate the efficacy of the S-HDS social diffusion model by using this model to estimate 
the probability of global cascade. The social diffusion model ΣS-HDS, diff is instantiated to be equivalent to 
the agent-based representation ΣABM described above. Note that, in particular, there are no free parameters 
available to permit the response of ΣS-HDS, diff to be “tuned” to match ΣABM. For instance, the ΣABM parame-
ters β′, δ1′, δ2′ uniquely define ΣS-HDS, diff parameters β, δ1, δ2, and specifying values for the pi / pe ratios 
gives corresponding values for the S-HDS transition matrices Λ(x) (to within a single “offset” parameter, 
see [39]). A Matlab program implementing the resulting model ΣS-HDS, diff is given in [39].  

In order to compute the probability of global cascade using the S-HDS model ΣS-HDS, diff, we employ 
the “altitude function” method described in Appendix Two below. This method calculates provably-
correct upper bounds on the probability of the social movement propagating to community L. The results 
of this analysis are given at the plot of the bottom of Figure 6 (red curve). Observe that the global cascade 
probability estimates obtained using the two models ΣABM and ΣS-HDS, diff are in close agreement. As it is 
challenging to model “discontinuous” phenomena such as diffusion across social network communities, 
this agreement represents important evidence that the S-HDS provides a useful characterization of social 
diffusion on networks.  

While the models ΣABM and ΣS-HDS, diff generate similar results in this example, the S-HDS representa-
tion is much more efficient computationally. For instance, estimating the desired global cascade proba-
bilities using the S-HDS model requires less than one percent of the computer time needed to obtain these 
estimates with the equivalent agent-based model. Moreover, this difference on efficiency increases with 
network size, which is important because realistic social networks have hundreds or thousands of com-
munities rather than just two. This computational tractability hints at a more general, and more signifi-
cant, mathematical tractability enjoyed by the S-HDS framework, a property we now leverage to develop 
a rigorous predictive analysis methodology for social diffusion events.  
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A2. Appendix Two: Predictive Analysis 

In this Appendix we formulate the predictive analysis problem in terms of reachability assessment, show 
that these reachability questions can be addressed through an “altitude function” analysis without compu-
ting system trajectories, and apply this theoretical framework to demonstrate that predictability of a broad 
class of social diffusion models depends crucially upon the meso-scale topological structures of the un-
derlying networks. For convenience of exposition, in this Appendix we focus on network communities as 
a representative meso-scale structure; however, all results derived here are also applicable to the more 
general case in which the “network partition” (see Section 2.2) includes both community and core-
periphery structures.  

A2.1 Predictive Analysis as Reachability Assessment  
We propose that accurate prediction requires careful consideration of the interplay between the intrinsics 
of a process and the social dynamics which are its realization. We therefore adopt an inherently dynam-
ical approach to predictive analysis: given a social process, a set of measurables, and the behavior of in-
terest, we formulate prediction problems as questions about the reachability properties of the system. To-
ward that end, the behavior about which predictions are to be made is used to define the system state 
space subsets of interest (SSI), while the particular set of candidate measurables under consideration al-
lows identification of the candidate starting set (CSS), that is, the set of states and system parameter val-
ues which represent initializations that are equivalent under the assumed observational capability. This 
setup permits predictability assessment, and the related task of identifying useful measurables, to be per-
formed in a systematic manner. Roughly speaking, the proposed approach to predictability assessment 
involves determining how probable it is to reach the SSI from a CSS and deciding if these reachability 
properties are compatible with the prediction goals. If a system’s reachability characteristics are incom-
patible with the given prediction question – if, say, “hit” and “flop” in a cultural market are both likely to 
be reached from the CSS – then the prediction objectives should be refined in some way. Possible refine-
ments include relaxing the level of detail to be predicted or introducing additional measurables.  

We now make these notions more precise. Consider the multi-scale S-HDS social diffusion model 
ΣS-HDS, diff specified in Definition A1.2. Let P0 be a subset of the parameter set Par and X0, Xs1, Xs2 be sub-
sets of the (bounded) continuous system state space X. Suppose X0 × P0 and {Xs1, Xs2} are the CSS and 
SSI, respectively, corresponding to the prediction question. Let a specification δ > 0 be given for the min-
imum acceptable level of variation in system behavior relative to {Xs1, Xs2}. Consider the following  
Definition A2.1: A situation is eventual state (ES) predictable if |γ1 − γ2| > δ, where γ1 and γ2 are the 
probabilities of ΣS-HDS, diff reaching Xs1 and Xs2, respectively, and is ES unpredictable otherwise.  

Note that in ES predictability problems it is expected that the two sets {Xs1, Xs2} represent qualita-
tively different system behaviors (e.g., hit and flop in a cultural market), so that if the probabilities of 
reaching each from X0 × P0 are similar then system behavior is unpredictable in a sense that is meaningful 
for many applications. Other useful forms of predictability are defined and investigated in [39].  

The notion of predictability forms the basis for our definition of useful measurables:  
Definition A2.2: Let the components of the vectors (x0, p0) ∈ X0 × P0 which comprise the CSS be denot-
ed x0 = [x01 … x0n]T and p0 = [p01 … p0p]T. The measurables with most predictive power are those state 
variables x0j and/or parameters p0k for which predictability is most sensitive.  

Intuitively, those measurables for which predictability is most sensitive are likely to be the ones that 
can most dramatically affect the predictability of a given problem. Note that we do not specify a particular 
measure of sensitivity to be used when identifying measurables with maximum predictive power, as such 
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considerations are ordinarily application-dependent (see [39] for some useful specifications). Definitions 
A2.1 and A2.2 focus on the role played by initial states in the predictability of social processes. In some 
cases it is useful to expand this formulation to allow consideration of states other than initial states. For 
instance, we show in [18] that very early time series are often predictive for PEP, suggesting that it can be 
valuable to consider initial state trajectory segments, rather than just initial states, when assessing predict-
ability. This extension can be naturally accomplished by redefining the CSS, for instance by augmenting 
the state space X with an explicit time coordinate [18].  

We now turn our attention to the “early warning” problem.  
Definition A2.3: Let the event of interest be specified in terms of ΣS-HDS, diff reaching or escaping some 
SSI Xs, and suppose a warning signal is to be issued only if the probability of event occurrence exceeds 
some specified threshold α. Reach warning analysis involves identifying a state set Xw, where Xs ⊆ Xw 
necessarily, with the property that if the system trajectory enters Xw then the probability that ΣS-HDS, diff 
will eventually reach Xs is at least α. Analogously, escape warning analysis involves identifying a state 
set Xw, where X \ Xw ⊆ Xs necessarily, with the property that if the system trajectory enters Xw then the 
probability that ΣS-HDS, diff will eventually escape from Xs is at least α.  

A2.2 Stochastic Reachability Assessment  
The previous section formulates predictive analysis problems as reachability questions. Here we show 
that these reachability questions can be addressed through an “altitude function” analysis, in which we 
seek a scalar function of the system state that permits conclusions to be made regarding reachability with-
out computing system trajectories. We refer to these as altitude functions to provide an intuitive sense of 
their analytic role: if some measure of “altitude” is low on the CSS and high on an SSI, and if the ex-
pected rate of change of altitude along system trajectories is nonincreasing, then it is unlikely for trajecto-
ries to reach this SSI from the CSS.  

Consider the S-HDS social diffusion model ΣS-HDS, diff evolving on a bounded state space Q × X. We 
quantify the uncertainty associated with ΣS-HDS, diff by specifying bounds on the possible values for some 
system parameters and perturbations and giving probabilistic descriptions for other uncertain system ele-
ments and disturbances. Given this representation, it is natural to seek a probabilistic assessment of sys-
tem reachability.  

We begin with an investigation of probabilistic reachability on infinite time horizons. The following 
“supermartingale lemma” is proved in [53] and is instrumental in our development:  
Lemma SM: Consider a stochastic process Σs with bounded state space X, and let x(t) denote the 
“stopped” process associated with Σs (i.e., x(t) is the trajectory of Σs which starts at x0 and is stopped if it 
encounters the boundary of X). If A(x(t)) is a nonnegative supermartingale then for any x0 and λ > 0  

P{sup A(x(t)) ≥ λ | x(0) = x0} ≤ A(x0) / λ. 

Denote by X0 ⊆ X and Xs ⊆ X the initial state set and SSI, respectively, for the continuous system 
component of ΣS-HDS, diff, and assume that X and the parameter set Par ⊆ ℜp are both bounded. Thus, for 
instance, the SSI is a subset of the continuous system state space X alone; this is typically the case in ap-
plications and is easily extended if necessary. We are now in a position to state our first stochastic reach-
ability result:  
Theorem 2: γ is an upper bound on the probability of trajectories of ΣS-HDS, diff reaching Xs from X0, while 
remaining in Q × X, if there is a family of differentiable functions {Aq(x)}q∈Q such that  
• Aq(x) ≤ γ ∀x∈X0, ∀q∈Q;  
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• Aq(x) ≥ 1 ∀x∈Xs, ∀q∈Q;  
• Aq(x) ≥ 0 ∀x∈X, ∀q∈Q;  
• (∂Aq/∂x) (fq + Hq u) + (1/2) tr [Gq

T (∂2Aq/∂x2) Gq] + Σq′∈Q λqq′ Aq′ ≤ 0 ∀x∈X, ∀q∈Q, ∀u∈U, ∀p∈Par.  
Proof: Note first that BAq(x) = (∂Aq/∂x) (fq + Hq u) + (1/2) tr [Gq

T (∂2Aq/∂x2) Gq] + Σq′∈Q λqq′ Aq′ is the 
infinitesimal generator for ΣS-HDS, diff, and therefore quantifies the evolution of the expectation of Aq(x) 
[53,34]. As a consequence, the third and fourth conditions of the theorem imply that A(q(t),x(t)) is a 
nonnegative supermartingale [53]. Thus, from Lemma SM, we can conclude that P{x(t)∈Xs for some t} ≤ 
P{sup A(q(t),x(t)) ≥ 1 | x(0)=x0} ≤ A(q,x0) ≤ γ ∀x0∈X0, ∀q∈Q, ∀u∈U, ∀p∈Par.                                        
                                                                                                              

The preceding result characterizes reachability of S-HDS on infinite time horizons. In some situa-
tions, including important applications involving social systems, it is of interest to study system behavior 
on finite time horizons. The following result is useful for such analysis:  
Theorem 3: γ is an upper bound on the probability of trajectories of ΣS-HDS, diff reaching Xs from X0 during 
time interval [0,T], while remaining in Q × X, if there exists a family of differentiable functions 
{Aq(x,t)}q∈Q such that  
• Aq(x,t) ≤ γ ∀(x,t)∈X0×0, ∀q∈Q;  
• Aq(x,t) ≥ 1 ∀(x,t)∈Xs×[0,T], ∀q∈Q;  
• Aq(x,t) ≥ 0 ∀(x,t)∈X×ℜ+, ∀q∈Q;  
• BAq(x,t) ≤ 0 ∀(x,t)∈X×ℜ+, ∀q∈Q, ∀u∈U, ∀p∈Par.  
Proof: The proof follows immediately from that of Theorem 2 once it is observed that P{x(t)∈Xs for 
some t∈[0,T]} = P{(x(t),t)∈Xs×[0,T]}.                                                                                                         
The idea for the proof of Theorem 3 was suggested in [54].  

Having formulated predictability assessment for social processes in terms of system reachability and 
presented a new theoretical methodology for assessing reachability, we are now in a position to give our 
approach to deciding predictability. Observe first that Theorems 2 and 3 are of direct practical interest 
only if it is possible to efficiently compute a tight probability bound γ and associated altitude function 
A(x) which satisfy the theorem conditions. Toward that end, observe that the theorems specify convex 
conditions to be satisfied by altitude functions: if A1 and A2 satisfy the theorem conditions then any con-
vex combination of A1 and A2 will also satisfy the conditions. Thus the search for altitude functions can 
be formulated as a convex programming problem [55]. Moreover, if the system of interest admits a poly-
nomial description (e.g., the system vector and matrix fields are polynomials) and we search to polynomi-
al altitude functions, then the search can be carried out using sum-of-squares (SOS) optimization [56].  

SOS optimization is a convex relaxation framework based on SOS decomposition of the relevant 
polynomials and semidefinite programming. SOS relaxation involves replacing the nonnegative and 
nonpositive conditions to be satisfied by the altitude functions with SOS conditions. For example, the 
conditions for Aq(x) given in Theorem 2 can be relaxed as follows:  

                               A(x) ≤ γ ∀x∈X0             →      γ − A(x) − λ0
T(x) g0(x) is SOS 

                              A(x) ≥ 1 ∀x∈Xs             →      A(x) − 1 − λs
T(x) gs(x) is SOS 

                                    A(x) ≥ 0 ∀x∈X        →      A(x) − λX1
T(x) gX1(x) is SOS 

BA(x) ≤ 0 ∀x∈X, ∀p∈Par      →      −BA(x)−λX2
T(x) gX2(x)−λP

T(p) gP(p) is SOS 

where the entries of the vector functions λ0, λs, λX1, λX2, λP are SOS, the vector functions g0, gs, gX1, gX2, 
gP satisfy g∗(⋅) ≥ 0 (entry-wise) whenever x∈X∗ or p∈Par, respectively, and we assume |Q| = 1 for nota-
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tional convenience. The conditions on Aq(x,t) specified in Theorem 3 can be relaxed in exactly the same 
manner. The relaxed SOS conditions are clearly sufficient and in practice are typically not overly-
conservative [56,39].  

Once the set of conditions to be satisfied by A(x) are relaxed in this way, SOS programming can be 
used to compute γmin, the minimum value for the probability bound γ, and A(x), the associated altitude 
function which certifies the correctness of this bound. Software for solving SOS programs is available as 
the third-party Matlab toolbox SOSTOOLS [56], and example SOS programs are given in [39]. Im-
portantly, the approach is tractable: for fixed polynomial degrees, the computational complexity of the 
associated SOS program grows polynomially in the dimension of the continuous state space, the cardi-
nality of the discrete state set, and the dimension of the parameter space.  

For completeness, we outline an algorithm for computing the pair (γmin, A(x)):  

Algorithm A2.1: altitude functions via SOS programming (outline)  
1. Parameterize A as A(x) = Σk ck ak(x), where {a1, …, aB} are monomials up to a desired degree bound 

and {c1, …, cB} are to-be-determined coefficients.  
2. Relax all A(x) criteria in the relevant theorem to SOS conditions.  
3. Formulate an SOS program with decision variables γ, {c1, …, cB}, where the desired bound on alti-

tude function polynomial degree is reflected in the specification of the set {c1, …, cB}. Compute the 
minimum probability bound γmin and values for the coefficients {c1, …, cB} that define A(x) using 
SOSTOOLS.  

It is emphasized that, although the computation of (γmin, A(x)) is performed numerically, the resulting 
function A(x) is guaranteed to satisfy the conditions of the relevant theorem and therefore represents a 
proof of the correctness of the probability upper bound γmin. Note also that the probability estimate is ob-
tained without computing system trajectories, and is valid for entire sets of initial states X0, parameter 
values Par, and exogenous inputs U.  

Having given a method for efficiently computing pairs (γmin, A(x)), and thereby characterizing reach-
ability, we are now in a position to sketch an algorithm for assessing ES predictability:  

Algorithm A2.2: ES predictability (outline)  
Given: social diffusion process of interest is ΣS-HDS, diff, CSS = X0 × P0, SSI = {Xs1, Xs2}, and minimum 
acceptable level of variation = δ.  
Procedure:  
1. compute (upper bound for) probability γ1 of ΣS-HDS, diff reaching Xs1 from X0 × P0;  
2. compute (upper bound for) probability γ2 of ΣS-HDS, diff reaching Xs2 from X0 × P0;  
3. if |γ1 − γ2| > δ then problem is ES predictable, else problem is ES unpredictable.  
Note: γ1, γ2 can be computed using Theorem 2 (infinite time horizon) or Theorem 3 (finite time horizon) 
together with Algorithm3.1 and SOSTOOLS [56].  

A2.3 Application to Social Diffusion  
The theoretical framework developed in the preceding sections is now used, in combination with empiri-
cally-grounded models for social diffusion [e.g., 17,49-51], to demonstrate that predictability of this class 
of diffusion models depends crucially upon network community structure. We investigate the following 
predictability question: Is the diffusion of social movements and mobilizations ES predictable and, if so, 
which measurable quantities have predictive power?  

We adopt a specific version of the S-HDS social diffusion model proposed in Definition 2.2:  
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ΣS-HDS, diff = {Gsc, Q×X, {fq(x),Gq(x)}q∈Q, Par, W, {Q, Λ(x)}} 

where  
• the social network community graph Gsc consists of K communities (so |Vsc| = K), connected together 

with an Erdos-Renyi random graph topology, with community size drawn from a power law distribu-
tion [36];  

• each continuous system Σcs, q: dx = fq(x,p)dt + Gq(x,p)dw, q∈Q, is given by the meso-scale social 
movement model ΣH or ΣB with appropriate parameter vector p and system “noise” w;  

• the discrete system {Q, Λ(x)} is a Markov chain that defines inter-community interactions in the 
manner described in Definition A1.2.  
A Matlab instantiation of this S-HDS diffusion model is given in [39] and is available upon request. 

The behavior of the model can be shown to be consistent with empirical observations of several historical 
social movements (e.g., various movements in Sweden) [39].  

In order to assess ES predictability, SSI = {Xs1, Xs2} is defined so that Xs1, Xs2 are state sets corre-
sponding to global (affecting a significant fraction of the population) and local (remaining confined to a 
small fraction of the population) movement events, respectively. We then employ Algorithm A2.2 itera-
tively to search for a definition for CSS = X0 × P0 which ensures that the probabilities of reaching Xs1 and 
Xs2 from X0 × P0 are sufficiently different to yield an ES predictable situation. We use two models of the 
form ΣS-HDS, diff for this analysis, corresponding to the two definitions for the continuous system ΣH and ΣB. 
Each model is composed of K = 10 communities connected together with an Erdos-Renyi random graph 
topology. (Using different realizations of the Erdos-Renyi random graph does not affect the conclusions 
reported below.)  

ES predictability analysis yields two main results. First, both the intra-community and inter-
community dynamics exhibit threshold behavior: small changes in either the intra-community “infectivi-
ty” or inter-community interaction rate around their threshold values lead to large variations in the proba-
bility that the movement will propagate “globally”. More quantitatively, for the diffusion model ΣS-HDS, diff 
with continuous system dynamics ΣH, threshold behavior is obtained when varying 1.) the generalized 
reproduction number R = β / δ2 and 2.) the rate λ at which inter-community interactions between individ-
uals take place. Thus in order for a social movement to propagate to a significant fraction of the popula-
tion, the threshold conditions R≥1 and λ≥λ0 must be satisfied simultaneously. An analogous conclusion 
holds when ΣH is replaced with the diffusion model ΣB in the S-HDS representation. This finding is remi-
niscent of and extends well-known results for epidemic thresholds in disease propagation models [1].  

This threshold behavior is illustrated in the plot at the top right of Figure 7, which shows the way 
probability of global propagation increases with inter-community interaction rate when the intra-
community diffusion is sufficiently infective (i.e.,  R≥1). The probabilities which make up this plot repre-
sents provably-correct (upper bound) estimates computed using Theorem 2 and Algorithm A2.1. A simi-
lar threshold response is observed when varying intra-community infectivity R, provided the inter-
community interaction rate satisfies λ≥λ0. Importantly, the inter-community interaction threshold λ0 is 
seen to be quite small, indicating that even a few links between network communities enables rapid diffu-
sion of the movement to otherwise disparate regions of the social network. This result suggests that a use-
ful predictor of movement activity in a given community is the level of movement activity among that 
community’s neighbors in Gsc.  
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The second main ES predictability result characterizes the way probability of global propagation var-

ies with the number of network communities across which a fixed set of “seed” movement members is 
distributed. To quantify this dependence, the social movement model ΣS-HDS, diff is initialized so that a 
small fraction of individuals in the population are movement members and the remainder of the popula-
tion consists solely of potential members. We then vary the way this initial seed set of movement mem-
bers is distributed across the K network communities, at one extreme assigning all seeds to the same 
community and at the other spreading the seeds uniformly over all K communities. For each distribution 
of seed movement members, the probability of global movement propagation is computed using Theorem 
2 and Algorithm A2.1. Other than initialization strategy, the model is specified exactly as in the preceding 
analysis.  

Figure 7. Sample results from social diffusion predictability study. Cartoon at top left illustrates the 
setup for the inter-community interaction study, highlighting the parameter values R0=1 and λ0 which 
quantify intra-and inter-community propagation thresholds; plot at top right shows classic threshold 
dependence of global propagation probability on inter-community interaction intensity λ. Plots in 
bottom row depict the way global propagation probability increases with the number of communities 
across which a fixed set of innovating seeds are distributed (plots at left and right show cascade prob-
abilities for multi-scale models possessing ΣH and ΣB meso-scale dynamics, respectively).  
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The results of this portion of the ES predictability assessment are summarized in the two plots at the 
bottom of Figure 7. It is seen that for both choices of meso-scale social movement dynamics, ΣH and ΣB, 
the probability of global movement propagation increases approximately linearly with the number of net-
work communities across which the fixed set of seed members is distributed (here the number of initial 
members is set to one percent of the total population).  
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Proactive Cyber Defense 

There is great interest to develop proactive approaches to cyber defense, in which 
future attack strategies are anticipated and these insights are incorporated into de-
fense designs. This chapter considers the problem of protecting computer net-
works against intrusions and other disruptions in a proactive manner. We begin by 
leveraging the coevolutionary relationship between attackers and defenders to 
derive two new proactive filter-based methods for network defense. The first of 
these filters is a bipartite graph-based machine learning algorithm which enables 
information concerning previous attacks to be “transferred” for application against 
novel attacks, thereby substantially increasing the rate at which defense systems 
can successfully respond to new attacks. The second approach involves exploiting 
basic threat information (obtained from, e.g., network security analysts) to gener-
ate “synthetic” attack data for use in learning appropriate defense actions, result-
ing in network defenses that are effective against both current and (near) future 
attacks. The utility of these two filter-based methods is demonstrated by showing 
that they outperform standard techniques for the task of detecting malicious net-
work activity in two publicly-available cyber datasets. We then consider the prob-
lem of anticipating and characterizing impending attack events with sufficient 
specificity and timeliness to enable mitigating defensive actions to be taken, and 
propose a novel early warning method as a solution to this problem. The warning 
method is based upon the fact that certain classes of attacks require the attackers to 
coordinate their actions, and exploits signatures of this coordination to provide 
effective attack warning. The potential of the warning-based approach to cyber 
defense is illustrated through a case study involving politically-motivated Internet 
attacks.  

1.1  Introduction 

Rapidly advancing technologies and evolving operational practices and require-
ments increasingly drive both private and public sector enterprises toward highly 
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interconnected and technologically convergent information networks. Proprietary 
information processing solutions and stove-piped databases are giving way to uni-
fied, integrated systems, thereby dramatically increasing the potential impact of 
even a single well-planned network intrusion, data theft, or denial-of-service 
(DoS) attack. It is therefore essential that commercial and government organiza-
tions develop network defenses which are able to respond rapidly to, or even fo-
resee, new attack strategies and tactics.  

Recognizing these trends and challenges, some cyber security researchers and 
practitioners are focusing their efforts on developing proactive methods of cyber 
defense, in which future attack strategies are anticipated and these insights are 
incorporated into defense designs [e.g., 1-5]. However, despite this attention, 
much remains to be done to place the objective of proactive defense on a rigorous 
and quantitative foundation. Fundamental issues associated with the dynamics and 
predictability of the coevolutionary “arms race” between attackers and defenders 
are yet to be resolved. For instance, although recent work has demonstrated that 
previous attacker actions and defender responses provide predictive information 
about future attacker behavior [3-5], not much is known about which measurables 
have predictive power or how to exploit these to form useful predictions. Moreo-
ver, even if these predictability and prediction issues were resolved, it is still an 
open question how to incorporate such predictive analytics into the design of prac-
tically-useful cyber defense systems.  

This chapter considers the problem of protecting enterprise-scale computer 
networks against intrusions and other disruptions. We begin by leveraging the 
coevolutionary relationship between attackers and defenders to develop two 
proactive filter-based methods for network defense. Each of these methods for-
mulates the filtering task as one of behavior classification, in which innocent and 
malicious network activities are to be distinguished, and each assumes that only 
very limited prior information is available regarding exemplar attacks or attack 
attributes. The first method models the data as a bipartite graph of instances of 
network activities and the features or attributes that characterize these instances. 
The bipartite graph data model is used to derive a machine learning algorithm 
which accurately classifies a given instance as either innocent or malicious based 
upon its behavioral features. The algorithm enables information concerning pre-
vious attacks to be “transferred” for use against novel attacks; crucially, it is as-
sumed that previous attacks are drawn from a distribution of attack instances 
which is related but not identical to that associated with the new malicious beha-
viors. This transfer learning algorithm offers a simple, effective way to extrapolate 
attacker behavior into the future, and thus significantly increases the speed with 
which defense systems can successfully respond to new attacks.  

The second classifier-based approach to proactive network defense represents 
attacker-defender coevolution as a hybrid dynamical system (HDS) [6,7], with the 
HDS discrete system modeling the “modes” of attack (e.g., types of DoS or data 
exfiltration procedures) and the HDS continuous system generating particular at-
tack instances corresponding to the attack mode presently “active”. Our algorithm 
takes as input potential near-future modes of attack, obtained for example from the 
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insights of cyber analysts, and generates synthetic attack data for these modes of 
malicious activity; these data are then combined with recently observed attacks to 
train a simple classifier to be effective against both current and (near) future at-
tacks. The utility of these proactive filter-based methods is demonstrated by 
showing that they outperform standard techniques for the task of distinguishing 
innocent and malicious network behaviors in analyses of two publicly-available 
cyber datasets.  

An alternative approach to proactive network defense is to consider the prob-
lem of anticipating and characterizing impending attack events with enough speci-
ficity and lead time to allow mitigating defensive actions to be taken. We also 
explore this approach in the chapter, proposing a novel early warning method as a 
solution to this problem. The proposed warning method is based upon the fact that 
certain classes of attacks require the attackers to coordinate their actions, often 
through social media or other observable channels, and exploits signatures gener-
ated by this coordination to provide effective attack warning. Interestingly, the 
most useful early warning indicator identified in this exploratory study is not one 
of the standard metrics for social media activity, but instead is a subtle measure of 
the way attack coordination interacts with the topology of relevant online social 
networks. The potential of the early warning approach to proactive cyber defense 
is illustrated through a case study involving politically-motivated Internet-scale 
attacks. 

1.2  Proactive Filters  

In this section we propose two filter-based methods for proactive network defense 
and demonstrate their utility through analysis of publicly-available computer net-
work security-related datasets.  

1.2.1  Preliminaries  

We approach the task of protecting computer networks from attack as a classifica-
tion problem, in which the objective is to distinguish innocent and malicious net-
work activity. Each instance of network activity is represented as a feature vector 
x|F|, where entry xi of x is the value of feature i for instance x and F is the set of 
instance features or attributes of interest (x may be normalized in various ways 
[7]). Instances can belong to one of two classes: positive / innocent and negative / 
malicious; generalizing to more than two classes is straightforward. We wish to 
learn a vector c|F| such that the classifier orient  sign(cTx) accurately estimates 
the class label of behavior x, returning 1 (1) for innocent (malicious) activity.  

Knowledge-based classifiers leverage prior domain information to construct 
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the vector c. One way to obtain such a classifier is to assemble a “lexicon” of in-
nocent / positive features FF and malicious / negative features FF, and to set 
ci 1 if feature i belongs to F, ci 1 if i is in F, and ci0 otherwise; this clas-
sifier simply sums the positive and negative feature values in the instance and as-
signs instance class accordingly. Unfortunately this sort of scheme is unable to 
improve its performance or adapt to new domains, and consequently is usually not 
very useful in cyber security applications.  

Alternatively, learning-based methods attempt to generate the classifier vector 
c from examples of innocent and malicious network activity. To obtain a learning 
classifier, one can begin by assembling a set of nl labeled instances {(xi, di)}, 
where di{1, 1} is the class label for instance i. The vector c is then learned 
through training with the set {(xi, di)}, for example by solving the following set of 
equations for c: 

[XTX  I|F|] c  XT d,                      (1) 

where matrix Xnl|F| has instance feature vectors for rows, dnl is the vector 
of instance labels, I|F| denotes the |F||F| identity matrix, and 0 is a constant; this 
corresponds to regularized least squares (RLS) learning [8]. Many other learning 
strategies can be used to compute c [8]. Learning-based classifiers have the poten-
tial to improve their performance and adapt to new situations, but realizing these 
capabilities typically requires that large training sets of labeled attacks be obtained. 
This latter characteristic represents a significant drawback for cyber security ap-
plications, where it is desirable to be able to recognize new attacks given only a 
few (or even no) examples.  

In this section we present two new learning-based approaches to cyber defense 
which are able to perform well with only very modest levels of prior knowledge 
regarding the attack classes of interest. The basic idea is to leverage “auxiliary” 
information which is readily available in cyber security applications. More specif-
ically, the first proposed method is a transfer learning algorithm [e.g., 9] which 
permits the information present in data from previous attacks to be transferred for 
implementation against new attacks. The second approach uses prior knowledge 
concerning attack “modes” to generate synthetic attack data for use in training 
defense systems, resulting in networks defenses which are effective against both 
current and (near) future attacks. 

1.2.2  Algorithm One: Transfer Learning 

We begin by deriving a bipartite graph-based transfer learning algorithm for dis-
tinguishing innocent and malicious network behaviors, and then demonstrate the 
algorithm’s effectiveness through a case study using publicly-available network 
intrusion data obtained from the KDD Cup archive [10]. The basic hypothesis is 
simple and natural: because attacker / defender behavior coevolves, previous ac-



Proactive Cyber Defense  5 

tivity should provide some indication of future behavior, and transfer learning is 
one way to quantify and operationalize this intuition. 

Proposed algorithm 

The development of the proposed algorithm begins by modeling the problem data 
as a bipartite graph Gb, in which instances of network activity are connected to 
their features (see Figure 1.1). It is easy to see that the adjacency matrix A for 
graph Gb is given by 











0X

X0
A T

                         (2) 

where matrix Xn|F| is constructed by stacking the n instance feature vectors as 
rows, and each ‘0’ is a matrix of zeros. In the proposed algorithm, the bipartite 
graph model Gb is used to exploit the relationships between instances and features 
by assuming that, in Gb, positive / negative instances will tend to be connected to 
positive / negative features. Note that, as shown below, the learning algorithm can 
incorporate both instance labels and feature labels (if available). In the case of the 
latter it is assumed that the feature labels are used to build vector w|F|, where 
the entries of w are set to 1 (innocent), 1 (malicious), or 0 (unknown) according 
to the polarity of the corresponding features.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Many cyber security applications are characterized by the presence of limited 

labeled data for the attack class of interest but ample labeled information for a 
related class of malicious activity. For example, an analyst may be interested in 
detecting a new class of attacks, and may have in hand a large set of labeled ex-
amples of normal network behavior as well as attacks which have been expe-
rienced in the recent past. In this setting it is natural to adopt a transfer learning 
approach, in which knowledge concerning previously observed instances of inno-

Fig. 1.1. Cartoon of bipartite graph model Gb. Instances of network activity (white vertices) 

are connected to the features (black vertices) which characterize them, and link weights 

(black edges) reflect the magnitudes taken by the features in the associated instances.  

instances

features

instances

features

instances

features
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cent / malicious behavior, the so-called source data, is transferred to permit classi-
fication of new target data. In what follows we present a new bipartite 
graph-based approach to transfer learning that is well-suited to cyber defense ap-
plications. 

Assume that the initial problem data consists of a collection of n = nT  nS 
network events, where nT is the (small) number of labeled instances available for 
the target domain, that is, examples of network activity of current interest, and nS 
 nT is the number of labeled instances from some related source domain, say 
reflecting recent innocent and malicious activity; suppose also that a modest lex-
icon Fl of labeled features is known (this set can be empty). Let this label data be 
used to encode vectors dTnT, dSnS, and w|F|, respectively. Denote by 
dT,estnT, dS,estnS, and c|F| the vectors of estimated class labels for the tar-
get and source instances and the features, and define the augmented classifier caug 
 [dS,est

T  dT,est
T  cT]T  n|F|. Note that the quantity caug is introduced for nota-

tional convenience in the subsequent development and is not directly employed 
for classification.  

We derive an algorithm for learning caug, and therefore c, by solving an opti-
mization problem involving the labeled source and target training data, and then 
use c to estimate the class label of any new instance of network activity via the 
simple linear classifier orient  sign(cTx). This classifier is referred to as transfer 
learning-based because c is learned, in part, by transferring knowledge about the 
way innocent and malicious network behavior is manifested in a domain which is 
related to (but need not be identical to) the domain of interest.  

We wish to learn an augmented classifier caug with the following four proper-
ties: 1.) if a source instance is labeled, then the corresponding entry of dS,est should 
be close to this 1 label; 2.) if a target instance is labeled, then the corresponding 
entry of dT,est should be close to this 1 label, and the information encoded in dT 
should be emphasized relative to that in the source labels dS,; 3.) if a feature is in 
the lexicon Fl, then the corresponding entry of c should be close to this 1 label; 
and 4.) if there is an edge Xij of Gb which connects an instance i and a feature j, 
and Xij possesses significant weight, then the estimated class labels for i and j 
should be similar.  

The four objectives listed above may be realized by solving the following op-
timization problem:  

2
3

2
TTestT,2

2
SSestS,1aug

T
aug

c
 w- c dk - d dk - d  Lcc   min

aug

    (3) 

where L  D  A is the graph Laplacian matrix for Gb, with D the diagonal degree 
matrix for A (i.e., Dii  j Aij), and 1, 2, 3, kS, and kT are nonnegative constants. 
Minimizing (3) enforces the four properties we seek for caug. More specifically, the 
second, third, and fourth terms penalize “errors” in the first three properties, and 
choosing 2  1 and kT  kS favors target label data over source labels. To see that 
the first term enforces the fourth property, note that this expression is a sum of 
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components of the form Xij (dT,est,i  cj)
2 and Xij (dS,est,i  cj)

2. The constants 1, 2, 
3 can be used to balance the relative importance of the four properties.  

The caug which minimizes the objective function (3) can be obtained by solving 
the following set of linear equations:  
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






       (4) 

where the Lij are matrix blocks of L of appropriate dimension. The system (4) is 
sparse because the data matrix X is sparse, and therefore large-scale problems can 
be solved efficiently. Note that in situations where the set of available labeled tar-
get instances and features is very limited, classifier performance can be improved 
by replacing L in (4) with the normalized Laplacian LnD1/2LD1/2, or with a 
power of this matrix Ln

k (for k a positive integer).  
We summarize the above discussion by sketching an algorithm for construct-

ing the proposed transfer learning classifier:  

Algorithm TL (Transfer Learning):  

1. Assemble the set of equations (4), possibly by replacing the graph Laplacian 
L with Ln

k.  

2. Solve equations (4) for caug  [dS,est
T  dT,est

T  cT]T (e.g., using the Conjugate 
Gradient method).  

3. Estimate the class label (innocent or malicious) of any new network activity x 
of interest as: orient  sign(cTx).  

Algorithm evaluation 

We now examine the performance of Algorithm TL for the problem of distin-
guishing innocent and malicious network activity in the KDD Cup 99 dataset, a 
publicly-available collection of network data consisting of both normal activities 
and attacks of various kinds [10]. For this study we randomly selected 1000 Nor-
mal connections (N), 1000 denial-of-service attacks (DoS), and 1000 unauthorized 
remote-access events (R2L) to serve as our test data. Additionally, small sets of 
each of these classes of activity were chosen at random from [10] to be used for 
training Algorithm TL, and a lexicon of four features, two positive and two nega-
tive, was constructed manually and employed to form the lexicon vector w.  

We defined two tasks with which to explore the utility of Algorithm TL. In the 
first, the goal is to distinguish N and DoS instances, and it is assumed that the fol-
lowing data is available to train Algorithm TL: 1.) a set of dS/2 labeled N and dS/2 
labeled R2L instances (source data), 2.) a set of dT/2 labeled N and dT/2 labeled 
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DoS instances (target data), and 3.) the four lexicon features. Thus the source do-
main consists of N and R2L activities and the target domain is composed of N and 
DoS instances. In the second task the situation is reversed – the objective is to 
distinguish N and R2L activities, the source domain is made up of dS (total) la-
beled N and DoS instances, and the target domain consists of dT (total) N and R2L 
instances. In all tests the number of labeled source instances is dS  50, while the 
number of target instances dT is varied to explore the way classifier performance 
depends on this key parameter. Of particular interest is determining if it is possible 
to obtain good performance with only limited target data, as this outcome would 
suggest both that useful information concerning a given attack class is present in 
other attacks and that Algorithm TL is able to extract this information.  

This study compared the classification accuracy of Algorithm TL with that of 
a well-tuned version of the RLS algorithm (1) and a standard naïve Bayes (NB) 
algorithm [11]; as the accuracies obtained with the RLS and NB methods were 
quite similar, we report only the RLS results. Algorithm TL was implemented 
with the following parameter values: 1  1.0, 2  3.0, 3  5.0, kS  0.5, kT  1.0, 
and k  5. We examined training sets which incorporated the following numbers 
of target instances: nT  5, 10, 20, 30, 40, 50, 60. As in previous studies (see, for 
example, [10]), only the 34 “continuous features” were used for learning the clas-
sifiers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2. Performance of Algorithm TL with limited labeled data. The plot shows 

how classifier accuracy (vertical axis) varies with the number of available labeled 

target instances (horizontal axis) for four tasks: distinguish N and DoS using RLS 

classifier, distinguish N and DoS using Algorithm TL, distinguish N and R2L using 

RLS classifier, and distinguish N and R2L using Algorithm TL. 
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Sample results from this study are depicted in Figure 1.2. Each data point in 

the plots represents the average of 100 trials. It can be seen that Algorithm TL 
outperforms the RLS classifier (and also the standard NB algorithm, not shown), 
and that the difference in accuracy of the methods increases substantially as the 
volume of training data from the target domain becomes small. The performance 
of Algorithm TL for this task is also superior to that reported for other learning 
methods tested on these data [e.g., 12]. The ability of Algorithm TL to accurately 
identify a novel attack after seeing only a very few examples of it, which is a di-
rect consequence of its ability to transfer useful knowledge from related data, is 
expected to be of considerable value for a range of cyber security applications. 

Finally, it is interesting to observe that the bipartite graph formulation of Al-
gorithm TL permits useful information to be extracted from network data even if 
no labeled instances are available. More specifically, we repeated the above study 
for the case in which dT  dS  0, that is, when no labeled instances are available 
in either the target or source domains. The knowledge reflected in the lexicon 
vector w is still made available to Algorithm TL. As shown in Figure 1.3, em-
ploying a “lexicon only” classifier, in which the vector w is used to build a know-
ledge-based scheme as described in Section 1.2.1, yields a classification accuracy 
which is not much better than the 50 baseline achievable with random guessing. 
However, using this lexicon information together with Algorithm TL enables use-
ful classification accuracy to be obtained (see Figure 1.3). This somewhat surpris-
ing result can be explained as follows: the “clustering” property of Algorithm TL 
encoded in objective function (3) allows the domain knowledge in the lexicon to 
leverage latent information present in the unlabeled target and source instances, 
thereby boosting classifier accuracy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.3. Performance of Algorithm TL when no labeled instances are available. The 

bar graphs depicts classifier accuracy for four tasks: distinguish N and DoS using a 

lexicon-only (LO) classifier (left, grey bar), distinguish N and DoS using lex-

icon-learning (LL) via Algorithm TL (left, black bar), distinguish N and R2L using 

an LO classifier (right, grey bar), and distinguish N and R2L using LL via Algo-

rithm TL (right, black bar). 
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1.2.3  Algorithm Two: Synthetic Attack Generation 

In this section we derive our second filter-based algorithm for distinguishing nor-
mal and malicious network activity and demonstrate its effectiveness through a 
case study using the publicly-available Ling-Spam dataset [13]. Again the intui-
tion is that attacker / defender coevolution should make previous activity some-
what indicative of future behavior, and in the present case we operationalize this 
notion by generating “predicted” attack data and using this synthetic data for clas-
sifier training. 

Proposed algorithm 

The development of the second approach to proactive filter-based defense begins 
by modeling attacker / defender interaction as a stochastic hybrid dynamical sys-
tem (S-HDS). Here we present a brief, intuitive overview of the basic idea; a 
comprehensive description of the modeling procedure is given in [7]. An S-HDS 
(see Figure 1.4) is a feedback interconnection of a discrete-state stochastic process, 
such as a Markov chain, with a family of continuous-state stochastic dynamical 
systems [6,14]. Combining discrete and continuous dynamics within a unified, 
computationally tractable framework offers an expressive, scalable modeling en-
vironment that is amenable to formal mathematical analysis. In particular, S-HDS 
models can be used to efficiently represent and analyze dynamical phenomena 
which evolve on multiple time scales [14], a property of considerable value in the 
present application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As a simple illustration of the way the S-HDS formalism enables effective, ef-
ficient mathematical representation of cyber phenomena, consider the task of 

Fig. 1.4. Schematic of basic S-HDS feedback structure. The discrete and 

continuous systems in this framework model the adversary’s selection 

of attack “mode” and resulting attack behavior, respectively, which arise 

from the coevolving attacker-defender dynamics.  
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modeling the coevolution of Spam attack methods and Spam filters. At an abstract 
but still useful level, one can think of Spam-Spam filter dynamics as evolving on 
two timescales:  

 the slow timescale, which captures the evolution of attack strategies; as an 
example, consider the way early Spam filters learned to detect Spam by iden-
tifying words that were consistently associated with Spam, and how Spam-
mers responded by systematically modifying the wording of their messages, 
for instance via “add-word” (AW) and “synonym” attacks [15];  

 the fast timescale, which corresponds to the generation of particular attack 
instances for a given “mode” of attack (for example, the synthesis of Spam 
messages according to a specific AW attack method).  

We show in [7] that a range of adversarial behavior can be represented within the 
S-HDS framework, and derive simple but reasonable models for Spam-Spam filter 
dynamics and for basic classes of network intrusion attacks.  

In [14] we develop a mathematically-rigorous procedure for predictive analy-
sis for general classes of S-HDS. Among other capabilities, this analytic metho-
dology enables the predictability of a given dynamics to be assessed and the pre-
dictive measurables (if any) to be identified. Applying this predictability assess-
ment process to the adversarial S-HDS models constructed in [7] reveals that, for 
many of these models, the most predictive measurable is the mode of attack, that is, 
the state variable for the discrete system component of the S-HDS (see [7] for a 
detailed description of this analysis). Observe that this result is intuitively sensi-
ble.  

This analytic finding suggests the following synthetic data learning (SDL) ap-
proach to proactive defense. First, identify the mode(s) of attack of interest. For 
attacks which are already underway, [7] offers an S-HDS discrete-system state 
estimation method that allows the mode to be inferred using only modest amounts 
of measured data. Alternatively, and of more interest in the present application, it 
is often possible to identify likely future attack modes through analysis of aux-
iliary information sources (e.g., the subject matter knowledge possessed by do-
main experts or “non-cyber” data such as that found in social media [16-18]).  

Once a candidate attack mode has been identified, synthetic attack data cor-
responding to the mode can be generated by employing one of the S-HDS models 
derived in [7]. The synthetic data take the form of a set of K network attack in-
stance vectors, denoted AS  {xS1, …, xSK}. The set AS can then be combined with 
(actual) measurements of L normal network activity instances, NM  {xNM1, …, 
xNML}, and P (recently) observed attacks, AM  {xM1, …, xMP}, yielding the train-
ing dataset TR  NM  AM  AS of real and synthetic data. Note that one effective 
way to generate a set AS of synthetic attacks is to use the S-HDS formalism to 
appropriately transform attack instances sampled from the observed attack set AM, 
rather than to attempt to construct synthetic attacks “from scratch”. It is hypothe-
sized that training classifiers with dataset TR may offer a mechanism for deriving 
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defenses which are effective against both current and near future malicious activi-
ty. 

We summarize the above discussion by sketching a procedure for constructing 
the proposed SDL classifier:  

Algorithm SDL (Synthetic Data Learning):  

1. Identify the mode(s) of attack of interest (e.g., via domain experts or auxiliary 
data).  

2. Assemble sets of measured normal network activity NM and measured attack 
activity AM for the network under study.  

3. Generate a set of synthetic attack instances AS corresponding to the attack 
mode(s) identified in Step 1 (for instance by transforming attacks in AM).  

4. Train a classifier (e.g., RLS, NB) using the training data TR  NM  AM  AS. 
Estimate the class label (innocent or malicious) of any new network activity x 
with the classifier trained using data TR.  

Algorithm evaluation  

We now examine the performance of Algorithm SDL for the problem of distin-
guishing legitimate and Spam emails in the Ling-Spam dataset [13], a corpus of 
2412 non-Spam emails collected from a linguistics mailing list and 481 Spam 
emails received by the list. After data cleaning and random sub-sampling of the 
non-Spam messages we are left with 468 Spam and 526 non-Spam messages for 
training and testing purposes; this set of 994 emails will be referred to as the no-
minal Spam corpus. (Note that all email was preprocessed using the ifile tool 
[19].) 

We considered three scenarios in this study:  

1. NB classifier / nominal Spam: for each of ten runs, the nominal Spam corpus 
was randomly divided into equal-sized training and testing sets and the class 
label for each message in the test set was estimated with a naïve Bayes (NB) 
algorithm [11] learned on the training set;  

2. NB classifier / nominal plus attack Spam: for each of ten runs, the nominal 
Spam corpus was randomly divided into equal-sized training and testing sets 
and the test set was then augmented with 263 additional non-Spam messages 
(taken from the Ling-Spam dataset) and 234 Spam messages generated via a 
standard add-word (AW) attack methodology [15]; the class labels for the test 
messages were estimated with an NB algorithm [11] learned on the nominal 
Spam training set;  

3. Algorithm SDL / nominal plus attack Spam: for each of ten runs, the training 
and test corpora were constructed exactly as in Scenario 2 and the class labels 
for the test messages were estimated with Algorithm SDL.  
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In generating the AW attacks in Scenarios 2 and 3, we assume that the attacker 
knows to construct AW Spam to defeat an NB filter but does not have knowledge 
of the specific filter involved [15]. The synthetic AW attacks generated in Scena-
rio 3 (using Step 3 of Algorithm SDL) are computed with no knowledge of the 
attacker’s methodology beyond the mode of attack (i.e., AW). 

Sample results from this study are displayed in Figure 1.5. In each case the 
“confusion matrix” [8] reports the (rounded) average performance over the ten 
runs. It can be seen that, as expected, the NB filter does well against the nominal 
Spam but poorly against the AW Spam (in fact, the NB filter does not detect a 
single instance of AW Spam). In contrast, Algorithm SDL performs well against 
both nominal Spam and AW Spam, achieving ~96 classification accuracy with a 
low false positive rate. It is emphasized that this result is obtained using only the 
(synthetic) estimate of AW Spam generated in Step 3 of Algorithm SDL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1.5. Performance of Algorithm SDL on Spam dataset. Each confusion matrix 

shows number of non-Spam messages classified as non-Spam and Spam (left 

column) and number of Spam messages classified as non-Spam and Spam (right 

column). The three matrices, from top to bottom, report the results for: NB 

against nominal Spam, NB against Spam which contains add-word attacks, and 

Algorithm SDL against Spam which contains add-word attacks.  
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Spam                         2               215

NB Algorithm: Nominal Spam 

class\truth       non-Spam       Spam 

non-Spam             262                19
Spam                         1               215



    Colbaugh and Glass 14

1.3  Early Warning  

In this section we develop an early warning capability for an important class of 
computer network attacks and illustrate its potential through a case study involv-
ing politically-motivated DoS attacks.  

