Experimental Study on Fluidization of Biomass, Inert Particles, and Biomass/Sand Mixtures

PDF Version Also Available for Download.

Description

Fluidization of biomass particles is an important process in the gasification, pyrolysis and combustion in order to extract energy from biomass. Studies on the fluidization of biomass particles (corn cob and walnut shell), inert particles (sand, glass bead, and alumina), which are added to facilitate fluidization of biomass, and biomass/sand mixture were performed. Experiments were carried out in a 14.5 cm internal diameter cold flow fluidization bed to determine minimum fluidization velocities with air as fluidizing medium. On the of basis of experimental data from both present work and those found in the literature, new correlations were developed to predict ... continued below

Creation Information

Paudel, Basu May 2011.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 2653 times , with 34 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Paudel, Basu

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Fluidization of biomass particles is an important process in the gasification, pyrolysis and combustion in order to extract energy from biomass. Studies on the fluidization of biomass particles (corn cob and walnut shell), inert particles (sand, glass bead, and alumina), which are added to facilitate fluidization of biomass, and biomass/sand mixture were performed. Experiments were carried out in a 14.5 cm internal diameter cold flow fluidization bed to determine minimum fluidization velocities with air as fluidizing medium. On the of basis of experimental data from both present work and those found in the literature, new correlations were developed to predict minimum fluidization velocity for inert particles as well as biomass particles. It was found that the proposed correlations satisfactorily predict minimum fluidization velocities and was in well agreement with experimental data. Furthermore, effect of weight percentage of biomass in the biomass/sand mixtures was studied. The weight fraction of biomass particles in the mixture was chosen in the range of 0 ~ 100 wt. %. The results show that minimum fluidization velocity of the mixtures increases with an increase in biomass content. Using the present experimental data, a new correlation was developed in terms of mass ratio for predicting values of minimum fluidization velocity of these mixtures. However, the validity of the proposed correlation should be further studied by conducting more experiments using the biomass/sand mixtures of different particle size, shape, and density.

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2011

Added to The UNT Digital Library

  • May 17, 2012, 9:47 p.m.

Description Last Updated

  • Oct. 9, 2012, 11:27 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 1
Past 30 days: 34
Total Uses: 2,653

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Paudel, Basu. Experimental Study on Fluidization of Biomass, Inert Particles, and Biomass/Sand Mixtures, thesis, May 2011; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc84265/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .