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1 Project Overview

The target of this SciDAC Science Application was to develop a new capability based on high-order
and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in
planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent
mixing. These fundamental problems have direct application in high-speed engineering flows, such
as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the
natural occurrence of supernovae explosions.

Another component of this project was the development of subgrid-scale (SGS) models for
large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing,
that were to be validated with the DNS databases generated during the program. The numerical
codes developed are designed for massively-parallel computer architectures, ensuring good scaling
performance. Their algorithms were validated by means of a sequence of benchmark problems.

The original multi-stage plan for this five-year project included the following milestones: 1)
refinement of numerical algorithms for application to the shock-turbulence interaction problem
and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-
turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind
the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy
simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on
the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing
(years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this
instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of
planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models
developed in stages 3 and 5.

This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms
that are best suited for the numerical simulation of compressible flows involving turbulence and
shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem,
from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-
action in spherical geometry, in particular, the interaction of a converging shock with isotropic tur-
bulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated
mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain inter-
action problem In section 7 we acknowledge the different interactions between Stanford and other
institutions participating in this SciDAC project, as well as several external collaborations made
possible through it. Section 8 presents a list of publications and presentations that have been
generated during the course of this SciDAC project. Finally, section 9 concludes this report with
the list of personnel at Stanford University funded by this SciDAC project.

2 Collaborative assessment of numerical algorithms

The main computational challenge of predicting compressible turbulence in general, and interac-
tions between shock waves and turbulent flows in particular, arises from the contradictory properties
of numerical methods designed to treat shocks and turbulence. Shock waves are extremely thin
regions of widths on the order of a few mean free paths; in the context of the present work, they are
considered to be sharp discontinuities, i.e., no attempt is made to resolve the physical shock struc-
ture. In order to represent shock waves in an accurate and stable fashion on a computational grid,
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most numerical schemes rely strongly on numerical dissipation, which results in smearing the shock
over a few grid points. Such techniques are termed shock capturing, as opposed to shock tracking or
shock fitting, in which the shock position, shape and velocity are explicitly determined. The major
drawback of using shock-capturing schemes in smooth turbulent regions is that the numerical dis-
sipation invariably overwhelms the physical dissipation, which is precisely what numerical methods
for turbulence simulations seek to avoid.

As illustrated by the broad range of algorithms in the literature, a number of different strate-
gies have been used to overcome the difficulties of simultaneously treating shocks and turbulence.
Certain methods employ purely shock-capturing finite difference approximations, e.g., based on
the weighted essentially non-oscillatory (WENO) schemes of Jiang and Shu (46), possibly with
improved wavenumber properties (35; 58). Other methods use characteristic-based filters in con-
junction with artificial compression and wavelets as flow sensors to control the numerical dissipation
(73; 66). A compact scheme may be employed with adaptive Padé-type filters to stabilize the so-
lution near shocks (39; 71). Another avenue is the hybrid approach, in which a shock detector
restricts the use of shock capturing to regions near shocks in order to contain the dissipation in
smooth regions (27; 60). Yet another approach consists of regularizing the governing equations by
introducing numerical dissipation, e.g., artificial diffusivity (32; 17; 38; 57) or hyper-diffusivity (45),
and of solving the resulting system with high-order accurate methods. An alternative philosophy
is to use shock fitting with an upwind scheme for problems with a single well-defined shock (77).

Analyzing the aforementioned methods theoretically is a challenging task due to their com-
plexity; such methods are typically verified using different test problems and validated against
experiments. However, it is difficult to establish a hierarchy based on the published work or even
determine which method is the most appropriate for a given compressible turbulence problem be-
cause of the lack of comparisons between such schemes. At the present time, comparisons are
restricted to a narrow class of methods and problems, e.g., shock-capturing schemes for shock-
dominated flows (54; 41); artificial diffusivity methods for shocks (32; 38; 47) or purely broadband
problems (33; 17); and monotone integrated LES (42), subgrid-scale modeling for LES (49) and
the evaluation of shock-capturing schemes in LES (40) for compressible turbulence.