1.3.1  Preliminaries  

Computer network attacks take many forms, including system compromises, in-
formation theft, and denial-of-service attacks intended to disrupt services. In what 
follows we focus on deriving an early warning capability for distributed denial-of- 
service (DDoS) attacks, that it, coordinated efforts in which computers are in-
structed to flood a victim with traffic designed to overwhelm services or consume 
bandwidth. In particular, we concentrate on politically-motivated DDoS attacks, 
for three main reasons: 1.) this class of attacks is an important and growing threat 
[17], 2.) the class is representative of other threats of interest, and 3.) it is expected 
that in the case of politically-motivated attacks the coordination among attackers 
may take place, in part, via social media, thereby enabling an analysis employing 
only publicly-available data.  

Consider the task of detecting social media signatures associated with attack-
ers coordinating a politically-motivated DDoS. A classic example of the kind of 
attack of interest is the sequence of DDoS which were launched against govern-
ment and commercial sites in Estonia beginning in late April 2007. Interestingly, a 
retrospective study of these events reveals that there was significant planning and 
coordination among attackers through web forums and blogs prior to the actual 
attacks [17], supporting the hypothesis that it may be possible to detect early 
warning indicators in social media in advance of such attacks.  

Of course, detecting early warning indicators of an impending DDoS attack in 
social media is a daunting undertaking. Challenges associated with this task in-
clude the vast volume of discussions taking place online, the need to distinguish 
credible threats from irrelevant chatter, and the necessity to identify reliable attack 
indicators early enough to be useful (e.g., at least a few days in advance of the 
attack). Recently we have developed a general framework within which to study 
this class of early warning problem [14,18,20]. The basic premise is that generat-
ing useful predictions about social processes, such as the planning and coordina-
tion of a DDoS event, requires careful consideration of the way individuals inte-
ract through their social networks. The proposed warning methodology therefore 
exploits information about social network interactions to forecast which nascent 
online discussions will ultimately lead to real world attack events, and which will 
fade into obscurity. Interestingly, the features found to possess exploitable predic-
tive power turn out to be subtle measures of the network dynamics associated with 
the evolution of early attack-related discussions [14,18,20].  
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We now briefly summarize the early warning framework presented in 
[14,18,20] and its application to the DDoS warning problem, and then illustrate 
the implementation and performance of the warning method through a case study 
involving politically-motivated Internet attacks.  

1.3.2  Early Warning Method  

In social dynamics, individuals are often affected by what others do. As a conse-
quence, social phenomena can depend upon the topological features of the under-
lying social network, for instance the degree distribution or presence of small 
world structure, and aspects of this dependence have been characterized (see [21] 
for a recent review). We show in [14,18,20] that, for a wide range of social phe-
nomena, useful prediction requires consideration of the way the behavior of indi-
viduals interacts with social network communities, that is, densely connected 
groupings of individuals that have only relatively few links to other groups. The 
concept of network community structure is illustrated in Figure 1.6 and is defined 
more carefully below. This dependence suggests that in order to derive useful ear-
ly warning methods for social phenomena, one should consider the topology of the 
underlying social network; however, standard prediction algorithms do not include 
such features.  

 

 

 

 

 

 

 

 

 

 

While community structure is widely appreciated to be an important topologi-
cal property in real world social networks, there is not a similar consensus regard-
ing qualitative or quantitative definitions for this concept. Here we adopt the mod-
ularity-based definition proposed in [23], whereby a good partitioning of a net-
work’s vertices into communities is one for which the number of edges between 
putative communities is smaller than would be expected in a random partitioning. 

Fig. 1.6. Network community structure. Cartoon at left depicts a network with three 

communities; graph at right is a network of political blogs in which communities of 

liberal (left cluster) and conservative (right cluster) blogs are clearly visible [22].  
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To be concrete, a modularity-based partitioning of a network into two communi-
ties maximizes the modularity Q, defined as  

Q  sT B s / 4m                              (5)  

where m is the total number of edges in the network, the partition is specified with 
the elements of vector s by setting si  1 if vertex i belongs to community 1 and si 
 1 if it belongs to community 2, and matrix B has elements Bij  Aij  kikj / 2m, 
with Aij and ki denoting the network adjacency matrix and degree of vertex i, re-
spectively. Partitions of the network into more than two communities can be con-
structed recursively [23]. Note that modularity-based community partitions can be 
efficiently computed for large social networks and require only network topology 
data for their construction.  

Despite the fact that community structure is ubiquitous in real social networks, 
little has been done to incorporate considerations of communities into social pre-
diction methods. In [14,18,20] we present theoretical and empirical evidence that 
the predictability of social dynamics often depends crucially upon network com-
munity structure. More specifically, we show that early dispersion of a social dy-
namics “activity“ across network communities is a reliable early indicator that the 
ultimate extent of the activity will be significant. (Perhaps surprisingly, this meas-
ure is more predictive than the early magnitude of the activity.)  

In the context of early warning for politically-motivated cyber attacks, the so-
cial activity of interest is communication associated with planning and coordinat-
ing the attack. Thus it is of interest to collect data that enables quantification of the 
extent to which early communications of this type are dispersed across network 
communities. Such data should therefore include social network information suf-
ficient to allow the identification of network communities as well as the detection 
of attack-related discussions among individuals in the network. One way to ad-
dress this challenge is to adopt online social activity as a proxy for real world at-
tack-related discussion and information exchange. More specifically, we use blog 
posts as our primary data set. The blog network is modeled as a graph in which the 
vertices are blogs and the edges represent links between blogs, with two blogs 
being linked if a post in one hyperlinks to a post in the other. Among other things, 
this blog graph model enables the identification of blog communities: these are the 
groups of blogs corresponding to the blog graph partition which maximizes the 
modularity Q for the graph (see (5)); these groups of blogs serve as our proxy for 
social network communities.  

We are now in a position to specify an early warning algorithm for politically- 
motivated DDoS attacks. The algorithm operationalizes the “early dispersion of 
attack-related discussions” indicator, computing a measure of the magnitude of 
this dispersion and issuing an alert if and only if the dispersion is “large”.  

Algorithm EW (Early Warning):  

Initialization: Identify a (large) set of cyber security-relevant blogs and forums B 
to be continually monitored; B should include sites contributed to and frequented 
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by both attackers (e.g., hacker forums) and defenders (e.g., security blogs).  

Procedure:  

1. Perform meme detection with the blogs in B to identify all “memes” which 
are potentially related to politically-motivated DDoS attacks. Characterize the 
discussion topic(s) associated with each meme.  

2. Conduct a sequence of blog graph crawls and construct a time series of blog 
graphs GB(t). For each meme / topic M of interest and each time period t, la-
bel the blogs in GB(t) as ‘active’ if they contain a post containing M and ‘in-
active’ otherwise.  

3. Form the union GB = tGB(t), partition GB into network communities, and 
map the communities structure of GB back to each of the graphs GB(t).  

4. Compute the post volume time series and the post / community entropy (PCE) 
time series for each meme / topic.  

5. Construct a synthetic ensemble of PCE time series from the post volume dy-
namics for each meme / topic.  

6. Compare the actual PCE time series to the synthetic ensemble series for each 
meme / topic M to determine if the observed early dispersion of activity 
across communities is “large” for topic M.  

We now offer additional details concerning this procedure; a more compre-
hensive discussion of the methodology is provided in [7]. Step 1 is performed us-
ing the algorithm described in [24,20]. Observe that ‘memes’ in this context are 
distinctive phrases which propagate relatively unchanged online and act as “trac-
ers” for topics of discussion. It is shown in [24,20] that detecting memes in social 
media is a useful and general way to discover emerging topics and trends, and we 
demonstrate in [7] that meme analysis allows the detection of discussions con-
cerning the planning and coordination of politically-motivated DDoS within a day 
or two of the initiation of these discussions.  

Step 2 is by now standard, and various tools exist which can perform these 
tasks [e.g., 25]. In Step 3, blog network communities are identified with a mod-
ularity-based community extraction algorithm applied to the blog graph [23]. In 
Step 4, the post volume for a given meme / topic M, community i, and sampling 
interval t is obtained by counting the number of posts containing M made to the 
blogs comprising community i during interval t. PCE for a particular meme / topic 
M and sampling interval t is defined as follows:  

PCEM(t) = i fM,i(t) log(fM,i(t))                       (6) 

where fM,i(t) is the fraction of total posts containing M and made during interval t 
which occur in community i. Given the post volume time series obtained in Step 4, 
Step 5 involves construction of an ensemble of PCE time series that would be ex-
pected under “normal circumstances”, that is, if meme M propagated from a small 
seed set of initiators according to standard models of social diffusion [18,20]. Ob-
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serve that this step enables us to quantify the expected dispersion for PCEM(t), so 
that we can recognize “large” dispersion. Step 6 is carried out by searching for 
memes M and time periods t during which PCEM(t) exceeds the mean of the syn-
thetic PCE ensemble by a user-defined threshold (e.g., two standard deviations).  

1.3.3  Case Study: Politically-Motivated DDoS  

This subsection reports the results of a case study aimed at exploring the ability of 
Algorithm EW to provide reliable early warning for DDoS attacks. Toward this 
end, we first identified a set of Internet “disturbances” that included examples 
from three distinct classes of events:  

1. successful politically-motivated DDoS attacks – these are the events for 
which Algorithm EW is intended to provide warning with sufficient lead time 
to allow mitigating actions to be taken;  

2. natural events which disrupt Internet service – these are disturbances, such as 
earthquakes and electric power outages, that impact the Internet but for which 
it is known that no early warning signal exists in social media;  

3. quiet periods – these are periods during which there is social media “chatter” 
concerning impending DDoS attacks but ultimately no (successful) attacks 
occurred.  

Including in the case study events selected from these three classes is intended to 
provide a fairly comprehensive test of Algorithm EW. For instance, these classes 
correspond to 1.) the domain of interest (DDoS attacks), 2.) a set of disruptions 
which impact the Internet but have no social media warning signal, and 3.) a set of 
“non-events” which do not impact the Internet but do possess putative social me-
dia warning signals (discussion of DDoS attacks).  

We selected twenty events from these three classes:  

Politically-motivated DDoS attacks:  

 Estonia event in April 2007;  

 CNN / China incident in April 2008;  

 Israel / Palestine conflict event in January 2009;  

 DDoS associated with Iranian elections in June 2009;  

 WikiLeaks event in November 2010;  

 Anonymous v. PayPal, etc. attack in December 2010;  

 Anonymous v. HBGary attack in February 2011.  

Natural disturbances:  

 European power outage in November 2006;  
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 Taiwan earthquake in December 2006;  

 Hurricane Ike in September 2008;  

 Mediterranean cable cut in January 2009;  

 Taiwan earthquake in March 2010;  

 Japan earthquake in March 2011.  

Quiet periods:  

Seven periods, from March 2005 through March 2011, during which there 
were discussions in social media of DDoS attacks on various U.S. govern-
ment agencies but no (successful) attacks occurred.  

For brevity, a detailed discussion of these twenty events is not given here; the in-
terested reader is referred to [7] for additional information on these disruptions.  

We collected two forms of data for each of the twenty events: cyber data and 
social data. The cyber data consist of time series of routing updates which were 
issued by Internet routers during a one month period surrounding each event. 
More precisely, these data are the Border Gateway Protocol (BGP) routing up-
dates exchanged between gateway hosts in the Autonomous System network of 
the Internet. The data was downloaded from the publicly-accessible RIPE collec-
tion site [26] using the process described in [27] (see [27] for additional details 
and background information on BGP routing dynamics). The temporal evolution 
of the volume of BGP routing updates (e.g., withdrawal messages) gives a 
coarse-grained measure of the timing and magnitude of large Internet disruptions 
and thus offers a simple and objective way to characterize the impact of each of 
the events in our collection. The social data consist of time series of social media 
mentions of cyber-related memes detected during a one month period surrounding 
each of the twenty events. These data were collected using the procedure specified 
in Algorithm EW.  

Illustrative time series plots corresponding to two events in the case study, the 
WikiLeaks DDoS attack in November 2010 and Japan earthquake in March 2011, 
are shown in Figure 1.7. Observe that the time series of BGP routing updates are 
similar for the two events, with each experiencing a large “spike” at the time of 
the event. The time series of blog post volume are also similar across the two 
events, with each showing modest volume prior to the event and displaying a large 
spike in activity at event time. However, the time series for blog entropy are quite 
distinct for the two events. Specifically, in the case of the WikiLeaks DDoS the 
blog entropy (dashed curve in Figure 1.7) experiences a dramatic increase several 
days before the event (and leads post volume), while in the case of the Japan 
earthquake blog entropy is small for the entire collection period (and lags post 
volume). Similar social media behavior is observed for all events in the case 
study, suggesting that: 1.) early dispersion of discussions across blog network 
communities may be a useful early warning indicator for politically-motivated 
DDoS attacks, and 2.) the post volume associated with these discussions does not 
appear to be a useful early indicator for these attacks.  
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To investigate this possibility more carefully, we evaluated the predictive per-
formance of two candidate early warning signals on the twenty events in our test 
set: 1.) the “early dispersion” PCE indicator computed in Algorithm EW, and 2.) a 
simple volume-based indicator, in which the presence or absence of significant 
post volume is used as a signal that a DDoS attack is imminent. We find that the 
PCE indicator performs well, correctly classifying all twenty events (seven attacks 
and thirteen non-attacks) and providing an average lead time of sixteen days for 
attack warning. In contrast, blog volume is not found to be useful for early warn-
ing, exhibiting essentially identical behavior for DDoS attacks and natural distur-
bances and spiking slightly after the occurrence of the disruption for all events.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.7. Sample results for the DDoS early warning case study. The illustra-

tive time series plots shown correspond to the WikiLeaks event in November 

2010 (top row) and the Japan earthquake in March 2011 (bottom row). For 

each event, the plot at left is the time series of BGP routing updates (note the 

large increase in updates triggered by the event). The plot at the right of each 

row is the time series of the social media data, with the solid curve showing 

blog post volume and the dashed curve depicting blog entropy (in each case, 

the time series shown are for the meme with largest total volume). Note that 

while post volume is scaled for convenient visualization, the scale for entropy 

is consistent across plots to allow cross-event comparison.  
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1.4 Concluding Remarks  

This chapter considers the problem of protecting computer networks against intru-
sions and other disruptions in a proactive manner. We begin by deriving two new 
proactive filter-based methods for network defense: 1.) a bipartite graph-based 
transfer learning algorithm which enables information concerning previous attacks 
to be transferred for application against novel attacks, thereby substantially in-
creasing the rate with which defense systems can successfully respond to new 
attacks, and 2.) a synthetic data learning method that exploits basic threat informa-
tion to generate attack data for use in learning appropriate defense actions, result-
ing in network defenses that are effective against both current and (near) future 
attacks. The utility of these two filter-based methods is demonstrated by showing 
that they outperform standard techniques for the task of detecting malicious net-
work activity in two publicly-available cyber datasets. We then present an early 
warning method as a solution to the problem of anticipating and characterizing 
impending attack events with sufficient specificity and timeliness to enable miti-
gating defensive actions to be taken. The warning method is based upon the fact 
that certain classes of attacks require the attackers to coordinate their actions, and 
exploits signatures of this coordination to provide effective attack warning. The 
potential of the warning-based approach to cyber defense is illustrated through a 
case study involving politically-motivated Internet attacks.  

Future work will include application of the proposed proactive defense me-
thods to additional threats, including non-cyber threats which involve attack-
er-defender coevolution (e.g., counterterrorism), as well as the development of 
new proactive defense strategies. As an example of one approach toward the latter 
goal, we have recently shown that adversary activity can be accurately predicted 
and countered in certain settings by appropriately combining data analysis me-
thods (e.g., machine learning) with behavioral models for adversarial dynamics 
(e.g., incremental game models) [28].  
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Abstract—There are substantial potential benefits to considering 
predictability when designing defenses against adaptive adversar-
ies, including increasing the ability of defense systems to predict 
new attacker behavior and reducing the capacity of adversaries 
to anticipate defensive actions. This paper adopts such a perspec-
tive, leveraging the coevolutionary relationship between attackers 
and defenders to derive methods for predicting and countering 
attacks and for limiting the extent to which adversaries can learn 
about defense strategies. The proposed approach combines game 
theory with machine learning to model adversary adaptation in 
the learner’s feature space, thereby producing classes of predic-
tive and “moving target” defenses which are scientifically-
grounded and applicable to problems of real-world scale and 
complexity. Case studies with large cyber security datasets dem-
onstrate that the proposed algorithms outperform gold-standard 
techniques, offering effective and robust defense against evolving 
adversaries.  

Keywords—-predictive defense, moving target defense, game theory, 
machine learning, adaptive adversaries, cyber security.  

I.  INTRODUCTION 

Adaptive adversaries are a principal concern in many security 
domains, including cyber defense, border security, counterter-
rorism, and crime prevention [e.g. 1-3]. Consequently, there is 
great interest in developing defenses which maintain their ef-
fectiveness despite evolving adversary strategies and tactics. A 
potentially powerful approach to pursuing such goals is to ex-
plicitly consider system predictability, for instance in order to 
design defenses which are able to anticipate adversary behavior 
and/or decrease their own predictability. Studies that employ 
predictability assessment in a security context include [4,5].  

The coevolving “arms race” between Spammers and Spam 
filters provides an illustrative example of the phenomenon of 
interest [e.g. 6,7]. Spam filter designers would like to produce 
filters that work well against both present and future Spam, and 
one way to accomplish this goal is to develop techniques for 
predicting the way Spammers will adapt to currently-deployed 
filters and to account for these expected adaptations during the 
filter design process. Spammers, on the other hand, are moti-
vated to “reverse-engineer” existing Spam filters as quickly as 
possible, so they can generate Spam which circumvents these 
filters. Spam filter developers are therefore interested in both 
sides of the predictability question: they wish to construct fil-
ters that can predict (and defeat) new Spammer techniques 
while remaining unpredictable themselves. Many other security 

problems involve adaptive adversaries and coevolutionary dy-
namics, and we propose that valuable insights can be obtained 
by examining these dynamics through the lens of predictability; 
Spam is merely a simple, familiar example of such systems.  

Because predictability-based defense design includes stra-
tegic considerations, it is natural to approach this design prob-
lem as a game [8], in which defense attempts to predict and 
counter adversary behaviors while reducing its own predictabil-
ity. Unfortunately, previous attempts to apply game-theoretic 
methods to adversary defense [e.g. 9-15] have encountered a 
number of challenges, and we mention two that have been es-
pecially daunting. First, the set of possible attacker actions is 
typically very large in real-world settings, and because the 
complexity of most game models increases exponentially with 
the number of actions available to the players, this has often 
made these models intractable in practice. And second, it has 
proved difficult to derive models that capture evolving attacker 
behavior in any but the most idealized situations.  

In this paper we overcome these challenges by developing 
our game-based models for attack-defend interaction within a 
machine learning (ML) framework [16], enabling the design of 
robust defenses for practical applications. We formulate the 
defense task as one of behavior classification, in which inno-
cent and malicious activities are to be distinguished, and as-
sume only limited information is available regarding prior at-
tacker behavior or attack attributes. The defense’s classifiers 
model attacker actions in ML feature space, that is, in the space 
of variables the ML algorithms use for learning and decision-
making. Formulating attack prediction/defense synthesis in this 
“compressed” and abstract space enables derivation of algo-
rithms that can be applied to practical, large-scale problems.  

The first of the proposed defense systems explicitly at-
tempts to predict and counter adversary adaptation as a means 
of providing effective defense against both current and future 
attacks. A key step in the approach is modeling the way attack-
ers adapt their behaviors rather than modeling the behaviors 
themselves. Crucially, the proposed approach seeks to design 
optimal defenses for evolving attacks, rather than to predict 
new attacks perfectly, and therefore enjoys robust performance 
in the presence of (inevitable) prediction errors. To permit the 
performance of this predictive defense method to be evaluated, 
we have assembled for this investigation a large collection of 
Spam and non-Spam emails reflecting the evolution of Spam-
mer tactics over an eight year period. A case study with this 



dataset demonstrates that the proposed defense significantly 
outperforms a gold-standard Spam filter.  

An important consideration when applying classifier-based 
defense techniques, even predictive ones, is the extent to which 
adversaries can reverse-engineer the learning algorithm and use 
this knowledge to circumvent the defense. The goal of the sec-
ond proposed defense is thus to reduce defense system predict-
ability and increase the difficulty of the adversary’s reverse-
engineering task. We adopt a “moving target” (MT) perspec-
tive, in which the defense presents a dynamic posture to the 
adversaries as a way of increasing the adversaries’ uncertainty 
concerning defense operation [17]. By leveraging recent ad-
vances in the theory of repeated, incomplete information games 
[18,19], we derive a simple MT defense procedure which can 
be shown to be optimal for an important class of adversarial 
dynamics; interestingly, the optimal MT schedule can be speci-
fied independently of the details of the adversaries’ strategies. 
The efficacy of the proposed MT defense is evaluated via case 
studies with the set of Spam and non-Spam emails mentioned 
above and also with a well-known publicly-available network 
intrusion dataset. These tests reveal that the MT defense sub-
stantially outperforms well-tuned static classifiers against adap-
tive adversaries.  

II. PREDICTIVE DEFENSE   

A. Problem Formulation  

There are significant potential benefits to developing predictive 
methods of defending against adaptive adversaries, in which 
opponents’ evolving strategies are anticipated and these in-
sights are employed to counter novel attacks. This section con-
siders the following concrete instantiation of the predictive 
defense problem: given some history of attacker actions, design 
a defense system which performs well against both current and 
future attacks. It is reasonable to expect that concepts and tech-
niques from game theory might be helpful in understanding 
adversary adaptation, and indeed such approaches have been 
explored in a variety of domains [e.g. 9-15]. However, as indi-
cated in the Introduction, these investigations have encountered 
scalability and complexity challenges which have limited their 
practical utility. In this section we address these challenges by 
deriving our game-based model within an ML framework, ena-
bling effective defense in realistic settings. (See [20] for a gen-
eral discussion of the value of combining behavioral modeling 
with data mining algorithms for discovery and prediction appli-
cations.)   

We approach the task of countering adversarial behavior as 
an ML classification problem, in which the objective is to dis-
tinguish innocent and malicious activity. Each instance of ac-
tivity is represented as a feature vector x|F|, where entry xi 
of x is the value of feature i for this instance and F is the set of 
instance features. In what follows, F is a set of “reduced” fea-
tures, obtained by projecting measured feature vectors into a 
lower-dimensional space. While feature reduction is standard 
practice in ML [16], we show below that aggressive reduction 
allows us to efficiently manage the complexity of our game 
models. Behavior instances x belong to one of two classes: 
positive/malicious and negative/innocent (generalizing to more 
than two behavior classes is straightforward [16]). The goal is 

to learn a vector w|F| such that classifier orient  sign(wTx) 
accurately estimates the class of behavior x, returning 1 (1) 
for malicious (innocent) activity.  

As indicated above, it is useful to assess the predictability 
of a phenomenon before attempting to predict its evolution; for 
example, such an analysis permits identification of measurables 
which possess predictive power [21]. There has been limited 
theoretical work assessing predictability of adversarial dynam-
ics, but existing studies suggest attack-defend coevolution often 
generates predictable dynamics. For instance, although [22] 
finds that certain player strategies lead to chaos in a simple 
repeated game, [20] shows that large sets of player strategies 
and repeated games exhibit predictable adversarial dynamics. 
Here we supplement this theoretical work by conducting an 
empirical investigation of predictability, and select as our case 
study a cyber security problem – Spam filtering – which pos-
sesses attributes that are representative of many adversarial 
domains.  

To conduct this investigation, we first obtained a large col-
lection of emails from various publicly-available sources for 
the period 1999-2006, and added to this corpus a set of Spam 
emails acquired from B. Guenter’s Spam trap for the same time 
period. Following standard practice, each email is modeled as a 
“bag of words” feature vector x|F|, where the entries of x are 
the frequencies with which the words in vocabulary F appear in 
the message. The resulting dataset consists of ~128,000 emails 
composed of more than 250,000 features. We extracted from 
this collection of Spam and non-Spam emails the set of mes-
sages sent during the 30 month period between January 2001 
and July 2003 (email in other periods exhibit very similar evo-
lutionary dynamics). Finally, the dimension of the email feature 
space was reduced via a singular value decomposition (SVD) 
analysis [16], yielding a reduction in feature space dimension 
of four orders of magnitude (from ~250K to 20).  

We wish to examine, in a simple but meaningful way, the 
predictability of Spam adaptation, and propose two intuitively 
reasonable criteria with which to empirically evaluate predict-
ability: sensibility and regularity (a comprehensive theoretical 
framework for defining and assessing predictability is given in 
[21]). More specifically, and in the context of Spam, it would 
be sensible for Spammers to adapt their messages over time in 
such a way that Spam feature vectors xS come to resemble the 
feature vectors xNS of legitimate emails, and regularity in this 
adaptation might imply that the values of the individual ele-
ments of xS approach those of xNS in a fairly monotonic way.   

To permit convenient examination of the evolution of fea-
ture vectors xS and xNS during the 30 month period under study, 
the emails were first binned by quarter. Next, the average val-
ues for each of the 20 (reduced) features was computed for all 
the Spam emails and all the non-Spam emails (separately) for 
each quarter. Figure 1 illustrates the feature space dynamics of 
Spam and non-Spam messages for one representative coordi-
nate (F1) of this reduced feature space. It can be seen in the 
plot that the value of feature F1 for Spam approaches the value 
of this feature for non-Spam, and this increasing similarity is a 
consequence of changes in the composition of Spam messages 
(the value of F1 for non-Spam emails is essentially constant). 
The dynamics of the other feature values are analogous.  



Observe that the Spam dynamics illustrated in Figure 1 re-
flect sensible adaptation on the part of Spammers: the features 
of Spam email messages evolve to appear more like those of 
non-Spam email, making Spam more difficult to detect. Addi-
tionally, this evolution is regular, with feature values for Spam 
approaching those for non-Spam in a nearly-monotonic fash-
ion. Thus this empirical analysis indicates that coevolving 
Spammer-Spam filter dynamics possesses some degree of pre-
dictability, and that the features employed in Spam analysis 
may have predictive power; this result is in general agreement 
with the conclusions of the theoretical predictability analysis 
reported in [20]. Moreover, because many of the characteristics 
of Spam-Spam defense coevolution are shared by other adver-
sarial systems, this result suggests these other systems may 
have exploitable levels of predictability as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

B. Predictive Defense Algorithm  

The proposed approach to designing a predictive defense sys-
tem which works well against both current and future attacks is 
to combine ML with a simple game-based model for adversary 
behavior. In order to apply game-theoretic methods, it is neces-
sary to overcome the complexity and model-realism challenges 
mentioned above. We address problem complexity by model-
ing adversary actions directly in an aggressively-reduced ML 
feature space, so that the (effective) space of possible adversary 
actions which must be considered is dramatically decreased. 
The difficulty of deriving realistic representations for attacker 
behavior is overcome by recognizing that the actions of attack-
ers can be modeled as attempts to transform data (i.e., feature 
vectors x) in such a way that malicious and innocent activities 
are indistinguishable. (This is in contrast to trying to model the 
attack instances “from scratch”). It is possible to model attacker 
actions as transformations of data because, within an ML prob-
lem formulation, historical attack data are available in the form 
of training instances.  

We model adversarial coevolution as a sequential game, in 
which the attacker and defender iteratively optimize the follow-
ing objective function:  
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In (1), the loss function represents the misclassification rate for 
the defense system, where {yi, xi}

n
i=1 denotes pairs of “nomi-

nal” activity instances xi and labels yi, and vector w parameter-
izes the defense (recall that the defense attempts to distinguish 
malicious and innocent activity using the classifier orient  
sign(wTx)). The attacker attempts to circumvent the defense by 
transforming the data through vector a|F|, and the defender’s 
goal is to counter this attack by appropriately specifying classi-
fier vector w|F|. The terms ||a||3 and ||w||3 define “regu-
larizations” imposed on attacker and defender actions, respec-
tively, as discussed below.  

Note that (1) models the attacker as acting to increase the 
misclassification rate with vector a, subject to the need to limit 
the magnitude of this vector (large a is penalized via the term 
||a||3). This model thus captures in a simple way the fact that 
the actions of the attacker are in reality always constrained by 
the goals of the attack. For instance, in the case of Spam email 
attacks, the Spammer tries to manipulate message x in such a 
way that it “looks like” legitimate email and evades the Spam 
filter w. However, transformed message xa must still commu-
nicate the desired information to the recipient or the attacker’s 
goal will not be realized, and so the transformation vector a 
cannot be chosen arbitrarily.  

The defender attempts to reduce the misclassification rate 
with an optimal choice for vector w, and avoids “over-fitting” 
through regularization with the ||w||3 term [16]. Notice that the 
formulation (1) permits the attacker’s goal to be modeled as 
counter to, but not exactly the opposite of, the defender’s goal, 
and this is consistent with many real-world settings. Returning 
to the Spam example, the Spammer’s objective of delivering 
messages which induce profitable user responses is not the 
inverse of an email service provider’s goal of achieving high 
Spam recognition with a very low false-positive rate.  

The preceding development can be summarized by stating 
the following predictive defense (PD) algorithm:  

Algorithm PD  

1. Collect historical data {yi, xi}
n
i=1 which reflects past be-

havior of the attacker as well as past legitimate behavior.  

2. Optimize objective function (1) to obtain the predicted 
actions a* of the attacker and the optimal defense w* to 
counter this attack.  

3. Estimate the status of any new activity x as either mali-
cious (1) or innocent (1) via orient  sign(xTw*).  

Observe that Step 2 of this algorithm can be interpreted as first 
predicting the attacker strategy through computation of attack 
vector a*, and then learning an appropriate countermeasure w* 
by applying ML to the “transformed” data {yi, xia*}n

i=1.  

Figure 1. Spam/non-Spam evolution in feature space. The 
plot depicts evolution of feature F1 for Spam (red) and 
non-Spam (blue) over time (horizontal axis).  



C. Algorithm Evaluation  

This case study examines the performance of Algorithm PD for 
the Spam filtering problem. We use the Spam/non-Spam email 
dataset introduced above, consisting of ~128,000 messages that 
were sent during the period 1999-2006. The study compares 
the effectiveness of Algorithm PD, implemented as a Spam 
filter, with that of a well-tuned naïve Bayes (NB) Spam filter 
[5]. Because NB filters are widely used and work very well in 
Spam applications, this filter is referred to as the gold-standard 
algorithm. We extract from our dataset the 1000 oldest legiti-
mate emails and 1000 oldest Spam messages for use in training 
both Algorithm PD and the gold-standard algorithm. The email 
messages sent during the four year period immediately follow-
ing the date of the last training email are used as test data. More 
specifically, these emails are binned by quarter and then ran-
domly sub-sampled to create balanced datasets of Spam and 
legitimate emails for each of the 16 quarters in the test period.  

Recall that Algorithm PD employs aggressive feature space 
dimension reduction to manage the complexity of the game-
based modeling process. This dimension reduction is accom-
plished here through SVD analysis, which reduces the dimen-
sion |F| of feature vectors from ~250K to 20) [16]. (The or-
thogonal basis used for this reduction is derived by performing 
SVD analysis using the 1000 non-Spam and 1000 Spam train-
ing emails.) Note that good classification accuracy can be ob-
tained with a wide range of (reduced) feature space dimensions. 
For example, a filtering accuracy of ~97% is achieved with the 
training data when using an NB classifier implemented with 
feature dimension ranging from |F|100,000 to |F|5.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

The gold-standard strategy is applied as described in [5]. 
Algorithm PD is implemented with parameter values   0.001 
and   0.1, and with a sum-of-squares loss function. To evalu-
ate the utility of the defenses against evolving adversaries, we 
train Algorithm PD and the gold-standard algorithm once, us-

ing the 1000 non-Spam/1000 Spam dataset, and then apply the 
filters without retraining to the four years of emails that follow 
these 2000 emails.  

Sample results from this study are depicted in Figure 2.  
Each data point in the plots represents the average accuracy 
over ten trials (two-fold cross-validation). It  can be seen that 
the filter based upon Algorithm PD significantly outperforms 
the gold-standard method: the predictive defense experiences 
almost no degradation in accuracy over the four years of the 
study, while the gold-standard method suffers a substantial 
drop in accuracy during this period. These results suggest that 
combining ML with simple game-based models offers an effec-
tive means of defending against evolving adversaries.  

III. MOVING TARGET DEFENSE  

A. Problem Formulation  

A defining characteristic of classification-based defense is the 
fact that adversaries continually attempt to reverse-engineer the 
classifier and use this knowledge to make informed adjust-
ments to their behavior and circumvent the defense. One way 
to increase the difficulty of the adversary’s reverse-engineering 
task is to employ moving target (MT) ideas, in which the de-
fense adopts a time-varying posture in order to increase adver-
sary uncertainty concerning defense operation [17]. In this sec-
tion we derive an MT defense procedure which minimizes the 
predictability of defensive actions from the perspective of the 
attacker.  

We investigate MT defense within the framework provided 
by two-player repeated games with incomplete information 
[18,19]. In these games one player, the informed player, has 
access to information that is unavailable to the other, unin-
formed, player. The informed player must weigh the relative 
benefits of exploiting her private information to achieve short-
term advantage against the possibility that this exploitation may 
reveal information which results in the sacrifice of future gains. 
Because repeated incomplete information games explicitly ac-
count for the payoff-predictability tradeoff, they afford a con-
venient setting for deriving and comparing MT strategies.  

Consider the following defense problem. Suppose the task 
of countering adversarial behavior is formulated as one of ML 
classification, in which the objective is to distinguish innocent 
and malicious activity. Each instance of activity is represented 
as a feature vector x|F|, where F is the set of ML features. 
Behavior instances x belong to one of two classes, posi-
tive/malicious and negative/innocent, and the goal is to learn a 
vector w|F| such that classifier class  sign(wTx) accurately 
estimates the class of behavior x.  

A plausible way to reduce the degree to which adversaries 
can predict, and then adapt to and evade, the actions of a classi-
fier is to introduce randomness into the way the ML features F 
are selected and used. One simple way to accomplish this is 
delineated in the following three steps: 1.) divide the original 
feature set F into K randomly-selected, possibly overlapping 
subsets {F1, …, FK}, where | Fi |m  i; 2.) train one classifier 
for each feature subset Fi, yielding a collection of K classifiers 
{w1, …, wK}; 3.) during operation, alternate between the classi-

Figure 2. Results for predictive defense Spam filtering case 
study. The plot shows how filter accuracy (vertical axis) 
varies with time (horizontal axis) for the gold-standard NB 
filter (red) and Algorithm PD filter (blue).  



fiers wi according to some randomized scheduling policy. In 
order to implement this MT defense, it is necessary to define a 
procedure for selecting which classifier is to be “active” at each 
time period. Thus the MT defense problem of interest can be 
stated: given a collection of classifiers W{w1, …, wK}, spec-
ify a policy for switching among classifiers which minimizes 
defense predictability (from the point of view of the attacker).  

B. Moving Target Scheduling Policy  

A classifier schedule which minimizes defense predictability is 
sketched in the following theorem. Perhaps surprisingly, the 
optimal schedule is very simple to implement.  

Theorem MT: Suppose we are given a collection of K classi-
fiers W  {w1, …, wK} associated with randomly-selected fea-
ture subsets {F1, …, FK}, an ecology of adversaries that wish to 
reverse-engineer the defense, and a sequence of times t1, t2, … 
at which it is permissible to switch classifiers. Under mild as-
sumptions regarding the accuracy of the classifiers W prior to 
adversary reverse-engineering and the effectiveness of the re-
verse-engineering methods, defense performance is optimized 
if, at each time ti, the active classifier wa is selected uniformly 
at random from the set W.  

Proof: The proof is given in [23].                                             

We now provide a concise, intuitively-accessible summary 
of the proof of Theorem MT. Additionally, we describe empiri-
cal tests of the theorem’s conclusions in Section IIIC below. 
Readers interested in the technical details of the proof are re-
ferred to the report [23]. We model the interaction between an 
MT defense and an ecology of adversaries as a hidden mode 
hybrid dynamical system (HM-HDS) (see, for instance, [19] for 
background on this class of dynamical systems). More pre-
cisely, the MT defense model is  

HM-HDS  {C(w,a), W, P(w,a)}                    (2)  

where  

 the continuous system C(w,a) evolves according to sequen-
tial attack-defend game dynamics (such as (1));  

 the discrete system {W,P(w,a)} evolves as a Markov chain 
with state set W (the set of candidate classifiers) and state 
transition probability matrix P(w,a); note that, in general,  
state transition probabilities may depend upon the continu-
ous system state variables (w,a);  

 the hidden mode is the discrete system state, that is, the 
currently active classifier waW.  

A schematic of this HM-HDS model is depicted in Figure 3.  

The dynamics of the HM-HDS (2) evolve as follows. The 
discrete system specifies the currently active classifier wa, and 
this information is communicated to the defender (but not the 
attacker) in the continuous system game. The attacker attempts 
to infer which classifier is active by observing defense actions, 
and computes attack vector a based on this estimate. The dis-
crete system has access to continuous system state (w,a) and 
may use this information when choosing the next active classi-
fier.  

We interpret these dynamics as a repeated incomplete in-
formation game, in which the discrete system is the informed 
player and the attacker dynamics is the uninformed player [18]. 
(This formulation, although less intuitive than the two-player 
game model adopted in Section II, facilitates analysis of MT 
dynamics.) The payoff to the discrete system is defined to be 
the negative of the misclassification rate, so that maximizing 
this payoff is equivalent to maximizing the performance of the 
defense.  

 

 

 

 

 

 

 

 

 

 

 

 

Now suppose: 1.) each classifier wiW is effective against 
nominal, “pre-reverse-engineering” attacks (they need not be 
equally effective), and 2.) the attackers collectively have good 
reverse-engineering capabilities (i.e., reverse-engineering pro-
duces a substantial drop in classifier accuracy for each wiW); 
these conditions are defined more quantitatively in [23]. Under 
these assumptions, HM-HDS (2) belongs to a class of HM-HDS 
which is studied in [19]. In that paper, the control of such HM-
HDS is formulated as an incomplete information game between 
a “controller” (the uninformed player) and a “disturbance” (the 
informed player), where the actions of the disturbance can re-
veal to the controller exploitable information about the current 
value of the discrete mode. It is shown in [19] that, in this set-
ting, the best strategy for the disturbance is to maximize the 
controller’s uncertainty regarding the (hidden) discrete mode. 
This result in turn implies that, in the case of MT defense sys-
tem (2), the optimal scheduling policy for discrete system {W, 
P(w,a)} is to select the active classifier wa uniformly at random 
from the set W at each time ti.  

Observe that the optimal choice of a new wa does not de-
pend upon the currently active classifier or the continuous state 
variables (w,a), basically because any such dependence has the 
potential to be exploited by the attacker. Additionally, and per-
haps counterintuitively, each of the classifiers wi has an equal 
probability of being selected to be active, even though some 
may be more accurate that others. Roughly, if classifier w* is 
implemented with greater frequency than the others, say be-
cause it is especially accurate, the attackers will have increased 
opportunity to successfully reverse-engineer it, rendering w* 
less effective than the others in the long run.  

Figure 3. Schematic of basic HM-HDS feedback structure. 
The discrete and continuous systems in this framework 
model the selection of “active” classifier wa and the result-
ing attack-defend dynamics, respectively.  
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C. Algorithm Evaluation: Spam  

In this section we evaluate the effectiveness of the MT defense 
strategy summarized in Theorem MT by employing the Spam 
filtering data and task introduced in Section II. To facilitate 
convenient comparison with gold-standard defense systems and 
to reduce complications in the assessment, a few simplifica-
tions are made:  

 standard NB Spam filters are used for the classifiers {w1, 
…, wK} (rather than using, say, the predictive filters gen-
erated by solving (1));  

 only K2 classifiers/feature subsets are used;  

 attack vector a is computed in an optimal manner via (1), 
so that the adversary possesses strong reverse-engineering 
capabilities.  

To enable the efficacy of the proposed MT defense to be 
quantified, its performance is compared to that of a well-tuned 
static NB filter trained using the full set of (reduced-dimension) 
features F. We examine a range of attack “strengths” by vary-
ing the parameter  in the optimization (1) (recall that the term 
||a||3 governs the magnitude of attack vector a). Attacks are 
normalized by assigning an attack strength of AS1 to attacks 
with magnitude ||a|| equal to the largest attack observed in the 
(real-world) Spam dataset.  

We apply the static NB filter and the optimal two-mode 
(K2) MT filter to the 2000 email training dataset described in 
Section IIC. Additionally, to allow the results of Theorem MT 
to be tested, we implement a suboptimal MT filter obtained by 
favoring the more accurate of the two classifiers in the random 
scheduling process; specifically, the more accurate of the two 
filters is selected to be active with 2/3 probability (with the less 
accurate filter then being selected 1/3 of the time). Feature set F 
is taken to be the collection of 20 features with largest singular 
values (see Section IIC), and feature subsets F1 and F2 are con-
structed by randomly sampling F (with replacement) until each 
subset contains 10 features. The filters are “attacked” by solv-
ing (1) for the optimal attack a* and then transforming Spam 
instances x according to the formula xa*. To allow explora-
tion of a range of attack strengths, (1) is solved for different 
values of , yielding the following AS values: AS0, 0.25, 0.5, 
0.75, 1.0, 1.25, 1.5 (thus attacks vary in strength from ‘no at-
tack’ to attacks with magnitude 1.5 times larger than any seen 
in the Spam dataset).  

Sample results are displayed in Figure 4. Each data point in 
the plots represents the average accuracy over ten trials (two-
fold cross-validation). It can be seen that the filter based upon 
Theorem MT (red curve) significantly outperforms the static 
NB filter (magenta curve). For instance, MT defense achieves a 
classification accuracy of ~90% when subjected to attacks of 
strength AS1, compared with the ~65% accuracy obtained 
with the static filter. Under attacks of magnitude AS1.5 the 
optimal MT defense provides an accuracy of ~80%, while the 
static filter is only slightly more effective than random guess-
ing in this case (accuracy  54%).  

Moreover, this empirical study offers support for the con-
clusions of Theorem MT. As can be seen from Figure 4, the 
filter which schedules the more accurate classifier with greater 

probability (blue curve) does not perform as well as the optimal 
(according to Theorem MT) MT filter, particularly when the 
filters are subjected to fairly strong attacks corresponding to 
effective adversary reverse-engineering. These results suggest 
that the proposed MT defense is capable of substantially in-
creasing the difficulty of reverse-engineering tasks, even for 
highly effective (e.g., optimal) attackers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Algorithm Evaluation: Network Intrusion  

We now examine the performance of the MT defense strategy 
summarized in Theorem MT for the problem of distinguishing 
innocent and malicious computer network activity. The empiri-
cal data used for this case study is the KDD Cup 99 dataset, a 
publicly-available collection of network data consisting of both 
normal activities and attacks of various kinds [24]. For this 
study we randomly selected 1000 Normal connections (N) and 
1000 denial-of-service attacks (DoS) to serve as our test data.  

To enable the efficacy of the proposed MT defense to be 
quantified, its performance is compared to that of a well-tuned 
static NB classifier [5]. This NB classifier uses the full set of 
30 “continuous” features adopted in previous studies (see, e.g., 
[5] for a discussion). The optimal two-mode (K2) MT classi-
fier employs feature subsets F1 and F2 constructed by randomly 
sampling F (with replacement) until each subset contains 15 
features. The classifiers are attacked by solving (1) for the op-
timal attack a* and then transforming DoS network activity 
instances x according to the formula xa*. As in the preceding 
case study, we obtain a range of attack strengths by solving (1) 
for different values of  (recall ||a||3 governs the magnitude 
of attack vector a).  

Sample results are displayed in Figure 5. Each data point in 
the plots represents the average accuracy over ten trials (two-
fold cross-validation). It can be seen that the classifier based 

Figure 4. Results for moving target defense Spam filtering 
case study. The plot shows how filter accuracy (vertical 
axis) varies with attack strength (horizontal axis) for the 
optimally scheduled MT filter (red), a suboptimally sched-
uled MT filter (blue), and the static NB filter (magenta).  



upon Theorem MT (blue curve) significantly outperforms the 
static NB classifier (red curve). For instance, the accuracy of 
the MT defense system never goes below 90%, even when sub-
jected to large attacks, while the accuracy of the static defense 
quickly falls to 50% as attack strength is increased (this corre-
sponds to random guessing, as the dataset is balanced). Note 
that this case study illustrates the ease with which the proposed 
approach can be implemented in different adversarial settings.  
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Abstract—There is considerable interest in developing techniques 
for predicting human behavior, for instance to enable emerging 
contentious situations to be anticipated or permit the nature of 
ongoing but “hidden” activities to be inferred. A promising ap-
proach to this problem is to collect appropriate empirical data 
and then apply machine learning methods to the data to generate 
the predictions. This two-part paper shows that the performance 
of such learning algorithms often can be improved substantially 
by leveraging sociological models in their development and im-
plementation. In particular, we demonstrate that sociologically-
grounded learning algorithms outperform gold-standard meth-
ods in two important and challenging tasks: 1.) inferring the (un-
observed) nature of relationships in adversarial social networks, 
and 2.) predicting whether nascent social diffusion events will “go 
viral”. Significantly, the new algorithms perform well even when 
there is limited data available for their training and execution.  

Keywords—predictive analysis, sociological models, social networks, 
machine learning.  

I. INTRODUCTION 

There is great interest in developing techniques for accurately 
predicting human behavior. For example, forecasting the even-
tual outcomes of social processes is a central concern in do-
mains ranging from popular culture to public policy to national 
security [1]. The task of inferring the existence and nature of 
activities which are presently underway but not directly ob-
servable, sometimes referred to as “predicting the present” [2], 
is also of crucial importance in many applications. A promising 
approach to obtaining such predictions is to identify and collect 
empirical data which appropriately characterize the phenome-
non of interest and then to analyze these data using machine 
learning (ML) methods [3]. Roughly speaking, ML algorithms 
automatically “learn” relationships between observed variables 
from examples presented in the form of training data; the 
learned relationships are then used to generate predictions in 
new situations. ML’s capacity to learn from examples, scale to 
large datasets, and adapt to new or changing conditions make 
this an attractive approach to predictive analysis.  

The work reported in [4-12] illustrates some of the ways 
ML can be used for forecasting, and in particular how these 
techniques can be applied to online (Web) data in order to pre-
dict the outcomes of a broad range of social processes (e.g., 
social movements, political elections and protests, and markets 
of various kinds). Alternatively, the papers [13-19] derive ML 

techniques for predicting the present, for instance enabling the 
existence of hidden links in social networks to be inferred, the 
sentiment of informal communications to be estimated, and the 
spread of various health-related phenomena to be remotely 
monitored and assessed.  