The objective of the present study is to provide an evaluation of a suite of numerical methods
that can and have been used to simulate problems in which shocks and turbulence are both present
and interact dynamically. The key aspect of this work is the comprehensive range of methods and
suite of relevant test problems that are considered to best evaluate the strengths and weaknesses
of the current algorithms. Several high-resolution algorithms (WENO, hybrid WENO/central dif-
ference, artificial diffusivity, adaptive characteristic-based filter and shock fitting) are considered.
Problems with purely smooth and broadband features (Taylor-Green vortex) and well-defined dis-
continuities (Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem) are cho-
sen, along with, more importantly, a combination thereof (compressible isotropic turbulence with
eddy shocklets); the latter problem turns out to be surprisingly discriminating. Under-resolved
results are presented to illustrate the effects of numerical dissipation on a fixed (coarse) grid; the
assessment of the numerical methods considered in the present work may differ when considering
the fully resolved case.

2.1 Numerical methods

The compressible Navier-Stokes equations for a calorically perfect gas are solved in this work.
The first key aspect of the present work is the comprehensive nature of the numerical methods
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Code Color Line style
Reference black varying
Stan red dashed
Stan-I magenta dashed (thin)
Hybrid blue solid
WENO cyan solid (thin)
ADPDIS3D green dashed-dotted
Shock Fit black dotted

Table 1: Color and line legend for the plots.

evaluated. Six high-resolution and high-order accurate methods based on different approaches to
computing shock waves and turbulence are considered. Though third-order accuracy in space is
typically considered high-order accurate in the literature, the present schemes are at least fifth- and
up to tenth-order accurate in smooth regions. All problems are solved on uniform Cartesian grids.

Given the number of methods (and thus the number of lines in each plot), a consistent color
and line scheme is used, as listed in Table 1.

The Stan and Stan-I methods are of the artificial diffusivity type, where the equations are
regularized through addition of artifical fluid properties. One of the key findings of the present
collaborative work is that the artificial bulk viscosity proposed by Cook (17) causes excessive
damping of dilatational and thermodynamic fluctuations in compressible turbulence This finding
prompted Mani et al. (57) to define the artificial bulk viscosity in terms of the dilatation (rather
than the strain-rate tensor), to prevent excessive damping of the dilatational motions. The key
improvement stems from the realization that dilatation and the magnitude of the strain-rate tensor
are similar at a shock, but that the former is orders of magnitude smaller in turbulence. In order
to illustrate the recent progress on artificial diffusivity methods, results from two methods using
different models for the artificial bulk diffusivity but with the same underlying numerics are used
in the present study:

1. Stan: the original model of Cook (17).

2. Stan-I : the improved model of Bhagatwala and Lele (29), which is based on the work of Mani
et al. (57).

The Hybrid code (51) is based on the principle that turbulence and shock waves are fundamen-
tally different phenomena and should thus be treated differently. Hence, to distinguish shock waves
from smooth turbulent regions, the Hybrid method relies on a shock sensor based on vorticity and
dilatation. In smooth regions, a sixth-order accurate central differencing scheme is applied in split
(or ‘skew-symmetric’) form for improved nonlinear stability (37). In discontinuous regions, a fifth-
order accurate WENO scheme is used. The hybrid nature of the code creates internal interfaces
between the central and WENO regions, the stability of which was analyzed in (50).

The WENO code consists of a seventh-order conservative finite difference WENO scheme for
the interpolation.

The ADPDIS3D code is based on low dissipation high-order accurate filter methods in finite
difference formulation (73; 66; 75; 76). Such a filter method consists of two steps: a full time step
using a spatially high-order non-dissipative base scheme, followed by a post-processing filter step.
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The post-processing filter step consists of the products of wavelet-based flow sensors and linear and
nonlinear numerical dissipations.

Finally, the Shock Fit code is based on the shock-fitting method of (77), which treats the shock
as a sharp entity and solves the compressible Navier-Stokes equations in conservation form in the
computational domain. The shock velocity and the flow variables behind the shock are obtained
using the Rankine-Hugoniot relations coupled with a characteristic compatibility equation. The
location and geometry of the shock is modified according to the shock velocity and shock-fitted
curvilinear grids are used. In the shock fitting approach, any scheme can be used to solve the
governing equations in the computational domain. In the present calculations, a fifth-order accurate
upwind finite difference scheme (77) is used to discretize the governing equations. Results are shown
only for problems with initially well-defined shocks (Shu-Osher problem and shock-vorticity/entropy
wave interaction), with a fixed set of coefficients.

2.2 Some key results

The second key element in the present work is the comprehensive suite of benchmark problems.
Since the end applications of interest all share the common trait of simultaneously involving broad-
band turbulence and sharp discontinuities (shocks and contact surfaces), the test problems are cho-
sen in an attempt to isolate one or more relevant properties and to eventually combine them. The
problems are ordered in a sequence of increasing complexity (by some measure): first the shock-free
but broadband three-dimensional Taylor-Green vortex; then a series of non-broadband shock prob-
lems (one-dimensional Shu-Osher problem, two dimensional shock-vorticity/entropy wave interac-
tion), culminating in the infinite-strength three-dimensional Noh implosion; and a three-dimensional
compressible isotropic turbulence problem with broadband spectra and eddy shocklets. The last
problem is the only viscous problem. Two sets of results are presented: a converged solution and
a solution on a coarse grid.

2.2.1 Taylor-Green vortex

From a well-resolved initial condition, the inviscid Taylor-Green vortex (69) begins stretching and
producing ever smaller scales. It thus constitutes a non-regularized problem with no lower bound
on the length scale and is solved with no regularization other than that provided by the numerical
method. The goal of this problem is to provide a test of the stability of the methods for severely
under-resolved motions, as well as a measure of the preservation of kinetic energy and the growth
of enstrophy.

Figure 1 shows the temporal evolution of the mean kinetic energy, 〈ρuiui〉/2, and enstrophy,
〈ωiωi〉/2, where ω = ∇× u is the vorticity, normalized by their initial values.

The dilatation-based shock sensor in the Hybrid code never activates the WENO scheme for
this problem, allowing the non-dissipative central scheme to preserve the kinetic energy. The
ADPDIS3D code is essentially non-dissipative, with only a slight decrease toward the end of the
simulation. These two methods also give the most rapid growth in enstrophy. The WENO code is
the most dissipative of all the methods for this problem; it begins adapting its stencils at t ≈ 3,
which drastically increases the numerical dissipation, thus leading to underpredictions in the kinetic
energy and enstrophy. The Stan code lies somewhere in between the Hybrid/ADPDIS3D and
WENO results. Note that the improved Stan-I results are identical to those of Stan for this
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Figure 1: Mean quantities for the Taylor-Green vortex on a 643 grid. The zero subscript denotes
the initial value.

problem, since the solenoidal velocity field is insensitive to the bulk viscosity. On the present grid,
all methods agree with the semi-analytical results for the enstrophy growth.

In order to provide a quantitative comparison of the codes, the mean kinetic energy normalized
by its initial value is tabulated at t = 5; at this time, dissipation effects have become evident. Also,
the mean enstrophy normalized by its initial value is tabulated at t = 3.5; this is the last time
for which semi-analytical results are obtained. These two values are shown in Table 2 and exhibit
a behavior similar to that plotted in Fig. 1. Such metrics provide quantitative means for other
researchers to evaluate their codes against the present algorithms.

Hybrid ADPDIS3D Stan Stan-I WENO (30)
T-G energy t = 5 1.00 0.998 0.976 0.976 0.916 1.00
T-G enstrophy t = 3.5 3.33 3.34 3.23 3.23 3.13 3.46

Table 2: Accuracy metrics for the Taylor-Green vortex, with the semi-analytical result (30).