Existing ML methods, although very useful, face at least 
two key challenges. First, the prediction accuracy obtainable 
with even state-of-the-art algorithms is sometimes insufficient 
for the task at hand, such as when the predictions are to be used 
to inform high-consequence decisions (e.g., pertaining to na-
tional security or human health). Second, applying ML tech-
niques typically requires that significant quantities of data be 
collected and “labeled”. For example, deriving an ML scheme 
for estimating sentiment polarity of blog posts usually involves 
collecting, processing, and manually labeling hundreds of ex-
ample posts expressing positive and negative sentiment [14]. 
Employing ML for forecasting ordinarily entails assembling 
extensive time series traces, implying that such methods may 
not be responsive enough to generate useful predictions about 
rapidly emerging events [12]. Additionally, realizing good per-
formance with standard ML usually necessitates frequent re-
training to permit algorithms to adapt to evolving conditions, 
which limits usefulness in many domains (e.g., in adversarial 
settings in which opponents adapt their behaviors expressly to 
defeat learning algorithms [20]).  

This two-part paper proposes that the challenges of predict-
ing human behavior using ML often can be overcome by lever-
aging sociological models in the development and implementa-
tion of the learning algorithms. This proposal is motivated by 
our recent research which shows that including sociologically-
meaningful measures of network dynamics as features in ML 
algorithms permits predictions regarding social dynamics that 
are substantially more accurate than those based on standard 
features [21]. The present two-part paper initiates a more sys-
tematic exploration of the utility of combining ML with socio-
logical models for social prediction. In Part One, we consider 
the problem of predicting the “signs” of relationships in social 
networks, where positive and negative edges reflect friendly 
and antagonistic social ties, respectively, and derive a novel 
ML algorithm for edge-sign prediction which leverages struc-
tural balance theory [22-24]. The proposed algorithm outper-
forms a “gold-standard” method in empirical tests with two 
large-scale online social networks, with the boost in prediction 
accuracy being especially significant in situations where only 



limited training date are available. Interestingly, the inferred 
edge-signs are also shown to be useful when predicting the way 
adversarial networks will fracture under stress.  

Part Two of the paper [25] examines the problem of fore-
casting the ultimate reach of “complex contagion” events [26]. 
Predictability assessment of such contagions indicates that the 
metrics which should be predictive of a contagion’s reach are 
subtle measures of the network dynamics associated with very 
early diffusion activity. These results are used to derive an ML 
algorithm for predicting which complex contagions will even-
tually “go viral” and which won’t, and it is demonstrated that 
the algorithm outperforms standard methods in an empirical 
investigation of online meme propagation [27]. Significantly, 
the new algorithm performs well even when only limited time 
series data are available for analysis, permitting reliable predic-
tion early in the contagion lifecycle. It is also shown that the 
proposed algorithm enables effective early warning analysis for 
an important class of cyber threats.  

II. PREDICTING LINK-SIGNS 

A. Problem Formulation 

Social networks may contain both positive and negative rela-
tionships – people form ties of friendship and support but also 
of animosity or disapproval. These two types of social ties can 
be modeled by placing signs on the links or edges of the social 
network, with 1 and 1 reflecting friendly and antagonistic 
relationships, respectively. We wish to study the problem of 
predicting the signs of certain edges of interest by observing 
the signs and connectivity patterns of the neighboring edges. 
More specifically, for a directed social network Gs = (V, E) 
with signed edges, where V and E are the vertex and edge sets, 
we consider the following edge-sign prediction problem: given 
an edge (u,v)E that is of interest but for which the edge-sign 
is “hidden”, infer the sign of (u,v) using information contained 
in the remainder of the network.  

It is natural to suspect that structural balance theory (SBT) 
may be useful for edge-sign prediction. Briefly, SBT posits that 
if wV forms a triad (i.e., edge triangle) with edge (u,v), then 
the sign of (u,v) should be such that the resulting signed triad 
possessing an odd number of positive edges; this encodes the 
common principle that “the friend of my friend is my friend”, 
“the enemy of my friend is my enemy”, and so on [22,23]. 
Thus SBT suggests that knowledge of the signs of the edges 
connecting (u,v) to its neighbors may be useful in predicting 
the sign of (u,v).  

B. Prediction Algorithm  

We approach the task of predicting the sign of a given edge (u, 
v) in the social network Gs as an ML classification problem. 
The first step is to define, for a given edge, a collection of fea-
tures which may be predictive of the sign of that edge. To al-
low a comparison with the (gold-standard) prediction method 
given in [24], we adopt the same two sets of features used in 
that study. For a given edge (u,v), the first set of features de-
fined in [24] characterize the various triads to which (u,v) be-
longs. Because triads are directed and signed, there are sixteen 
distinct types (e.g., the triad composed of positive edge (u,w) 

and negative edge (w,v), together with (u,v), is one type). Thus 
the first sixteen features for edge (u,v) are the counts of each of 
the various triad types to which (u,v) belongs. Including these 
features is directly motivated by SBT. For example, if (u,v) 
belongs to many triads with one positive and one negative 
edge, it may be likely that the sign of (u,v) is negative, since 
then these triads would possess an odd number of positive 
edges and therefore be “balanced”.  

The second set of features defined in [24] measure charac-
teristics of the degrees of the endpoint vertices u and v of the 
given edge (u,v). There are five of these features, quantifying 
the positive and negative out-degrees of u, the positive and 
negative in-degrees of v, and the total number of neighbors u 
and v have in common (interpreted in an undirected sense). 
Combining these five measures with the sixteen triad-related 
features results in a feature vector x21 for each edge of in-
terest (see [24] for a more thorough discussion of these features 
and the motivation for selecting them). The feature vector x 
associated with an edge (u,v) will form the basis for predicting 
the sign of that  edge.  

We wish to learn a vector c21 such that the classifier ori-
ent  sign(cTx) accurately estimates the sign of the edge whose 
features are encoded in vector x. Vector c is learned, in part, 
from labeled examples of positive and negative edges. Addi-
tionally, the proposed learning algorithm leverages the insights 
of SBT. A simple way to incorporate SBT is to assemble sets 
V and V of positive and negative features, that is, sets of fea-
tures which according to SBT ought to be associated with posi-
tive and negative edges, respectively. The triads to which (u,v) 
belongs in which the other two edges are positive are predicted 
by SBT to “contribute” to (u,v) being positive; thus the four 
features corresponding to triads with two positive labeled edges 
are candidates for membership in V (there are four such fea-
tures because Gs is directed). Analogously, SBT posits that the 
eight features indexing triads in which exactly one of the two 
edges that neighbor (u,v) is positive are candidates for mem-
bership in V. (Note that the remaining four triad features index 
triads in which both of the edges neighboring (u,v) are nega-
tive, and as there is less empirical support for SBT in this case 
[24] these features are not assigned to either V or V.)  

We now derive an ML algorithm for edge-sign prediction 
which is capable of leveraging SBT in its learning process. The 
development begins by modeling the problem data as a bipar-
tite graph Gb of edge-sign instances and features (see Figure 1). 
If there are n edges and 21 features, it can be seen that the adja-
cency matrix A for graph Gb is given by  



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



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0X

X0
A T                                  (1) 

where matrix Xn21 is constructed by stacking the n feature 
vectors xi as rows, and each ‘0’ is a matrix of zeros. 

Assume the initial problem data consists of a set of n edges, 
of which nl  n are labeled, and a set of labeled features Vl  
VV, and suppose this label information is encoded as vec-
tors dnl and w|Vl|, respectively. Let destn be the vector 
of estimated signs for the edges in the dataset, and define the 



“augmented” classifier caug  [dest
T   cT]Tn21 that estimates 

the polarity of both edges and features. Note that the quantity 
caug is introduced for notational convenience and is not directly 
employed for classification. More specifically, in the proposed 
methodology we learn caug, and therefore c, by solving an opti-
mization problem involving the labeled and unlabeled training 
data, and then use c to estimate the sign of any new edge of 
interest with the simple classifier orientsign(cTx). Assume for 
ease of notation that the instances and features are indexed so 
the first nl elements of dest and |Vl| elements of c correspond to 
labeled data.  

 

 

 

 

 

 

 

 

 

 

 

 

We wish to learn an augmented classifier caug with the fol-
lowing three properties: 1.) if an edge is labeled, then the corre-
sponding entry of dest should be close to this 1 label; 2.) if a 
feature is in the set Vl  VV, then the corresponding entry 
of c should be close to this 1 polarity; and 3.) if there is an 
edge Xij of Gb that connects an edge x and a feature f and Xij 
possesses significant weight, then the estimated polarities of x 
and f should be similar. These objectives are encoded in the 
following optimization problem: 
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where L  D  A is the graph Laplacian matrix for Gb, with D 
the diagonal degree matrix for A (i.e., Dii  j Aij), and 1, 2 
are nonnegative constants. Minimizing (2) enforces the three 
properties we seek for caug, with the second and third terms 
penalizing “errors” in the first two properties. To see that the 
first term enforces the third property, observe that this expres-
sion is a sum of components of the form Xij(dest,i  cj)

2. The 
constants 1, 2 are used to balance the relative importance of 
the three properties. Note that in situations where the set of 
available labeled instances is very limited, classifier perform-
ance often can be improved by replacing L in (2) with the nor-
malized Laplacian LnD1/2LD1/2, or with a power of this ma-
trix Ln

k (for k a positive integer); this modification serves to 
“smooth” the polarity estimates assigned to the vertices of Gb.  

The caug that minimizes objective function (2) can be ob-
tained by solving the following set of linear equations:  
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where the Lij are matrix blocks of L of appropriate dimension.  

We summarize this discussion by sketching an algorithm 
for learning the proposed edge-sign prediction (ESP) classifier:  

Algorithm ESP  

1. Construct the set of equations (3).  

2. Solve equations (3) for caug  [ dest
T   cT ]T  (for instance 

using the Conjugate Gradient method).  

3. Estimate the sign of any new edge x of interest as: orient 
 sign(cTx).  

The utility of Algorithm ESP is now examined through a case 
study involving edge-sign estimation for two social networks 
extracted from the Wikipedia online encyclopedia.  

C. Wikipedia Case Study  

This case study examines the performance of Algorithm ESP 
for the problem of estimating the signs of the edges in two so-
cial networks extracted from Wikipedia (WP), a collectively-
authored online encyclopedia with an active user community. 
We consider the following WP social networks: 1.) the graph 
of 103,747 edges corresponding to votes cast by WP users in 
elections for promoting individuals to the role of ‘admin’ [24], 
and 2.) the graph of 740,397 edges characterizing editor inter-
actions in WP [28]. In each network, the majority of the edges 
(80) are positive. Thus we follow [24] and create balanced 
datasets consisting of 20K positive and 20K negative edges for 
the “voting” network [24], and 50K positive and 50K negative 
edges for the “interaction” network [28].  

This study compares the edge-sign prediction accuracy of 
Algorithm ESP with that of the impressive gold-standard logis-
tic regression classifier given in [24]. The gold-standard algo-
rithm is applied exactly as described in [24]. Algorithm ESP is 
implemented with parameter values 1  0.1 and 2  0.5, and 
with vector w constructed using the four “positive triad” fea-
tures V and eight “negative triad” features V defined above. 
As a focus of the investigation is evaluating the extent to which 
good prediction performance can be achieved even when only a 
limited number of labeled edges are available for training, we 
examine training sets which incorporate a range of numbers of 
labeled edges: nl  0, 10, 20, 50, 100, 200.  

Sample results from this study are depicted in Figures 2 and 
3. Each data point in the plots represents the average of ten 
trials. In each trial, the edges are randomly split into equal-size 
training and testing sets, and a randomly selected subset of the 
training edges of size nl is “labeled” (i.e., the labels for these 
edges are made available to the learning algorithms). It can be 

instances

features

instances

features

Figure 1. Cartoon of bipartite graph data model Gb, in which 
edge-instances (red vertices) are connected to the features (blue 
vertices) they contain, and link weights (black edges) reflect the 
magnitudes taken by the features in the associated instances.   



seen that Algorithm ESP outperforms the gold-standard method 
on both datasets, and that the improved accuracy obtained with 
the proposed “SBT-informed” algorithm is particularly signifi-
cantly when the number of labeled training instances is small. 
An interesting open question is the extent to which this ability 
to provide good performance with limited labeled data implies 
a similar robustness to erroneously labeled data. The accuracy 
of the proposed algorithm does not depend sensitively on pa-
rameters 1, 2, so that the method is convenient to apply.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

D. Network Fracture Case Study 

Recently it has been proposed that structural balance theory can 
be used to predict the way a network of entities (e.g., individu-
als, countries) will split if subjected to stress [29], a capability 
of relevance in many security applications. Briefly, [29] models 

the polarity and intensity of relationships between the entities 
of interest as a completely connected network with weighted 
adjacency matrix ZZTnn, where matrix element zij repre-
sents the strength of the friendliness or unfriendliness between 
entities i and j. Note that this network model is somewhat more 
general than the one introduced above, in that each edge relat-
ing two individuals possesses both a sign and an intensity.   

SBT is a “static” theory, positing what a stable configura-
tion of edge-signs in a social network should look like. How-
ever, underlying the theory is a dynamical idea of how unbal-
anced network triads ought to resolve themselves to become 
balanced. A model which captures this underlying dynamics is 
given by the simple matrix differential equation [29]  

dZ/dt  Z2,   Z(0)Z0.                             (4) 

To see the connection between these dynamics and SBT, ob-
serve that (4) specifies the following dynamics for entry zij:  

dzij/dt k zik zkj. 

Thus if triad {i,j,k} is such that zik and zkj have the same sign, 
the participation of zij in this triad will drive zij in the positive 
direction, while if they have opposite signs then zij will be 
driven in the negative direction. These dynamics therefore fa-
vor triads with an odd number of positive edge-signs, consis-
tent with SBT [22].  

The paper [29] proves that, for generic initial conditions Z0, 
system (4) evolves to a balanced pattern of edge-signs in finite 
time; the balanced configuration is guaranteed to be composed 
of either all positive edges or two all-positive cliques connected 
entirely by negative edges. These configurations can be inter-
preted as predictions of the way a social network described by 
Z0 will fracture if subjected to sufficient stress. More precisely, 
given a model Z0 for a signed social network, model (4) can be 
used as the basis for the following two-step procedure for pre-
dicting the way the network will fracture: 1.) integrate (4) for-
ward in time until it reaches singularity Zs (this singularity will 
be reached in finite time), and 2.) interpret Zs as defining a split 
of the network into two groups, where each group has all posi-
tive intra-group edges and the inter-group edges are all nega-
tive (and where one of the groups could be empty). See Figure 
4 for an illustration of the dynamics of system (4).  

Remarkably, [29] shows that predictions obtained in this 
manner are in excellent agreement with two real-world cases of 
group fracture for which there is empirical data: the division of 
countries into Allied and Axis powers in World War II [30], 
and the split of the well-studied Zachary Karate Club into two 
smaller clubs [31]. However, the analysis presented in [29] 
requires that matrix  Z0 be completely known, that is, that all of 
the “initial” relationships zij(0) between entities be measurable. 
Such comprehensive data are not always available in practical 
applications.  

We have found that the requirement that relationship matrix 
Z0 be perfectly known can be relaxed through the use of Algo-
rithm ESP. More specifically, given a subset of the relationship 
data, the remaining weighted edge-signs can be estimated using 
Algorithm ESP, and these estimates Z0 can be used in place of 
Z0 when initializing (4). We have tested this procedure using 
the relationship network proposed in [30] for 17 key countries 

Figure 2. Results for WP “voting network” case study. The 
plot shows how edge-sign prediction accuracy (vertical 
axis) varies with the number of available labeled training 
instances (horizontal axis) for two classifiers: gold-standard 
(red) and Algorithm ESP (blue).  

Figure 3. Results for WP “interaction network” case study. 
The plot shows how edge-sign prediction accuracy (vertical 
axis) varies with the number of available labeled training 
instances (horizontal axis) for two classifiers: gold-standard 
(red) and Algorithm ESP (blue).  



involved in World War II. This investigation demonstrates that 
accurate prediction of which countries would eventually join 
the Allied forces and which would become Axis members can 
be made with less than 15% of the edge-signs known in ad-
vance. For example, data for only the relationships maintained 
by Germany and the USSR is sufficient to enable correct pre-
diction of the ultimate alignment of all countries except Portu-
gal  (see Figure 4). Similar results hold for analysis of the split 
of the Zachary Karate Club [31].  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

III. SUMMARY 

This two-part paper proposes that predictive analysis methods 
often can be improved by leveraging sociological models, and 
explores this possibility by considering two challenging predic-
tion tasks: 1.) inferring signs (friendly or antagonistic) of ties in 
social networks, and 2.) predicting whether an emerging social 
diffusion event will propagate widely or quickly dissipate. In 
this first part of the paper, we derive a novel ML algorithm for 
edge-sign prediction which leverages structural balance theory 
[22-24]. The proposed algorithm outperforms a gold-standard 
method in empirical tests with large-scale online social net-
works, and the inferred edge-signs are shown to be useful when 
predicting the way adversarial networks are likely to fracture 
under stress.  

Part Two of the paper examines the problem of forecasting 
the ultimate reach of “complex contagion” events [25,26], and 
develops a new “sociology-aware” ML algorithm for predict-
ing which complex contagion events will ultimately propagate 
widely and which will quickly dissipate. Taken together, these 
results suggest that incorporating simple models from sociol-
ogy can substantially improve the performance of prediction 
methods, particularly in applications in which there is limited 
data available for training and implementing the algorithms.  
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Abstract—There is considerable interest in developing techniques 
for predicting human behavior, and a promising approach to this 
problem is to collect phenomenon-relevant empirical data and 
then apply machine learning methods to these data to form pre-
dictions. This two-part paper shows that the performance of such 
learning algorithms often can be improved substantially by lev-
eraging sociological models in their development and implemen-
tation. In this paper, the second of the two parts, we demonstrate 
that a sociologically-grounded learning algorithm outperforms a 
gold-standard method for the task of predicting whether nascent 
social diffusion events will “go viral”. Significantly, the proposed 
algorithm performs well even when there is only limited time 
series data available for analysis.  

Keywords—predictive analysis, sociological models, social networks, 
machine learning.  

I. INTRODUCTION 

There is great interest in developing techniques for accurately 
predicting human behavior. For example, forecasting the even-
tual outcomes of social processes is a central concern in do-
mains ranging from popular culture to public policy to national 
security [1]. The task of inferring the existence and nature of 
activities which are presently underway but not directly ob-
servable, sometimes referred to as “predicting the present” [2], 
is also of crucial importance in many applications. A promising 
approach to obtaining such predictions is to collect empirical 
data which appropriately characterize the phenomenon of inter-
est and then to analyze these data using machine learning (ML) 
methods [3]. Existing ML techniques, although useful, face at 
least two key challenges: 1.) the prediction accuracy obtainable 
even with state-of-the-art algorithms is sometimes insufficient 
for the task at hand, such as when the predictions are to be used 
to inform high-consequence decisions, and 2.) applying ML 
methods typically requires that significant quantities of data be 
collected and “labeled” for use in algorithm training.  

This two-part paper proposes that the challenges of predict-
ing human behavior using ML often can be overcome by lever-
aging sociological models in the development and implementa-
tion of the learning algorithms. Part One of the paper considers 
the problem of predicting the “signs” of relationships in social 
networks, where positive and negative edges reflect friendly 
and antagonistic social ties, respectively, and derives a novel 
ML algorithm for edge-sign prediction that is based in part on 
structural balance theory [4]. In the present paper, the second of 

the two parts, we examine the problem of forecasting the ulti-
mate reach of “complex contagion” events [5,6]. Predictability 
assessment of complex contagion dynamics indicates that the 
metrics which should be predictive of the contagion’s reach are 
fairly subtle measures of the network dynamics associated with 
early diffusion activity. These results are used to derive an ML 
algorithm for predicting which complex contagions will ulti-
mately “go viral” and which won’t, and it is demonstrated that 
the algorithm outperforms gold-standard methods in an empiri-
cal investigation of online meme propagation [7]. Significantly, 
the new algorithm performs well even when only limited time 
series data are available for analysis, permitting reliable predic-
tions early in the contagion lifecycle. We also show that the 
proposed algorithm enables effective early warning analysis for 
an important class of cyber threats.  

II. EARLY WARNING FOR COMPLEX CONTAGIONS 

A. Problem Formulation 

There is significant interest in developing predictive capabili-
ties for social diffusion processes, for instance to permit early 
identification of emerging contentious situations or accurate 
forecasting of the eventual reach of potentially “viral” behav-
iors. This section considers the following early warning prob-
lem: we suppose some sort of triggering event has taken place 
and wish to determine, as early as possible, whether this event 
will ultimately generate a large, self-sustaining reaction, in-
volving the propagation of behavioral changes through a sub-
stantial portion of a population, or will instead quickly dissi-
pate. Of particular interest is propagation of behaviors that are 
costly or controversial, or about which there is uncertainty, as 
these activities often have large security-relevant impacts [4].  

Recent research has shown that such behaviors may spread 
as complex contagions, requiring social affirmation or rein-
forcement from multiple sources in order to propagate [5,6]. 
Because the diffusion dynamics for complex contagions are 
different than those of “simple” contagions like disease epi-
demics, it is natural to suspect that developing effective early 
warning algorithms for complex contagions may require care-
ful consideration of these more complex dynamics. In this sec-
tion we explore this possibility by deriving an early warning 
method for complex contagions which explicitly leverages a 
mathematical model for these diffusion events. We adopt the 
contagion model proposed in [6], implemented on a class of 



social networks which possess realistic topologies, and analyze 
this model to identify features of the contagion that are likely to 
be predictive of diffusion reach. These features are then used as 
the basis for an ML algorithm which distinguishes complex 
contagions that will propagate widely from those which will 
quickly dissipate.  

B. Predictability Assessment 

Here we briefly describe the results of applying the predictabil-
ity assessment procedure presented in [1] to the task of identi-
fying measurables that should be predictive of complex conta-
gion success. The discussion begins with short, intuitive re-
views of our predictability assessment process and network 
diffusion modeling framework, and then summarizes the main 
results obtained via this theoretical analysis.  

Predictability. The basic idea behind the proposed approach to 
predictability analysis is simple and natural: we assess predict-
ability by answering questions about the reachability of diffu-
sion events. To obtain a mathematical formulation of this strat-
egy, the behavior about which predictions are to be made is 
used to define the system state space subsets of interest (SSI), 
while the particular set of candidate measurables under consid-
eration allows identification of the candidate starting set 
(CSS), that is, the set of states and system parameter values 
which represent initializations that are consistent with, and 
equivalent under, the presumed observational capability. As a 
simple example, consider an online market with two products, 
A and B, and suppose the system state variables consist of the 
current market share for A, ms(A), and the rate of change of 
this market share, r(A) (ms(B) and r(B) are not independent 
state variables because ms(A)  ms(B)  1 and r(A)  r(B)  0); 
let the parameters be the advertising budgets for the products, 
b(A) and b(B). The producer of A might find it useful to define 
the SSI to reflect market share dominance by A, that is, the 
subset of the two-dimensional state space where ms(A) exceeds 
a specified threshold. If only market share and the advertising 
budgets can be measured then the CSS is the one-dimensional 
subset of state-parameter space consisting of the initial magni-
tudes for ms(A), b(A), and b(B), with r(A) unspecified.  

Roughly speaking, the approach to predictability assess-
ment proposed in [1] involves determining how probable it is 
to reach the SSI from a CSS and deciding if these reachability 
properties are compatible with the prediction goals. If a sys-
tem’s reachability characteristics are compatible with the pre-
diction objectives the situation is deemed predictable, and oth-
erwise it is unpredictable. This setup permits the identification 
of candidate predictive measurables: these are the measurable 
states and/or parameters which most strongly affect the predict-
ability properties [1]. Continuing with the online market exam-
ple, if trajectories with positive early market share rates r(A) 
are much more likely to yield market share dominance for A 
than are trajectories with negative early r(A), independent of 
the early values for ms(A), then the situation is unpredictable 
(because r(A) is not measured). Adding the capacity to measure 
r(A) would then increase system predictability, and depending 
upon the task requirements this new measurement ability could 
result in a predictable situation. A quantitative, mathematically-
rigorous presentation of this predictability assessment frame-
work can be found in [1].  