2.2.2 Noh problem

The Noh problem (59) consists of an infinite Mach number implosion and is relevant to inertial
confinement fusion, in which strong shock waves interact with interfaces separating different fluids
and with the resulting turbulence. The goal of this problem is to test the capability to handle
a strong spherical shock. In particular, this problem provides an assessment of the capability
to predict the post-shock density (i.e., the compression by the strong shock wave), the correct
shock speed, and the spherical shape on a Cartesian grid (i.e., whether grid-imprinting errors are
generated). The initial conditions correspond to a spherically imploding flow with uniform density
and pressure. The pressure is nominally zero and leads to an infinite Mach number for the imploding
flow. To prevent complex eigenvalues (which would make the problem ill-posed), a lower bound
on the pressure is imposed as pmin = ε = 10−6. In response to the initial imploding flow, a strong
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Figure 2: Profiles at t = 0.6 for the Noh problem. The WENO method is not shown for clarity,
but is slightly better than the Hybrid method; the results from the ADPDIS3D code are based
on the divergence form of the convective terms with the addition of a tenth-order accurate linear
dissipation. The reference is the analytical solution of (59).

spherical shock wave traveling outward at constant speed develops. The analytical solution for the
density in three dimensions is (59)

ρ =
{

64 , r < t/3,
(1 + t/r)2 , r ≥ t/3. (1)

Shown in Figure 2 are profiles of the density along and diagonal to the grid. The Hybrid
results are the closest to the analytical solution, with small errors in both the shock location and
the spherical shape. The Stan and Stan-I codes yield larger errors in shock position and post-
shock density, and larger grid imprinting errors near the origin. The original form of the bulk
viscosity (Stan) gives a somewhat smaller error in shock position compared to the “improved”
version (Stan-I ). We note that the results from the artificial diffusivity methods for this problem in
(33) are significantly better than the Stan results (roughly halfway between the Stan and Hybrid
results on equivalent grids). The main difference between Stan results and those of Ref. (33) is that
the former treats the convective terms on a split form; this difference is most likely to blame for the
worse results by the Stan code. When the un-split form of the convective terms and a tenth-order
linear dissipation are used for the base scheme step, a stable solution could be obtained.

In order to provide a quantitative comparison of the codes, the mean density in the spherical
shell r ∈ [0.15, 0.17] at t = 0.6 is listed in Table 3; this quantity provides a measure of the
compression achieved downstream of the shock. The RMS of the density fluctuations in the same
spherical shell is also listed in the table; this quantity provides a measure of the grid imprinting
errors. The spherical shell is chosen such that errors near the center and near the shock do not
affect this value. The purpose of listing these metrics is to provide quantitative means for other
researchers to evaluate their codes against the present algorithms.

2.2.3 Compressible isotropic turbulence

The final test case is that of decaying compressible isotropic turbulence with eddy shocklets (52).
Given a sufficiently high turbulent Mach number Mt, weak shock waves (eddy shocklets) develop
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Hybrid ADPDIS3D Stan Stan-I WENO Exact
Noh mean density 63.2 63.3 55.1 54.9 63.3 64.0
Noh rms density 0.374 0.238 0.630 0.814 0.346 0.000

Table 3: Accuracy metrics for the Noh problem.

spontaneously from the turbulent motions. The goal of this problem is to test the ability of the
methods to handle ‘randomly’ distributed shocklets (in the sense of the shock-locations not being
known a priori), as well as the accuracy for broadband motions in the presence of shocks. The
density and pressure fields are initially constant, with the initial parameters, Mt,0 = 0.6 and
Reλ,0 = 100. Since the initial conditions are not in acoustic equilibrium, a field of background
acoustic waves develops and persists throughout the simulation. Similarly, there are initial entropy
modes. We note that this particular initial condition is chosen since, for the present comparison,
a problem with large acoustic and entropy modes is desirable to highlight the performance of the
methods. In order to generate the reference solution, the Hybrid, ADPDIS3D and Stan codes were
run on a sequence of grids up to 2563. All the present methods converge on the finest grid, and
agreed with each other even on a point-wise basis at the final time t/τ = 4, where τ = λ0/urms,0 is
the eddy turn-over time.