Model. In complex contagion events, the probability of adopt-
ing a controversial or unproven behavior or idea increases with 
the number of other adopting individuals, and not merely the 
number of exposures to the contagion (so that multiple interac-
tions with the same adopting individual do not increase the 
likelihood of adoption, as it does in simple contagions) [5,6]. 
Recently the authors of [6] proposed an empirically-grounded 
model for complex contagions in which individuals interact via 
a social network of arbitrary topology, and the probability that 
individual A adopts a given activity or idea is a function of the 
number of A’s adopting neighbors; the functional form of this 
adoption “influence curve” is obtained empirically (see [6] for 
a detailed description of the model).  

The dynamics of contagion may depend upon the topologi-
cal structure of the underlying social network. This dependence 
suggests that, in order to identify the features of complex con-
tagions which have predictive power, it is necessary to assess 
predictability using social network models with realistic to-
pologies. Therefore in this study we implement the complex 
contagion model [6] with social networks that possess four 
topological properties which are ubiquitous in the real-world 
[1]: right-skewed degree distribution, transitivity, community 
structure, and core-periphery structure.  

It is shown in [1] that stochastic hybrid dynamical systems 
(S-HDS) provide a useful mathematical formalism with which 
to represent social contagions on realistic networks (see Figure 
1). An S-HDS is a feedback interconnection of a discrete-state 
stochastic process, such as a Markov chain, with a family of 
continuous-state stochastic dynamical systems [1]. Combining 
discrete and continuous dynamics within a unified, computa-
tionally tractable framework offers an expressive, scalable 
modeling environment that is amenable to formal mathematical  
analysis. In particular, S-HDS models can be used to efficiently 
represent and analyze social contagion on large-scale networks 
with the four topological properties listed above [1].  

As an intuitive illustration of the way S-HDS enable effec-
tive, tractable representation of complex contagion phenomena, 
consider the task of modeling contagion on a network possess-
ing community structure. As shown in Figure 1, the contagion 
proceeds in two ways: 1.) intra-community diffusion, involving 
frequent interactions between individuals within the same 
community and the resulting gradual change in the concentra-
tions of adopting (red) individuals, and 2.) inter-community 
diffusion, in which the “infection” jumps from one community 
to another, for instance because an adopting individual encoun-
ters a new community. S-HDS models offer a natural frame-
work for representing these dynamics, with the S-HDS con-
tinuous system modeling the intra-community dynamics (e.g., 
via stochastic differential equations), the discrete system cap-
turing inter-community dynamics (e.g., using a Markov chain), 
and the interplay between these dynamics being encoded in the 
S-HDS feedback structure (e.g., the transition probabilities of 
the discrete system Markov chain may depend upon the state of 
the continuous system) [1].  

Results. We applied the predictability assessment methodology 
summarized above to a “realistic network” version of the com-
plex contagion model given in [6] (i.e., the model obtained by 
implementing the dynamics specified in [6] on a class of net-



works possessing the four topological properties summarized 
above). The main finding of this study is that the predictability 
of the reach of complex contagions depends crucially upon the 
social network’s community and core-periphery structures. 
These findings are now summarized more quantitatively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 

 

 

 

 

 

 

We adopt a modularity-based definition for network com-
munity structure [8], whereby a good partitioning of a net-
work’s vertices into communities is one for which the number 
of edges between putative communities is smaller than would 
be expected in a random partitioning. To be concrete, a modu-
larity-based partitioning of a network into two communities 
maximizes the modularity Q  sT B s / 4m, where m is the total 
number of edges in the network, the partition is specified with 
the elements of vector s by setting si  1 if vertex i belongs to 
community 1 and si  1 if it belongs to community 2, and the 
matrix B has elements Bij  Aij  kikj / 2m, with Aij and ki de-
noting the network adjacency matrix and degree of vertex i, 
respectively. Partitions of the network into more than two 
communities can be constructed recursively [8]. This definition 

enables the specification of the first candidate predictive fea-
ture nominated by our predictability assessment: early disper-
sion of a complex contagion process across network communi-
ties should be a reliable predictor that the ultimate reach of the 
contagion will be significant.  

We characterize network core-periphery structure in terms 
of the k-shell decomposition [9]. To partition a network into its 
k-shells, one first removes all vertices with degree one, repeat-
ing this step if necessary until all remaining vertices have de-
gree two or higher; the removed vertices constitute the 1-shell. 
Continuing in the same way, all vertices with degree two (or 
less) are recursively removed, creating the 2-shell. This process 
is repeated until all vertices have been assigned to a k-shell, 
and the shell with the highest index, the kmax-shell, is deemed to 
be the core of the network. This definition permits us to state 
the second candidate predictive feature nominated via theoreti-
cal predictability assessment: early contagion activity within 
the network kmax-shell should be a reliable predictor that the 
reach of the diffusion will be significant.  

C. Prediction Algorithm  

Consider the problem of predicting, very early in the lifecycle 
of a complex contagion event, whether or not the contagion 
will propagate widely. We adopt an ML approach to this early 
warning task: given a triggering incident, one or more informa-
tion sources which reflect the reaction to this trigger by a popu-
lation of interest, and a specification for what constitutes an 
“alarming” reaction, the goal is to learn a classifier that accu-
rately predicts, as early as possible, whether or not reaction to 
the event will eventually become alarming. The ML classifier 
used in this investigation is the Avatar ensembles of decision 
trees (A-EDT) algorithm [10]; qualitatively similar results were 
obtained in tests with other, less sophisticated classifiers [3].  

A key step in early warning analysis is determining which 
characteristics of the phenomenon of interest, if any, possess 
exploitable predictive power. Based on the results of the pre-
ceding predictability assessment study, we consider three gen-
eral classes of features: 1.) intrinsics-based features – measures 
of the inherent properties and attributes of the “object” being 
diffused, 2.) simple dynamics-based features – metrics which 
capturing simple properties of the diffusion dynamics (e.g., the 
rate at which the diffusion is propagating), 3.) network dynam-
ics-based features – measures that characterize the way the 
early diffusion is progressing relative to the network’s commu-
nity and core-periphery structures. Precise definitions for the 
features in these classes are, of course, application dependent.  

The proposed approach to early warning analysis is to iden-
tify and collect features from these classes for the event of in-
terest, input the feature values to the A-EDT classifier, and then 
run the classifier to generate a warning prediction (i.e., a fore-
cast that the event is expected to become ‘alarming’ or remain 
‘not alarming’). The algorithm presented below specifies this 
procedure in general terms, and illustrative instantiations of the 
process are given in the case studies discussed in Sections IID 
and IIE. It is assumed that social media data form the primary 
source of information concerning events of interest [11]. How-
ever, the analysis is very similar when alternative sources of 
data are employed [1].  

Figure 1. Modeling complex contagions on networks with 
community structure via S-HDS. The cartoon at top left 
depicts a network with three communities. The cartoon at 
bottom illustrates contagion within a community k and 
between communities i and j. The schematic at top right 
shows the basic S-HDS feedback structure.  
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Consider the following early warning algorithm:  

Algorithm EW  

Given: a triggering incident, a definition for what constitutes an 
‘alarming’ reaction, and a set of social media sites (e.g., blogs) 
B which are relevant to the early warning task.  

Initialization: train the A-EDT classifier on a set of events that 
are qualitatively similar to the triggering event of interest and 
are labeled as ‘alarming’ or ‘not alarming’.  

Procedure:  

1. Assemble a lexicon of keywords L that pertain to the trig-
gering event under study.  

2. Conduct a sequence of Web crawls and construct a time 
series of blog graphs GB(t). For each time period t, label 
each blog in GB(t) as ‘active’ if it contains a post mention-
ing any of the keyword in L and ‘inactive’ otherwise.  

3. Form the union GB = tGB(t), partition GB into network 
communities and into k-shells, and map the partition ele-
ment structure of GB back to each of the graphs GB(t).  

4. For each graph GB(t), compute the values for all features 
(intrinsics, simple dynamics, and network dynamics).  

5. Apply the A-EDT classifier to the time series of features, 
i.e., the features obtained for the sequence of blog graphs 
{GB(t0), …, GB(tp)}, where t0 and tp are the triggering event 
time and present time, respectively. Issue a warning alert if 
the classifier output is ‘alarming’.  

We now offer a few remarks concerning Algorithm EW. 
The keywords in Step 1 can be identified with the help of sub-
ject matter experts and also through computational means (e.g., 
via meme analysis [1]). Step 2 is by now standard, and a vari-
ety of tools exist which can perform these tasks [11]. In Step 3, 
the blog network can be partitioned into communities and k-
shells using modularity-based community extraction [8] and 
standard k-shell decomposition [9], respectively. The particular 
choices of metrics for the intrinsics, simple dynamics, and net-
work dynamics features computed in Step 4 tend to be problem 
specific, and typical examples are given in the case studies 
below. Finally, in Step 5 the feature values obtained in Step 4 
serve as inputs to the A-EDT classifier, and the output of the 
classifier is used to decide whether an alert should be issued.  

D. Meme  Case Study  

The goal of this case study is to apply Algorithm EW to the 
task of predicting whether or not a given meme (i.e., short tex-
tual phrase which propagates relatively unchanged online) will 
“go viral”. Although it may seem that meme diffusion is not 
sufficiently costly or controversial to qualify as a complex con-
tagion, [6] shows that political memes appear to propagate in 
this way. Our main source of data on meme dynamics is the 
dataset archived at the site http://memetracker.org [12] by the 
authors of [7]. Briefly, the archive [12] contains time series 
data characterizing the online diffusion of ~70,000 memes dur-
ing the period between 1 August and 31 December 2008. We 
are interested in using Algorithm EW to distinguish successful 
and unsuccessful political memes early in their lifecycle. More 
precisely, the prediction task is to classify memes into two 
groups – those which will ultimately be successful (acquire 

more than S posts) and those that will be unsuccessful (attract 
fewer than U posts) – very early in the meme lifecycle.  

To support an empirical evaluation of the utility of Algo-
rithm EW for this problem, we downloaded from [12] the time 
series data for slightly more than 70,000 memes. These data 
contain, for each meme M, a sequence of pairs (t1, URL1)M, (t2, 
URL2)M, …, (tT, URLT)M, where tk is the time of appearance of 
the kth blog post or news article that contains at least one men-
tion of meme M, URLk is the URL of the blog or news site on 
which that post/article was published, and T is the total number 
of posts that mention meme M. From this set of time series we 
randomly selected 100 “successful” political meme trajectories, 
defined as those corresponding to memes which attracted at 
least 1000 posts during their lifetimes, and 100 “unsuccessful” 
political meme trajectories, defined as those whose memes 
acquired no more than 100 total posts.  

Two other forms of data were collected for this study: 1.) a 
large Web graph which includes websites (URLs) that appear 
in the meme time series, and 2.) samples of the text surround-
ing the memes in the posts which contain them. More specifi-
cally, we sampled the URLs appearing in the time series for our 
set of 200 successful and unsuccessful memes and performed a 
Web crawl that employed these URLs as “seeds”. This proce-
dure generated a Web graph, denoted GB, that consists of ap-
proximately 550,000 vertices (websites) and 1.4 million edges 
(hyperlinks), and includes essentially all of the websites which 
appear in the meme time series. To obtain samples of text sur-
rounding memes in posts, we randomly selected ten posts for 
each meme and then extracted from each post the paragraph 
which contains the first mention of the meme.  

Algorithm EW employs three types of features: intrinsics, 
simple dynamics-based, and network dynamics-based. We now 
describe the instantiation of each of these feature classes for the 
meme problem. Consider first the intrinsics features, which for 
the meme application become language-based measures. Each 
“document” of text surrounding a meme in its (sample) posts is 
represented by a simple “bag of words” feature vector x|V|, 
where the entries of x are the frequencies with which the words 
in the vocabulary V appear in the document. A language-based 
feature which might reasonably be expected to be predictive of 
meme propagation is the sentiment or emotion of documents 
containing the meme. A simple way to quantify a document’s 
sentiment/emotion is through the use of appropriate lexicons. 
Let s|V| denote a lexicon vector, in which each entry of s is a 
numerical “score” quantifying the sentiment/emotion intensity 
of the corresponding word in vocabulary V. The aggregate sen-
timent/emotion score of document x can then be computed as 
score(x)  sTx / sT1, where 1 is a vector of ones. Thus score(.) 
estimates document sentiment or emotion as a weighted aver-
age of the sentiment or emotion scores for the words compris-
ing the document. (Note that if no sentiment or emotion infor-
mation is available for a particular word in V then the corre-
sponding entry of s is set to zero.)  

To characterize the emotion content of a document we use 
the Affective Norms for English Words (ANEW) lexicon [13], 
while positive or negative sentiment is quantified via the “IBM 
lexicon” [14]. This approach generates four language features 
for each meme: the happiness, arousal, dominance, and posi-



tive/negative sentiment of the sample text surrounding that 
meme. As a preliminary test, we computed the mean emotion 
and sentiment of text surrounding the 100 successful and 100 
unsuccessful memes in our dataset. On average the text sur-
rounding successful memes is happier, more active, more 
dominant, and more positive than that surrounding unsuccess-
ful memes (p0.0001), so it is at least plausible that the lan-
guage features may possess some predictive power.   

Consider next two simple dynamics-based features, defined 
to capture basic characteristics of the early evolution of meme 
post volume: 1.) #posts() – the cumulative number of posts 
mentioning the given meme by time  (where  is small relative 
to the typical meme lifespan), and 2.) post rate() – a simple 
estimate of the rate of accumulation of these posts at time . 
Recall that predictability assessment suggests that both early 
dispersion of contagion activity across network communities 
and early contagion activity within the network core ought to 
be predictive of meme success. These insights motivate the 
definition of two network dynamics-based features for meme 
prediction: 1.) community dispersion() – the cumulative num-
ber of network communities in the blog graph GB that, by time 
, contain at least one post which mentions the meme, and 2.) 
#k-core blogs() – the cumulative number of blogs in the kmax-
shell of blog graph GB that, by time , contain at least one post 
which mentions the meme.  

This case study compares the meme early warning accuracy 
of Algorithm EW, as applied to meme prediction, with that of 
two other prediction methods: a language-based (LB) strategy 
and a standard-dynamics (SD) scheme. The LB predictor uses 
the four language features noted above with the A-EDT classi-
fier to try to distinguish successful and unsuccessful memes, 
and achieves a prediction accuracy of 66.5% (ten-fold cross-
validation). Since simply guessing ‘successful’ for all memes 
gives an accuracy of 50%, it is seen that the language intrinsics, 
when used alone, possess relatively limited predictive power.  

Next we compare the predictive performance of the SD 
classifier with that of Algorithm EW. The SD predictor com-
bines the four language features with the two simple dynamics 
features, #posts() and post rate(), within the A-EDT classi-
fier. Because this is representative of state-of-the-art prediction 
schemes, this approach is referred to as the gold-standard algo-
rithm. The application of Algorithm EW to meme prediction 
combines the language features with four dynamics measures: 
#posts(), post rate(), community dispersion(), and #k-core 
blogs(). Sample results from this empirical test are depicted in 
Figure 2. Each data point represents the average accuracy over 
ten trials (ten-fold cross-validation). It can be seen from Figure 
2 that Algorithm EW outperforms the gold-standard method, 
especially in the important situation in which it is desired to 
form predictions soon after the meme is detected. Indeed, these 
results show that useful predictions can be obtained with Algo-
rithm EW within the first twelve hours after a meme is detected 
(this corresponds to 0.5% of the average meme lifespan). Inter-
estingly, analysis of feature predictive power [3] shows that the 
most predictive features are, in decreasing order, 1.) commu-
nity dispersion, 2.) #k-core blogs, 3.) #posts, and 4.) post rate, 
which supports the conclusions of the complex contagion-
based predictability assessment.  

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

E. Cyber Early Warning Case Study  

This case study explores the ability of Algorithm EW to pro-
vide reliable early warning for politically-motivated distributed 
denial-of-service (DDoS) attacks, an important class of cyber 
threats. In particular, we are interested in exploring the utility 
of Algorithm EW when using social media as an information 
source. Toward this end, we first identified a set of Internet 
disruptions which included examples from three distinct classes 
of activity: 1.) successful DDoS attacks (the events for which 
we seek early warning; 2.) natural events which disrupt Internet 
service but for which it is known that no early warning signal 
exists in social media (e.g., earthquakes); 3.) quiet periods dur-
ing which there is social media “chatter” concerning impending 
DDoS attacks but no successful attacks actually occurred. In-
cluding events selected from these three classes is intended to 
provide a fairly comprehensive test, as these classes correspond 
to 1.) the domain of interest, 2.) a set of disruptions which im-
pact the Internet but have no social media warning signal, and 
3.) a set of “non-events” which do not impact the Internet but 
do possess putative social media warning signals.  

We selected twenty events from these three classes:  

Politically-motivated DDoS attacks:  

▪ Estonia event in April 2007;  

▪ CNN/China incident in April 2008;  

▪ Israel/Palestine conflict event in January 2009;  

▪ DDoS associated with Iranian elections in June 2009;  

▪ WikiLeaks event in November 2010;  

▪ Anonymous v. PayPal, etc. attack in December 2010;  

▪ Anonymous v. HBGary attack in February 2011.  

Natural disturbances:  

▪ European power outage in November 2006;  

Figure 2. Results for meme early warning case study. The 
plot shows how prediction accuracy (vertical axis) varies 
with the length of time that has elapsed between meme de-
tection and meme prediction (horizontal axis) for the two 
classifiers: gold-standard (red) and Algorithm EW (blue).  



▪ Taiwan earthquake in December 2006;  

▪ Hurricane Ike in September 2008;  

▪ Mediterranean cable cut in January 2009;  

▪ Taiwan earthquake in March 2010;  

▪ Japan earthquake in March 2011.  

Quiet periods:  

Seven periods, from 2005 through 2011, during which there 
were discussions in social media of DDoS attacks on various 
U.S. government agencies but no successful attacks took place.  

We collected two forms of data for each of these twenty 
events: cyber data and social data. The cyber data consist of 
time series of routing updates which were issued by Internet 
routers during a one month period surrounding each event. 
More precisely, these data are the Border Gateway Protocol 
(BGP) routing updates exchanged between gateway hosts in 
the Autonomous System network of the Internet. The data were 
downloaded from the publicly-accessible RIPE collection site 
[15] using the process described in [16]. The temporal evolu-
tion of the volume of BGP routing updates (e.g., withdrawal 
messages) gives a coarse-grained measure of the timing and 
magnitude of large Internet disruptions and thus offers a simple 
and objective way to characterize the impact of each of the 
events in our collection. The social data consist of time series 
of social media mentions of cyber attack-related keywords and 
Internet disruption-related keywords that were detected during 
a two month period surrounding each of the twenty events (in 
each case, event time was inferred from BGP data [16]). These 
data were gathered using the procedure specified in Algorithm 
EW.  

We apply Algorithm EW to the task of distinguishing the 
seven DDoS attacks from the thirteen other events in the event 
set. For simplicity, in this case study we do not use any intrin-
sics-based features (e.g., language metrics) in the A-EDT clas-
sifier, and instead rely upon the four dynamics-based features 
defined in the meme study. We estimate the accuracy of Algo-
rithm EW with two-fold cross-validation. In the case of DDoS 
events, the blog data made available to Algorithm EW is lim-
ited to posts made during the five week period which ended 
one week before the attack. For the six natural disturbances, the 
blog data includes all posts collected during the six week pe-
riod immediately prior to the event, while in the case of the 
seven non-events, the blog data includes the posts gathered 
during a six week interval which spans discussions of DDoS 
attacks on U.S. government agencies.  

In this evaluation, Algorithm EW achieves perfect accu-
racy, correctly identifying all ‘attack’ and ‘non-attack’ events. 
If the test is made more difficult, so that the blog data made 
available to Algorithm EW for attack events is limited to a four 
week period that ends two weeks before each attack, the pro-
posed approach still achieves 95% accuracy, An examination 
of the predictive power of the four features used as inputs to the 
A-EDT classifier reveals that community dispersion is the most 
predictive measure.  

III. SUMMARY 

This two-part paper considers the challenging problem of pre-
dicting human behavior, and shows that incorporating simple 
models from sociology can substantially improve the perform-
ance of machine learning prediction methods, particularly in 
applications for which there is limited data available for train-
ing and implementing the algorithms. Future work will include 
investigating the predictability of the actions of opponents in 
adversarial settings through a combination of ML and socio-
logically-grounded game-theoretic models.  
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Abstract—Adaptive adversaries are a primary concern in several 
domains, including cyber defense, border security, counterterror-
ism, and fraud prevention, and consequently there is great inter-
est in developing defenses that maintain their effectiveness in the 
presence of evolving adversary strategies and tactics. This paper 
leverages the coevolutionary relationship between attackers and 
defenders to derive two new approaches to predictive defense, in 
which future attack techniques are anticipated and these insights 
are incorporated into defense designs. The first method combines 
game theory with machine learning to model and predict future 
adversary actions in the learner’s “feature space”; these predic-
tions form the basis for synthesizing robust defenses. The second 
approach to predictive defense involves extrapolating the evolu-
tion of defense configurations forward in time, in the space of 
defense parameterizations, as a way of generating defenses which 
work well against evolving threats. Case studies with a large cy-
ber security dataset assembled for this investigation demonstrate 
that each method provides effective, scalable defense against cur-
rent and future attacks, outperforming gold-standard techniques. 
Additionally, preliminary tests indicate that a simple variant of 
the proposed design methodology yields defenses which are diffi-
cult for adversaries to reverse-engineer.  

Keywords—-predictive analytics, adversarial coevolution, machine 
learning, game theory, cyber security, security informatics.  

I.  INTRODUCTION 

Adaptive adversaries are a primary concern in many domains, 
including cyber defense, border security, counterterrorism, and 
crime prevention [e.g. 1-3]. For instance, emerging technolo-
gies and operational practices in these domains are increasingly 
moving toward highly interconnected architectures with small 
numbers of widely-shared protocols, thereby dramatically in-
creasing the potential impact of even a single unanticipated 
attack. It is therefore essential that security professionals de-
velop defenses which are able to respond rapidly to, or even 
foresee, evolving attack strategies and tactics.  

Recognizing these trends and challenges, several research-
ers have recently proposed defenses which incorporate models 
of adversary behavior in order to increase defense system reli-
ability and responsiveness against adaptive opponents; applica-
tions receiving attention include cyber defense [e.g. 4-7], bor-
der and transportation security [e.g. 8-10], and improvised ex-
plosive device defense [11,12]. However, while these model-
informed methods represent an important advance over stan-
dard techniques, they continue to produce reactive defense de-
signs and thus are limited in their ability to defend against new 
attacks.  

Very recently, security researchers have begun working to 
develop predictive defenses, in which future attack strategies 
are explicitly anticipated and preemptively countered [13-16]. 
Despite this attention, much remains to be done to place the 
objective of predictive defense on a scientifically-grounded and 
practically-implementable foundation. Fundamental issues as-
sociated with the dynamics and predictability of coevolutionary 
“arms races” between attackers and defenders have yet to be 
resolved. For instance, although the work [13-15] has demon-
strated that previous attacker actions and defender responses 
provide predictive information about future attacker behavior,  
little is known about which system characteristics have predic-
tive power or how to employ these features to form useful pre-
dictions. Moreover, even in settings where these predictability 
and prediction issues have been resolved, it often remains an 
open question how to incorporate such predictive analytics into 
the design of practical real-world defense systems.  

This paper leverages the coevolutionary relationship be-
tween attackers and defenders to derive two predictive defense 
algorithms which are effective against both current and future 
attacks strategies. We formulate the defense task as one of be-
havior classification, in which innocent and malicious activities 
are to be distinguished, and assume only limited historical in-
formation is available regarding prior attacker behavior or at-
tack attributes. The first method combines game theory [17] 
with machine learning (ML) [18] to model and predict adver-
sary actions in “feature space”, that is, in the space of observ-
able variables that the ML algorithm uses for learning; these 
predictions form the basis for synthesizing robust defenses. The 
second predictive defense strategy involves extrapolating the 
evolution of defense system configurations forward in time, in 
the space of defense parameterizations, as a way of generating 
defenses which work well against evolving threats. Interest-
ingly, formulating the attack prediction/defense synthesis prob-
lem in an abstract space (of ML features or defense parameters) 
enables the development of algorithms that are scalable to ap-
plications of real-world size and complexity.  

To permit the performance of these methods to be evalu-
ated, we have assembled a large collection of non-Spam and 
Spam emails reflecting the evolution of Spammer tactics over 
an eight year period. Case studies with this dataset demonstrate 
that each of the proposed predictive methods provides robust, 
scalable defense, outperforming gold-standard Spam filters. 
Additionally, preliminary tests suggest that a simple “random-
ized feature” variant of the proposed design methodology gen-
erates defenses which are difficult for adversaries to reverse-
engineer.  



II. PREDICTIVE DEFENSE VIA GAME-BASED LEARNING  

A. Problem Formulation  

As indicated in the Introduction, there is significant interest in 
developing predictive approaches to defending against adaptive 
adversaries, in which opponents’ evolving strategies are antici-
pated and these insights are employed to counter new attacks. 
This section considers the following concrete instantiation of 
the predictive defense problem: given some history of attacker 
actions, design a defense system which performs well against 
both current and future attacks.  

It is reasonable to expect that concepts and techniques from 
game theory might be helpful in understanding adversary co-
evolution, and indeed such approaches have been explored in a 
variety of domains [5,10,19]. These investigations have re-
vealed several challenges to successfully using game-theoretic 
methods for predictive defense, and we mention two that have 
been particularly daunting. First, the space of possible attacker 
actions is typically very large in realistic environments, and 
because the complexity of most game models increases expo-
nentially with the number of actions available to players, this 
has often made these models intractable in practice [19]. Sec-
ond, it has proved difficult to derive models that capture evolv-
ing attacker behavior in any but the most idealized situations.  

We overcome these two challenges by developing a game-
based model for adversary adaptation within an ML frame-
work, enabling effective defense in realistic settings. Crucially, 
the proposed approach seeks to derive the optimal defense for 
new attacks, rather than to predict these attacks perfectly, and 
therefore enjoys robust performance in the presence of (inevi-
table) prediction errors. We approach the task of countering 
adversarial behavior as an ML classification problem, in which 
the objective is to distinguish innocent and malicious activity. 
Each instance of activity is represented as a feature vector 
x|F|, where entry xi of x is the value of feature i for this in-
stance and F is the set of instance features. In what follows, F is 
a set of “reduced” features, obtained by projecting measured 
feature vectors into a lower-dimensional space. While feature 
reduction is standard practice in ML [18], we show below that 
aggressive reduction allows us to efficiently manage the com-
plexity of our game models. Behavior instances x belong to one 
of two classes: positive/malicious and negative/innocent (gen-
eralizing to more than two behavior classes is straightforward 
[18]). The goal is to learn a vector w|F| such that classifier 
orient  sign(wTx) accurately estimates the class of behavior x, 
returning 1 (1) for malicious (innocent) activity.  

It is useful to assess the predictability of a phenomenon be-
fore attempting to predict its evolution; for example, such an 
analysis permits identification of measurables that possess pre-
dictive power [20]. There has been limited theoretical work 
assessing predictability of adversarial dynamics, but existing 
studies suggest attack-defend coevolution often generates pre-
dictable dynamics. For instance, although [21] finds that certain 
player strategies lead to chaos in a simple repeated game, [22] 
shows that large sets of player strategies and repeated games 
exhibit predictable adversarial dynamics. Here we supplement 
this theoretical work by conducting an empirical investigation 
of predictability, and select as our case study a cyber security 

problem – Spam filtering – which possesses attributes that are 
representative of many adversarial domains.  

To conduct this investigation, we first obtained a large col-
lection of emails from various publicly-available sources for 
the period 1999-2006, and added to this corpus a set of Spam 
emails acquired from B. Guenter’s Spam trap for the same time 
period. Following standard practice, each email is modeled as a 
“bag of words” feature vector x|F|, where the entries of x are 
the frequencies with which the words in vocabulary F appear in 
the message. The resulting dataset consists of ~128,000 emails 
composed of more than 250,000 features. We extracted from 
this collection of Spam and non-Spam emails the set of mes-
sages sent during the 30 month period between January 2001 
and July 2003 (email in other periods exhibit very similar evo-
lutionary dynamics). Finally, the dimension of the email feature 
space was reduced via a singular value decomposition (SVD) 
analysis [18], yielding a reduction in feature space dimension 
of four orders of magnitude (from ~250K to 20).  

We wish to examine, in a simple but meaningful way, the 
predictability of Spam adaptation, and propose two intuitively 
reasonable criteria with which to empirically evaluate predict-
ability: sensibility and regularity (obviously more comprehen-
sive, mathematically-rigorous frameworks can be derived for 
defining and assessing predictability [e.g.,20]). More specifi-
cally, and in the context of Spam, it would be sensible for 
Spammers to adapt their messages over time in such a way that 
Spam feature vectors xS come to resemble the feature vectors 
xNS of legitimate emails, and regularity in this adaptation might 
imply that the values of the individual elements of xS approach 
those of xNS in a fairly monotonic fashion.   

To permit convenient examination of the evolution of fea-
ture vectors xS and xNS during the 30 month period under study, 
the emails were first binned by quarter. Next, the average val-
ues for each of the 20 (reduced) features was computed for all 
the Spam emails and all the non-Spam emails (separately) for 
each quarter. Figure 1 illustrates the feature space dynamics of 
Spam and non-Spam messages for one representative element 
(F1) of this reduced feature space. As seen in the plot, the value 
of feature F1 for Spam approaches the value of this feature for 
non-Spam, and this increasing similarity is a consequence of 
changes in the composition of Spam messages (the value of F1 
for non-Spam emails is essentially constant). The dynamics of 
the other feature values (not shown) are analogous.  

Observe that the Spam dynamics illustrated in Figure 1 re-
flect sensible adaptation on the part of Spammers: the features 
of Spam email messages evolve to appear more like those of 
non-Spam email, making Spam more difficult to detect. Addi-
tionally, this evolution is regular, with feature values for Spam 
approaching those for non-Spam in a nearly-monotonic fash-
ion. Thus this empirical analysis indicates that coevolving 
Spammer-Spam filter dynamics possesses some degree of pre-
dictability, and that the features employed in Spam analysis 
may have predictive power; this result is in general agreement 
with the conclusions of the theoretical predictability analysis 
reported in [22]. Moreover, because many of the characteristics 
of Spam-Spam defense coevolution are shared by other adver-
sarial systems, this result suggests these other systems may 
have exploitable levels of predictability as well.  



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

B. Predictive Defense Algorithm  

The proposed approach to designing a predictive defense sys-
tem which works well against both current and future attacks is 
to combine ML with a simple game-based model for adversary 
behavior. In order to apply game-theoretic methods, it is neces-
sary to overcome the complexity and model-realism challenges 
mentioned above. We address problem complexity by model-
ing adversary actions directly in an aggressively-reduced ML 
feature space, so that the (effective) space of possible adversary 
actions which must be considered is dramatically decreased. 
The difficulty of deriving realistic representations for attacker 
behavior is overcome by recognizing that the actions of attack-
ers can be modeled as attempts to transform data (i.e., feature 
vectors x) in such a way that malicious and innocent activities 
are indistinguishable. (This is in contrast to trying to model the 
attack instances “from scratch”). It is possible to model attacker 
actions as transformations of data because, within an ML prob-
lem formulation, historical attack data are available in the form 
of training instances.  

We model adversarial coevolution as a sequential game, in 
which the attacker and defender iteratively optimize the follow-
ing objective function:  
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In (1), the loss function represents the misclassification rate for 
the defense system, where {yi, xi}

n
i=1 denotes pairs of currently-

observed activity instances xi and their labels yi and w param-
eterizes the defense (recall the defense attempts to distinguish 
malicious and innocent activities using the classifier orient  
sign(wTx)). The attacker attempts to circumvent the defense by 
transforming the data through vector a|F|, and the defender’s 
goal is to optimally counter this attack through specification of 
the appropriate classifier vector w|F|. The terms ||a||3 and 
||w||3 define “regularizations” imposed on attacker and de-
fender actions, respectively, as discussed below.  

Observe that (1) models the attacker as acting to increase 
the misclassification rate with vector a, subject to the need to 
limit the magnitude of this vector (large a is penalized via the 
term ||a||3). This model thus captures in a simple way the fact 
that the actions of the attacker are in reality always constrained 
by the goals of the attack. For instance, in the case of Spam, the 
Spammer tries to manipulate message x in such a way that it 
“looks” enough like legitimate email to evade the Spam filter. 
However, the transformed message xa must still communicate 
the desired information to the recipient or the attacker’s goal 
will not be realized, and so the transformation vector a cannot 
be chosen arbitrarily.  

The defender attempts to reduce the misclassification rate 
with an optimal choice for vector w, and avoids “over-fitting” 
through regularization with the ||w||3 term [18]. Notice that the 
formulation (1) permits the attacker’s goal to be modeled as 
counter to, but not exactly the opposite of, the defender’s goal, 
and this is consistent with many real-world settings. Returning 
to the Spam example, the Spammer’s objective of delivering 
messages which induce profitable user responses is not the 
inverse of an email service provider’s goal of achieving high 
Spam recognition with a very low false-positive rate.  

The preceding development can be summarized by stating 
the following predictive defense (PD) algorithm:  

Algorithm PD  

1. Collect historical data {yi, xi}
n
i=1 which reflects past be-

havior of the attacker and past legitimate behavior.  

2. Optimize objective function (1) to obtain the predicted 
actions a* of the attacker and the optimal defense w* to 
counter this attack.  

3. Estimate the status of any new activity x as either mali-
cious (1) or innocent (1) via orient  sign(xTw*).  

Observe that Step 2 of this algorithm can be interpreted as first 
predicting the attacker strategy through computation of attack 
vector a*, and then learning an appropriate countermeasure w* 
by applying ML to the “transformed” data {yi, xia*}n

i=1.  

C. Algorithm Evaluation  

This case study examines the performance of Algorithm PD for 
the Spam filtering problem. We use the Spam/non-Spam email 
dataset introduced above, consisting of ~128,000 messages that 
were sent during the period 1999-2006. The study compares 
the effectiveness of Algorithm PD, implemented as a Spam 
filter, with that of a well-tuned naïve Bayes (NB) Spam filter 
[15]. Because NB filters are widely used and work very well in 
Spam applications, this filter is referred to as the gold-standard 
algorithm. We extract from our dataset the 1000 oldest legiti-
mate emails and 1000 oldest Spam messages for use in training 
both Algorithm PD and the gold-standard algorithm. The email 
messages sent during the four year period immediately follow-
ing the date of the last training email are used as test data. More 
specifically, these emails are binned by quarter and then ran-
domly sub-sampled to create balanced datasets of Spam and 
legitimate emails for each of the 16 quarters in the test period.  

Recall that Algorithm PD employs aggressive feature space 
dimension reduction to manage the complexity of the game-

Figure 1. Spam/non-Spam evolution in feature space. The 
plot depicts evolution of feature F1 for Spam (red) and 
non-Spam (blue) over time (horizontal axis).  



based modeling process. This dimension reduction is accom-
plished here through SVD analysis, which reduces the dimen-
sion |F| of feature vectors from ~250K to 20) [18]. (The or-
thogonal basis used for this reduction is derived by performing 
SVD analysis using the 1000 non-Spam and 1000 Spam train-
ing emails.) We have found that good classification accuracy 
can be obtained with a wide range of (reduced) feature space 
dimensions. For example, we achieve a filtering accuracy of 
~97% with the training data when using an NB classifier im-
plemented with feature dimension ranging from |F|100,000 to 
|F|5.  

The gold-standard strategy is applied as described in [15]. 
Algorithm PD is implemented with parameter values   0.001 
and   0.1, and with a sum-of-squares loss function. To evalu-
ate the utility of these defenses against evolving adversaries, 
we train Algorithm PD and the gold-standard algorithm once, 
using the (oldest) 1000 non-Spam/1000 Spam dataset, and then 
apply the filters without retraining to the four years of emails 
that follow these 2000 messages.  

Sample results from this study are depicted in Figure 2.  
Each data point in the plots represents the average accuracy 
over ten trials (two-fold cross-validation). It can be seen that 
the Spam filter based upon Algorithm PD significantly outper-
forms the gold-standard method: the predictive defense experi-
ences almost no degradation in accuracy over the four years of 
the study, while the gold-standard method suffers a substantial 
drop in accuracy during this period. These results suggest that 
combining ML with simple game-based models offers an effec-
tive means of defending against adaptive adversaries .  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

D. Randomized Feature Learning  

An important consideration when applying ML techniques in 
adversarial settings is the extent to which adversaries can re-
verse-engineer the learning algorithm and use this knowledge 

to circumvent the classifier [3]. One way to increase the diffi-
culty of the adversary’s reverse-engineering task is to employ 
“randomized feature” learning [23]. Here we explore a very 
simple three-step implementation of this idea: 1.) divide the set 
of available features into randomly-selected, possibly overlap-
ping subsets; 2.) train one classifier for each subset of features; 
and 3.) alternate between classifiers in a random fashion during 
operation. The fact that good classifier performance is often 
obtainable with only a few features (see the Spam example 
above) suggests the feasibility of employing multiple small 
subsets of randomly-selected features in a suite of classifiers.  

To test the effectiveness of this strategy, we use a variant of 
the optimization process specified in (1). More specifically, we 
first use training data {yi, xi}

n
i=1 to computed the classifier vec-

tor w in two ways: 1.) using the full set of (reduced-dimension) 
features F, 2.) using two subsets of features randomly selected 
from set F; the resulting classifier vectors are denoted wF and 
{wF1, wF2}. (1) is then employed to compute the optimal attack 
against classifier vector wF, denoted aF, and to compute the 
optimal attack against the defense consisting of randomly alter-
nating classifiers wF1 and wF2, denoted aF12.  

Applying this evaluation process to the 2000 email training 
dataset described in Section IIC suggests that randomized fea-
ture leaning may be an effective way to reduce the efficacy of 
adversary reverse-engineering methods. We define F to be the 
set of 20 features with largest singular values (in the SVD re-
duction process), and build sets F1 and F2 by randomly sam-
pling F (with replacement) until each subset contains 10 fea-
tures. The classification accuracy of wF against nominal data 
(i.e., with a0) is superior to that provided by a classifier which 
randomly alternates between classifiers wF1 and wF2, but the 
difference is modest – the respective accuracies are 98.4% and 
96.2% (two-fold cross-validation). Crucially, however, the ran-
domized feature classifier is substantially more robust against 
attack data (i.e., data corresponding to aaF or aaF12). Indeed, 
the accuracy of classifier wF is only 66.1% against attack data, 
while the accuracy of filter {wF1,wF2} is 86.8%, in the attack 
setting (two-fold cross-validation, see Figure 3).  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2. Results for the predictive defense case study. The 
plot shows how Spam filter accuracy (vertical axis) varies 
with time (horizontal axis) for the gold-standard NB filter 
(red) and Algorithm PD filter (blue).  

Figure 3. Results for randomized feature learning case 
study. Bar chart shows Spam/non-Spam filter accuracy 
for classifiers wF (left bars) and {wF1, wF2} (right bars) 
for nominal data (blue) and “attack” data (red).  
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III. PREDICTIVE DEFENSE VIA EXTRAPOLATIVE LEARNING  

A. Problem Formulation  

The previous section derives a predictive defense system in the 
“feature space” of observable variables that characterize adver-
sary activity. In this section we adopt a complementary per-
spective, proposing a simple technique for developing proac-
tive defenses in “defense space”, that is, in the space of defense 
system parameterizations. The specific problem of interest may 
be stated as follows: given a (possibly limited) history of de-
fense system configurations, design a new defense which per-
forms well against both current and future attacks.  

As noted above, it is useful to examine the predictability of 
a phenomenon of interest before attempting to predict its evolu-
tion [20]. Here we conduct an empirical investigation of the 
predictability of defense system dynamics through a case study 
which employs the same Spam/non-Spam email dataset intro-
duced in Section II. The present study focuses on those mes-
sages sent during the three year period 2001-2004 (other peri-
ods exhibit very similar behavior). We assess defense system 
predictability in terms of the sensibility and regularity of the 
observed dynamics. More specifically, and in the context of 
Spam defense, it is sensible for a Spam filter to adapt to com-
pensate for the way Spammers modify their messages over 
time, and in a regular adaptation the values of defense system 
parameters might change approximately monotonically.  

To examine the dynamics of Spam filter configurations as-
sociated with our dataset, we first binned the messages by quar-
ter and performed aggressive feature-space dimension reduc-
tion via SVD analysis, retaining the five features with largest 
singular values. Next, separate NB filters were trained for each 
quarter, and the filter weights {w1, w2, w3, w4, w5} corre-
sponding to features F1-F5 were recorded. Figure 4 depicts the 
values of the NB filter weights for quarters 1, 5, 9, and 13 (fil-
ter weights for the other quarters are consistent with those 
shown in the plot and are suppressed for clarity).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inspecting the evolution of filter weights depicted in Figure 
4 reveals that defense adaptation is sensible. For example, by 
comparing Figures 1 and 4 it is seen that, as feature F1 evolves 
to become less predictive of Spam (Figure 1), the Spam filter 
places less emphasis on this feature (Figure 4); similar behavior 
is observed for the other weights. Additionally, the dynamics of 
the feature weights is regular, with most of the weights exhibit-
ing monotonic adaptation. Thus the empirical analysis indicates 
that Spam filter dynamics possesses some degree of predict-
ability, and that filter parameters may have predictive power. 
These results suggest the possibility that defenses in other do-
mains may have exploitable levels of predictability as well.  

B. Extrapolative Defense Algorithm  

The proposed approach to designing a predictive classifier that 
works well against both current and future attacks is to simply 
extrapolate the sequence of observed defense systems forward 
in time. Note that this strategy is motivated by the results of the 
empirical predictability analysis summarized above. Sequences 
of defense system parameterizations can often be obtained di-
rectly, for example from the system “owners”. Alternatively, if 
historical attack data are available, these data can be used to 
learn associated defense sequences (as illustrated above).  

There are many ways to extrapolate a given sequence of de-
fense system parameterizations {w1, w2, …, wp} into the future, 
and thereby generate predictions for useful future defenses. We 
adopt the following linear strategy:  

wpT  p
i1 i wi                                (2) 

where the wi and i are defense parameterizations and extrapo-
lation coefficients, respectively, and T is the time horizon for 
which a prediction is desired. The coefficients i are ordinarily 
specified so that |i|  |j| if i  j, so more recent observations 
are emphasized. Appropriate values for the i can be estimated 
in various ways, including statistical inference from historical 
data [18] or consultation with domain experts [15].  

The preceding discussion can be summarize by sketching 
an algorithm for predicting a classifier vector wpT which may 
be expected to be useful at future time tpT:  

Algorithm ED (Extrapolative Defense)  

1. Collect a sequence of defense system parameterizations 
{w1, w2, …, wp} (e.g., from historical defense data or by 
learning appropriate defenses from historical attack data).  

2. Estimate the coefficients i in (2) (e.g., using ML).  

3. Compute classifier vector wpT from (2), and estimate the 
status of any new activity as either malicious (1) or inno-
cent (1) via orient  sign(xTwpT).  

C. Algorithm Evaluation   

This case study examines the performance of Algorithm ED for 
the Spam filtering problem. We use the Spam/non-Spam email 
dataset described above, consisting of all emails sent during the 
54 month period from early 2001 to mid-2005. The study com-
pares the effectiveness of Algorithm ED, implemented as a 
Spam filter, with that of two NB Spam filters trained in differ-
ent ways. As in the previous case studies, we first binned the 

Figure 4. Spam filter evolution in defense space. The plot 
depicts values of the Spam filter weights corresponding to 
features F1-F5 for the first quarters of 2001 (red), 2002 
(green), 2003 (blue), and 2004 (magenta).  



emails by quarter, and then randomly sampled each quarter to 
create balanced datasets for all 18 quarters in the study period.  

To provide a demanding test, we extracted from our dataset 
the emails sent during quarters Q1, Q5, and Q9 for use in train-
ing Algorithm ED. This procedure is intended to reflect the 
common situation in which opportunities for observation may 
arise only sporadically. The messages sent during the 18 month 
period from quarters Q13 to Q18 serve as test data. (The quar-
ters closest to the training period, Q10 through Q12, are not 
included in the test set to increase the difficulty of the task.)  

Algorithm ED is implemented by first training NB filters on 
data from quarters Q1, Q5, and Q9, yielding defense parame-
terizations {w1, w5, w9}, and then using (2) to extrapolate these 
defenses. More specifically, we compute predicted defense w* 
using (2) with 1  0,  5  1, and 9  2 (a simple Euler-like 
extrapolation). The first NB filter used for comparison employs 
w9, that is, the filter derived from the most recent training data. 
The second NB filter examined in this case study is permitted 
to use “future” data during training: when attempting to distin-
guish Spam and non-Spam emails in quarter Qm, for m{13, 
14, …, 18}, this filter is trained on Qm data. Because the latter 
NB filter has access to future data, which is unavailable to the 
other defense systems, the performance of this filter is expected 
to be an upper bound for that of a predictive filter, and we refer 
to this NB filter as the gold-standard. All three filters – Algo-
rithm ED, nominal NB, and gold-standard – are applied using 
an aggressively-reduced feature space of dimension |F|5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample results from this study are shown in Figure 5.  Each 
data point in the plots represents the average accuracy over ten 
trials (two-fold cross-validation). It is seen that the filter based 
upon Algorithm ED significantly outperforms the nominal NB 
method. Moreover, the accuracy of Algorithm ED is compara-
ble to that achieved by the gold-standard NB method, despite 
the fact that the latter filter is trained on “future” data not avail-

able to Algorithm ED. These results suggest that simple de-
fense system extrapolation offers an effective means of defend-
ing against evolving adversary behavior.  
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Abstract—There is significant interest to develop proactive ap-
proaches to cyber defense, in which future attack strategies are 
anticipated and these insights are incorporated into defense de-
signs. This paper considers the problem of protecting computer 
networks against intrusions and other attacks, and leverages the 
coevolutionary relationship between attackers and defenders to 
derive two new methods for proactive network defense. The first 
method is a bipartite graph-based machine learning algorithm 
which enables information concerning previous attacks to be 
“transferred” for application against novel attacks, thereby sub-
stantially increasing the rate with which defense systems can suc-
cessfully respond to new attacks. The second approach involves 
exploiting basic threat information (e.g., from cyber security ana-
lysts) to generate “synthetic” attack data for use in training de-
fense systems, resulting in networks defenses that are effective 
against both current and (near) future attacks. The utility of the 
proposed methods is demonstrated by showing that they outper-
form standard techniques for the task of detecting malicious net-
work activity in two publicly-available cyber datasets.  

Keywords—-cyber security, proactive defense, predictive analysis, 
machine learning, security informatics.  

I.  INTRODUCTION 

Rapidly advancing technologies and evolving operational prac-
tices and requirements increasingly drive both private and pub-
lic sector enterprises toward highly interconnected and techno-
logically convergent information networks. Proprietary infor-
mation processing solutions and stove-piped databases are giv-
ing way to unified, integrated systems, thereby dramatically 
increasing the potential impact of even a single well-planned 
network intrusion, data theft, or denial-of-service attack. It is 
therefore essential that commercial and government organiza-
tions develop network defenses which are able to respond rap-
idly to, or even foresee, new attack strategies and tactics.  