The temporal evolution of the mean-square velocity and vorticity, and the variance of the tem-
perature and dilatation are plotted in Figure 3. The RMS of pressure and density exhibit a behavior
similar to that of temperature and are therefore not shown. The minimally dissipative Hybrid code
agrees well with the reference solution for all quantities. The WENO code underpredicts all quan-
tities, thereby showing how dissipative it is for broadband motions. It particularly underpredicts
the vorticity and dilatation, which is consistent with the fact that the WENO procedure damps the
small-scale motions. The ADPDIS3D code agrees with the reference almost as well as the Hybrid
code except that it is more dissipative. The original and improved artificial diffusivity methods
behave similarly for the kinetic energy and the enstrophy, but the original method (Stan) is highly
dissipative for both dilatational and temperature fluctuations; in fact, it annihilates the dilatational
motions very quickly. It was this finding that spurred (57) and subsequent researchers to improve
the method by making the artificial bulk viscosity sensitive to dilatational motions; the improve-
ment in the dilatation fields of the Stan-I code over those of the Stan code is solely due to this
implementation of the artificial bulk viscosity. Similarly, the predicted temperature fluctuations
are significantly improved.

2.3 Conclusions

The objective of the present work is to evaluate the performance of several numerical methods on
problems in which shock waves and turbulence are present and interact dynamically. Several dif-
ferent numerical methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive
characteristic-based filter and shock fitting) for compressible turbulence are assessed on under-
resolved grids. A wide range of discriminatory problems is considered, including purely broadband
(Taylor-Green vortex), shock-dominated (Shu-Osher problem, shock-vorticity/entropy wave inter-
action, the Noh problem), and a combination of the two (compressible isotropic turbulence). Even
though qualitatively different behavior is observed in some cases, all the schemes perform well for
most of the test problems. The following observations are made:
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Figure 3: Temporal evolution of the variance of different quantities for the isotropic turbulence
problem on 643 grid. The reference is the solution on a 2563 grid spectrally filtered to a 643 grid
(circles).

• The WENO method provides sharp shock-capturing, but overwhelms the physical dissipation
and underpredicts approximately the upper 3/4 of the resolvable wavenumbers for broadband
problems.

• The artificial diffusivity method of Cook (17) performs well on the problems with either shocks
or broadband motions, but vastly underpredicts the dilatational velocity and thermodynamic
(density, pressure, temperature) fluctuations when shocks and turbulence are interspersed; in
fact, even WENO yields better results for the dilatation and thermodynamic fluctuations.
The reason for this behavior is that the artificial bulk viscosity is based on the strain-rate
magnitude, such that its value is both large and rapidly varying in turbulent regions. Hence,
this formulation leads to a large bulk viscosity, which in turn annihilates dilatational motions.
This behavior is improved by re-defining the artificial bulk viscosity to be a function of the
dilatation.
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• The Noh problem illustrates how the use of a split (‘skew-symmetric’) scheme negatively
affects the capturing of a strong shock: it decreases the shock compression in the artifi-
cial diffusivity method. The hybrid WENO/central difference method avoids this issue by
switching to a conservative formulation in the WENO region.

• The comprehensive nature of the test problems in this study proved to be a challenge in
terms of defining a shock sensor in the hybrid WENO/central difference method. The di-
latation/vorticity sensor works adequately for these problems, although it does so in an un-
intended way for the turbulence-free problems.

• The compressible isotropic turbulence problem with eddy shocklets proved to be a challenging
problem because weak shocks are interspersed with turbulence and all compressible modes
(vortical, entropic, acoustic) are present.