Recognizing these trends and challenges, some cyber secu-
rity researchers and practitioners are focusing their efforts on 
developing proactive methods of cyber defense, in which fu-
ture attack strategies are anticipated and these insights are in-
corporated into defense designs [e.g., 1-5]. However, despite 
this attention, much remains to be done to place the objective 
of proactive defense on a rigorous and quantitative foundation. 
Fundamental issues associated with the dynamics and predict-
ability of the coevolutionary “arms race” between attackers and 
defenders have yet to be resolved. For instance, although recent 
work has demonstrated that previous attacker actions and de-
fender responses provide predictive information about future 

attacker behavior [3-5], not much is known about which meas-
urables have predictive power or how to exploit these to form 
useful predictions. Moreover, even if these predictability and 
prediction issues were resolved, it is still an open question how 
to incorporate such predictive analytics into the design of prac-
tically-useful cyber defense systems.  

This paper considers the problem of protecting enterprise-
scale computer networks against intrusions and other attacks, 
and explicitly leverages the coevolutionary relationship be-
tween attackers and defenders to develop two new methods for 
proactive network defense. Each method formulates the task as 
one of behavior classification, in which innocent and malicious 
network activities are to be distinguished, and each assumes 
that only very limited prior information is available regarding 
exemplar attacks or attack attributes. The first method models 
the data as a bipartite graph of instances of network activities 
and the features or attributes that characterize these instances. 
The bipartite graph data model is used to derive a machine 
learning algorithm which accurately classifies a given instance 
as either innocent or malicious based upon its behavioral fea-
tures. The algorithm enables information concerning previous 
attacks to be “transferred” for use against novel attacks; cru-
cially, it is assumed that previous attacks are drawn from a dis-
tribution of attack instances which is related but not identical to 
that associated with the new malicious behaviors. This transfer 
learning algorithm provides a simple, effective way to extrapo-
late attacker behavior into the future, and thus significantly 
increases the rate with which defense systems can successfully 
respond to new attacks.  

The second approach to proactive network defense pro-
posed in this paper represents attacker-defender coevolution as 
a hybrid dynamical system (HDS) [6,7], with the HDS discrete 
system modeling the “modes” of attack (e.g., a particular class 
of DoS or data exfiltration procedures) and the HDS continu-
ous system generating particular attack instances corresponding 
to the attack mode presently “active”. Our algorithm takes as 
input the mode of attack, obtained for example from the in-
sights of cyber analysts, and generates synthetic attack data for 
this mode of malicious activity; these data are then combined 
with actually observed attacks to train a learning-based classi-
fier to be effective against both current and (near) future at-
tacks. The utility of the proposed methods is demonstrated by 
showing that they outperform standard techniques for the task 
of distinguishing innocent and malicious network behaviors in 
analyses of two publicly-available cyber datasets.  



II. PRELIMINARIES  

We approach the task of protecting computer networks from 
attack as a classification problem, in which the objective is to 
distinguish innocent and malicious network activity. Each in-
stance of network activity is represented as a feature vector 
x|F|, where entry xi of x is the value of feature i for instance 
x and F is the set of instance features or attributes of interest (x 
may be normalized in various ways [7]). Instances can belong 
to one of two classes: positive / innocent and negative / mali-
cious; generalizing to more than two classes is straightforward. 
We wish to learn a vector c|F| such that the classifier orient 
 sign(cTx) accurately estimates the class label of behavior x, 
returning 1 (1) for innocent (malicious) activity.  

Knowledge-based classifiers leverage prior domain infor-
mation to construct the vector c. One way to obtain such a clas-
sifier is to assemble a “lexicon” of positive / innocent features 
FF and malicious / negative features FF, and to set ci 1 
if feature i belongs to F, ci 1 if i is in F, and ci0 otherwise; 
this classifier simply sums the positive and negative feature 
values in the instance and assigns instance class accordingly. 
Unfortunately this sort of scheme is unable to improve its per-
formance or adapt to new domains, and consequently is usually 
not very useful in cyber security applications.  

Alternatively, learning-based methods attempt to generate 
the classifier vector c from examples of positive and negative 
network activity. To obtain a learning-based classifier, one can 
begin by assembling a set of nl labeled instances {(xi, di)}, 
where di{1, 1} is the class label for instance i. The vector c 
is then learned through training with the set {(xi, di)}, for ex-
ample by solving the following set of equations for c: 

                           [XTX  I|F|] c  XT d,                            (1) 

where matrix Xnl|F| has instance feature vectors for rows, 
dnl is the vector of instance labels, I|F| denotes the |F||F| 
identity matrix, and 0 is a constant; this corresponds to regu-
larized least squares (RLS) learning [8]. Many other learning 
strategies can be used to compute c [8]. Learning-based classi-
fiers have the potential to improve their performance and adapt 
to new situations, but realizing these capabilities typically re-
quires that large training sets of labeled attacks be obtained. 
This latter characteristic represents a significant drawback for 
cyber security applications, where it is desirable to be able to 
recognize new attacks given only a few (or no) examples.  

In what follows we present two new learning-based ap-
proaches to cyber defense which are able to perform well with 
only very modest levels of prior knowledge regarding the at-
tack classes of interest. The basic idea is to leverage “auxiliary” 
information which is readily available in cyber security appli-
cations. More specifically, the first proposed method is a trans-
fer learning algorithm [e.g., 9] which permits the knowledge 
present in data on previous attacks to be transferred for imple-
mentation against new attacks. The second approach uses prior 
knowledge concerning attack “modes” to generate synthetic 
attack data for use in training defense systems, resulting in 
networks defenses which are effective against both current and 
(near) future attacks.  

III. METHOD ONE: TRANSFER LEARNING  

In this section we first derive a bipartite graph-based transfer 
learning algorithm for distinguishing innocent and malicious 
network behaviors, and then demonstrate the algorithm’s ef-
fectiveness through a case study using publicly-available net-
work intrusion data obtained from the KDD Cup archive [10]. 
The basic hypothesis is simple and natural: because attacker / 
defender behavior coevolves, previous activity should provide 
some indication of future behavior, and transfer learning is one 
way to quantify and operationalizes this intuition.  

A. Proposed Algorithm  

The development of the proposed algorithm begins by mod-
eling the problem data as a bipartite graph Gb, in which in-
stances of network activity are connected to their features (see 
Figure 1). It is easy to see that the adjacency matrix A for graph 
Gb is given by  











0X

X0
A T

                                 (2) 

where matrix Xn|F| is constructed by stacking the n instance 
feature vectors as rows, and each ‘0’ is a matrix of zeros. In the 
proposed algorithm, integration of labeled and “auxiliary” data 
is accomplished by exploiting the relationships between in-
stances and features encoded in the bipartite graph model. The 
basic idea is to assume that, in Gb, positive / negative instances 
will tend to be connected to positive / negative features. Note 
that, as shown below, the learning algorithm can incorporate a 
lexicon of labeled features (if available). It is assumed that this 
lexicon is used to build vector w|F|, where the entries of w 
are set to 1 (innocent), 1 (malicious), or 0 (unknown) ac-
cording to the polarity of the corresponding features.  

Many cyber security applications are characterized by the 
presence of limited labeled data for the attack class of interest 
but ample labeled information for a related class of malicious 
activity. For example, an analyst may be interested in detecting 
a new class of attacks, and may have in hand a large set of la-
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Figure 1. Cartoon of bipartite graph model Gb, in which the 
instances of network activity (red vertices) are connected to 
features (blue vertices) they contain, and link weights (black 
edges) reflect the magnitudes taken by the features in the asso-
ciated instances.   



beled examples of normal network behavior as well as attacks 
which have been experienced in the recent past. In this setting 
it is natural to adopt a transfer learning approach, in which 
knowledge concerning previously observed instances of inno-
cent / malicious behavior, the so-called source data, is trans-
ferred to permit classification of new target data. In what fol-
lows we present a new bipartite graph-based approach to trans-
fer learning that is well-suited to cyber defense applications.  

Assume that the initial problem data consists of a collection 
of n = nT  nS network events, where nT is the (small) number 
of labeled instances available for the target domain, that is, 
examples of network activity of current interest, and nS  nT is 
the number of labeled instances from some related source do-
main, say reflecting recent activity; suppose also that a modest 
lexicon Fl of labeled features is known (this set can be empty). 
Let this label data be used to encode vectors dTnT, dSnS, 
and w|F|, respectively. Denote by dT,estnT, dS,estnS, and 
c|F| the vectors of estimated class labels for the target and 
source instances and the features, and define the augmented 
classifier caug  [dS,est

T  dT,est
T  cT]T  n|F|. Note that the quan-

tity caug is introduced for notational convenience in the subse-
quent development and is not directly employed for classifica-
tion.  

We derive an algorithm for learning caug, and therefore c, by 
solving an optimization problem involving the labeled source 
and target training data, and then use c to estimate the class 
label of any new instance of network activity via the simple 
linear classifier orient  sign(cTx). This classifier is referred to 
as transfer learning-based because c is learned, in part, by 
transferring knowledge about the way innocent and malicious 
network behavior is manifested in a domain which is related to 
(but need not be identical to) the domain of interest.  

We wish to learn an augmented classifier caug with the fol-
lowing four properties: 1.) if a source instance is labeled, then 
the corresponding entry of dS,est should be close to this 1 label; 
2.) if a target instance is labeled, then the corresponding entry 
of dT,est should be close to this 1 label, and the information 
encoded in dT should be emphasized relative to that in the 
source labels dS,; 3.) if a feature is in the lexicon Fl, then the 
corresponding entry of c should be close to this 1 label; and 
4.) if there is an edge Xij of Gb which connects an instance i and 
a feature j, and Xij possesses significant weight, then the esti-
mated class labels for i and j should be similar.  

The four objectives listed above may be realized by solving 
the following minimization problem: 
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where L  D  A is the graph Laplacian matrix for Gb, with D 
the diagonal degree matrix for A (i.e., Dii  j Aij), and 1, 2, 
3, kS, and kT are nonnegative constants. Minimizing (3) en-
forces the four properties we seek for caug. More specifically, 
the second, third, and fourth terms penalize “errors” in the first 
three properties, and choosing 2  1 and kT  kS favors target 

label data over source labels. To see that the first term enforces 
the fourth property, note that this expression is a sum of com-
ponents of the form Xij (dT,est,i  cj)

2 and Xij (dS,est,i  cj)
2. The 

constants 1, 2, 3 can be used to balance the relative impor-
tance of the four properties.  

The caug which minimizes the objective function (3) can be 
obtained by solving the following set of linear equations:  
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where the Lij are matrix blocks of L of appropriate dimension. 
The system (4) is sparse because the data matrix X is sparse, 
and therefore large-scale problems can be solved efficiently. 
Note that in situations where the set of available labeled in-
stances and features is very limited, classifier performance can 
be improved by replacing L in (4) with the normalized Lapla-
cian LnD1/2LD1/2, or with a power of this matrix Ln

k (for k a 
positive integer).  

We summarize the above discussion by sketching an algo-
rithm for constructing the proposed transfer learning classifier:  

Algorithm TL (Transfer Learning):  

1. Assemble the set of equations (4), possibly by replacing 
the graph Laplacian L with Ln

k.  

2. Solve equations (4) for caug  [dS,est
T   dT,est

T    cT]T (for in-
stance using the Conjugate Gradient method).  

3. Estimate the class label (innocent or malicious) of any new 
activity x of interest as: orient  sign(cTx).  

B. Algorithm Evaluation   

We now examine the performance of Algorithm TL for the 
problem of distinguishing innocent and malicious network ac-
tivity in the KDD Cup 99 dataset, a publicly-available collec-
tion of network data consisting of both normal activities and 
attacks of various kinds [10]. For this study we randomly se-
lected 1000 Normal connections (N), 1000 denial-of-service 
attacks (DoS), and 1000 unauthorized remote-access events 
(R2L) to serve as our test data. Additionally, small sets of each 
of these classes of activity were chosen at random from [10] to 
be used for training Algorithm TL, and a lexicon of four fea-
tures, two positive and two negative, was constructed manually 
and employed to form the lexicon vector w.  

We defined two tasks with which to explore the utility of 
Algorithm TL. In the first, the goal is to distinguish N and DoS 
instances, and it is assumed that the following data is available 
to train Algorithm TL: 1.) a set of dS/2  labeled N and dS/2 la-
beled R2L instances (source data), 2.) a set of dT/2 labeled N 
and dT/2 labeled DoS instances (target data), and 3.) the four 
lexicon features. Thus the source domain consists of N and 
R2L activities and the target domain is composed of N and 
DoS instances. In the second task the situation is reversed – the 
objective is to distinguish N and R2L activities, the source do-
main is made up of dS (total) labeled N and DoS instances, and 



the target domain consists of dT (total) N and R2L instances. In 
all tests the number of labeled source instances is dS  50, 
while the number of target instances dT is varied to explore the 
way classifier performance depends on this key parameter. Of 
particular interest is determining if it is possible to obtain good 
performance with only limited target data, as this outcome 
would suggest both that useful information concerning a given 
attack class is present in other attacks and that Algorithm TL is 
able to extract this information.  

This study compared the classification accuracy of Algo-
rithm TL with that of a well-tuned version of the RLS algo-
rithm (1) and a standard naïve Bayes (NB) algorithm [11]; as 
the performance of the RLS and NB methods were quite simi-
lar, we report only the RLS results. Algorithm TL is imple-
mented with the following parameter values: 1  1.0, 2  3.0, 
3  5.0, kS  0.5, kT  1.0, and k  5. We examined training 
sets which incorporated the following numbers of target in-
stances: nT  2, 5, 10, 20, 30, 40, 50, 60. As in previous studies 
(see, for example, [10]), only the 34 “continuous features” were 
used for learning the classifiers.  

Sample results from this study are depicted in Figure 2. 
Each data point in the plots represents the average of 100 trials. 
It can be seen that Algorithm TL outperforms the RLS classi-
fier (and also the standard NB algorithm), and that the differ-
ence in accuracy of the methods increases substantially as the 
volume of training data from the target domain becomes small. 
The performance of Algorithm TL for this task is also superior 
to that reported for other learning methods tested on these data 
[e.g., 12]. The ability of Algorithm TL to accurately identify a 
novel attack after seeing only a very few examples of it, which 
is a direct consequence of its ability to transfer useful knowl-
edge from related data, is expected to be of considerable value 
for a range of cyber security applications.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, it is interesting to observe that the bipartite graph 
formulation of Algorithm TL permits useful information to be 
extracted from network data even if no labeled instances are 
available. More specifically, we repeated the above study for 
the case in which dT  dS  0, that is, when no labeled instances 
are available in either the target or source domains. The knowl-
edge reflected in the lexicon vector w is still made available to 
Algorithm TL. As shown in Figure 3, employing a “lexicon 
only” classifier, as described in Section II, yields classification 
accuracy which is not much better than the 50 baseline 
achievable with random guessing. However, using this lexicon 
information together with Algorithm TL enables useful classi-
fication accuracy to be obtained (see Figure 3). This somewhat 
surprising result can be explained as follows: the “clustering” 
property of Algorithm TL encoded in objective function (3) 
allows the domain knowledge in the lexicon to leverage latent 
information present in the unlabeled target and source in-
stances, thereby boosting classifier accuracy.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

IV. METHOD TWO: SYNTHETIC ATTACK GENERATION 

In this section we derive our second algorithm for distinguish-
ing normal and malicious network activity and demonstrate its 
effectiveness through a case study using the publicly-available 
Ling-Spam dataset [13]. Again the intuition is that attacker / 
defender coevolution should make previous activity somewhat 
indicative of future behavior, and in the present case we ex-
ploit this notion by generating “predicted” attack data and us-
ing this synthetic data for classifier training.  

A. Proposed Algorithm  

The development of the second approach to proactive de-
fense begins by modeling attacker / defender interaction as a 
stochastic hybrid dynamical system (S-HDS). Here we present 
a brief, intuitive overview of the basic idea; a comprehensive 
description of the modeling procedure is detailed in [7]. An S-
HDS (see Figure 4) is a feedback interconnection of a discrete-
state stochastic process, such as a Markov chain, with a family 

 
 
Figure 2. Performance of Algorithm TL with limited labeled 
data. The plot shows how classifier accuracy (vertical axis) 
varies with number of available labeled target instances (hori-
zontal axis) for four tasks: distinguish N and DoS using RLS 
classifier (blue), distinguish N and DoS using Algorithm TL 
(red), distinguish N and R2L using RLS classifier (black), and 
distinguish N and R2L using Algorithm TL (magenta), 

 
 
Figure 3. Performance of Algorithm TL with no labeled in-
stance data. The bar graphs depicts classifier accuracy for four 
tasks: distinguish N and DoS using a lexicon-only (LO) classi-
fier (left, blue bar), distinguish N and DoS using lexicon-
learning (LL) via Algorithm TL (left, red bar), distinguish N 
and R2L using an LO classifier (right, blue bar), and distin-
guish N and R2L using LL via Algorithm TL (right, red bar).  



of continuous-state stochastic dynamical systems [6,14]. Com-
bining discrete and continuous dynamics within a unified, 
computationally tractable framework offers an expressive, 
scalable modeling environment that is amenable to formal 
mathematical analysis. In particular, S-HDS models can be 
used to efficiently represent dynamical phenomena which 
evolve on a broad range of time scales, a property of consider-
able value in the present application [14].  

 

 

 

 

 

 

 

 

 

 

 

As a simple illustration of the way the S-HDS formalism 
enables effective, efficient mathematical representation of cy-
ber phenomena, consider the task of modeling the coevolution 
of Spam attack methods and Spam filters. At an abstract but 
still useful level, one can think of Spam-Spam filter dynamics 
as evolving on two timescales:  

 the slow timescale, which captures the evolution of attack 
strategies; as an example, consider the way early Spam fil-
ters learned to detect Spam by identifying words that were 
consistently associated with Spam, and how Spammers re-
sponded by systematically modifying the wording of their 
messages, for instance via “add-word” (AW) and “syno-
nym” attacks [15];  

 the fast timescale, which corresponds to the generation of 
particular attack instances for a given “mode” of attack 
(for example, the synthesis of Spam messages according to 
a specific AW attack method).  

We show in [7] that a range of adversarial behavior can be rep-
resented within the S-HDS framework, and derive simple but 
reasonable models for Spam-Spam filter dynamics and for ba-
sic classes of network intrusion attacks.  

In [14] we develop a mathematically-rigorous procedure for 
predictive analysis for general classes of S-HDS. Among other 
capabilities, this analytic methodology enables the predictabil-
ity of a given dynamics to be assessed and the predictive meas-
urables (if any) to be identified. Applying this predictability 
assessment process to the adversarial S-HDS models con-
structed in [7] reveals that, for many such systems, the most 
predictive measurable is the mode of attack, that is, the state 
variable for the discrete system component of the S-HDS (see 
[7] for a detailed description of this analysis). Observe that this 
result is intuitively sensible.  

This analytic finding suggests the following synthetic data 
learning (SDL) approach to proactive defense. First, identify 
the mode(s) of attack of interest. For attacks which are already 
underway, [7] offers an S-HDS discrete-system state estimation 
method that allows the mode to inferred using only modest 
amounts of measured data. Alternatively, and of more interest 
in the present application, it is often possible to identify likely 
future attack modes through analysis of auxiliary information 
sources (e.g., the subject matter knowledge possessed by do-
main experts or “non-cyber” data such as that found in social 
media [16,17]).  

Once a candidate attack mode has been identified, synthetic 
attack data corresponding to the mode can be generated by em-
ploying one of the S-HDS models derived in [7]. The synthetic 
data take the form of a set of K network attack instance vectors, 
denoted AS  {xS1, …, xSK}. The set AS can then be combined 
with (actual) measurements of L normal network activity in-
stances, NM  {xNM1, …, xNML}, and P (recently) observed at-
tacks, AM  {xM1, …, xMP}, yielding the training dataset TR  
NM  AM  AS of real and synthetic data. It is hypothesized 
that training classifiers with the augmented set TR may offer a 
mechanism for deriving defenses which are effective against 
both current and near future malicious activity.  

We summarize the above discussion by sketching a proce-
dure for constructing the new SDL classifier:  

Algorithm SDL:  

1. Identify the mode(s) of attack of interest (e.g., via domain 
experts or auxiliary data).  

2. Generate a set of synthetic attack instances AS correspond-
ing to the attack mode identified in Step 1.  

3. Assemble sets of normal network activity N and measured 
attack activity AM for the network under study.  

4. Train a classifier (e.g., RLS, NB) using the training data 
TR  NM  AM  AS. Estimate the class label (innocent or 
malicious) of any network activity x with the formula: ori-
ent(x)  sign(cTx).  

B. Algorithm Evaluation   

We now examine the performance of Algorithm SDL for 
the problem of distinguishing legitimate and Spam emails in 
the Ling-Spam dataset [13], a corpus of 2412 non-Spam emails 
collected from a linguistics mailing list and 481 Spam emails 
received by the list. After data cleaning and random sub-
sampling of the non-Spam messages we are left with 468 Spam 
and 526 non-Spam messages for training and testing purposes; 
this set of 994 emails will be referred to as the nominal Spam 
corpus. (Note that all email was preprocessed using the ifile 
tool [18].)  

We considered three scenarios in this study:  

1. NB classifier / nominal Spam: for each of ten runs, the 
nominal Spam corpus was randomly divided into equal-
sized training and testing sets and the class label for each 
message in the test set was estimated with a trained naïve 
Bayes (NB) algorithm [11];  

Figure 4. Schematic of basic S-HDS feedback structure. 
The discrete and continuous systems in this framework 
model the selection of attack “mode” and resulting adver-
sary behavior, respectively, which arise from the coevol-
ving attacker-defender dynamics.  
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2. NB classifier / nominal plus attack Spam: for each of ten 
runs, the nominal Spam corpus was randomly divided into 
equal-sized training and testing sets and the test set was 
then augmented with 263 additional non-Spam messages 
(taken from the Ling-Spam dataset) and 234 Spam mes-
sages generated via a standard add-word (AW) attack 
methodology [15]; the class labels for the test messages 
were estimated with the NB algorithm [11] trained on the 
nominal Spam training set;  

3. Algorithm SDL / nominal plus attack Spam: for each of 
ten runs, the training and test corpora were constructed ex-
actly as in Scenario 2 and the class labels for the test mes-
sages were estimated with Algorithm SDL.  

In generating the AW attacks in Scenarios 2. and 3., we assume 
that the attacker knows to construct AW Spam to defeat an NB 
filter but does not have knowledge of the specific filter in-
volved [15]. Analogously, the synthetic AW attacks generated 
in Scenario 3 (using Step 2 of Algorithm SDL) are computed 
with no knowledge of the attacker’s methodology beyond the 
mode of attack (i.e., AW).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample results from this study are displayed in Figure 5. In 
each case the “confusion matrix” [8] reports the (rounded) av-
erage performance over the ten runs. It can be seen that, as ex-
pected, the NB filter does well against the nominal Spam but 
poorly against the AW Spam (in fact, the NB filter does not 
detect a single instance of AW Spam). In contrast, Algorithm 

SDL performs well against both nominal Spam and AW Spam, 
achieving ~96 classification accuracy with a low false posi-
tive rate. It is emphasized that this result is obtained using only 
the (synthetic) estimate of AW Spam generated in Step 2 of 
Algorithm SDL.  
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Figure 5. Performance of Algorithm SDL on Spam dataset.  
Each confusion matrix shows number of non-Spam mes-
sages classified as non-Spam and Spam (left column) and 
number of Spam messages classified as non-Spam and 
Spam (right column). The three matrices, from top to bot-
tom, report the results for: NB against nominal Spam, NB 
against Spam which contains add-word attacks, and Algo-
rithm SDL against Spam which contains add-word attacks.  
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