Based on these observations, we can make the following recommendations:

• WENO and the original artificial diffusivity method of Cook (17) in their standard forms
are not suitable for high-fidelity computations of compressible turbulence. If used, they
must be accompanied with convincing grid refinement studies clearly showing sufficient grid
resolution. While this statement is true for every method, it is particularly true for highly
dissipative methods. Simply showing that spectra are decaying at the highest wavenumbers
is not sufficient, since this is a built-in feature of dissipative methods.

• The modified artificial diffusivity methods that use dilatation rather than strain-rate magni-
tude to activate the artificial bulk viscosity are substantial improvements over the originial
method of Cook (17), and make the method suitable for compressible turbulence calculations.

• The benefits of minimizing numerical dissipation (e.g., by restricting the regions in which it
is applied) are clear. The main challenge for the hybrid central/WENO method lies in the
shock-sensor.

• The main advantage of shock fitting (over shock capturing) is that it avoids post-shock os-
cillations. The main challenge is that it is difficult to apply to shocks with complex and/or
changing topology.

3 DNS of canonical shock-turbulence interaction

Given the historical success of studying simplified problems in furthering our physical understand-
ing, we have focused on the canonical problem of isotropic turbulence interacting with a normal
shock in a perfect gas. Figure 4 shows the essence of the problem, and the modification of the
turbulence during the shock-interaction is evident. Prior to our SciDAC-funded work the largest
computations in the literature had a Reynolds number of Reλ ≈ 20 (based on the Taylor-scale), a
maximum turbulent Mach number of Mt ≈ 0.1, and grid-resolutions on the order of 1003.

Our approach was to perform direct numerical simulation (DNS) in the sense of fully resolving
all scales of turbulence but numerically capturing the shock wave, which is treated as a discontinuity.
The study progressed in several steps. We first computed a set of 14 cases at different combinations
of (M,Mt) (M is the mean Mach number of the shock) at Reλ ≈ 40 on 1040 × 3842 grids. These
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Figure 4: Snapshot of canonical shock-turbulence interaction. Turbulent eddies (colored by their
rate-of-rotation) enters from the left and passes through the shock (thin dark sheet). The interaction
increases the rate-of-rotation, the turbulence kinetic energy, and makes the post-shock turbulence
anisotropic.

simulations showed an at first surprising result: that the characteristic size of the smallest eddies
(where dissipation of kinetic energy into heat occurs) becomes markedly smaller during the shock-
interaction. Prior simulations in the literature had not taken this effect into account, and hence
our DNS results were the first ever to fully resolve the post-shock viscous dissipation. This, in turn,
affects the post-shock evolution of the turbulence. Figures 5 and 6 show two statistical quantities
far behind the shock, contrasted with the leading linear theory by Ribner (1) and the experiments
by Barre et al. (78). The agreement/disagreement between the 3 sets of data strongly suggests
both that the amplification of turbulence kinetic energy is a linear, large-scale process, but also
that the shock-induced change in the turbulence structure is a nonlinear process that the theory
fails to capture.

Figure 7 shows some instantaneous pathlines through the shock. The fact that the turbulence
has created instantaneous “shock-holes” had been seen in prior studies, but the presence at Mach
numbers higher than 1.05 was first seen in this study. Considerable time was spent on analyzing
the instantaneous structure of the shock/turbulence interaction, including through visualizations
such as shown in figure 8.

These simulations at Reλ ≈ 40 were run at NERSC (under the ERCAP program) and ANL
(under the INCITE program) on up to 8,192 cores. The results of this study were published in (3).
Since then, we have run 4 additional DNS cases at a higher Reynolds number of Reλ ≈ 75 on
2234× 10242 grids. These cases were run on either 65,536 cores on the BG/P at ALCF or 12,288
cores on the Cray XT-4 at NERSC. The purpose of these additional cases is to elucidate the effect
of Reynolds number on the shock-turbulence interaction problem, which is important due to the
disparity in Re between experiments and real-world applications (generally very high Re) and
computations (rather low Re due to the very high cost associated with resolving the compressed
post-shock turbulence). These additional cases have been run and analyzed; the results form the
basis for a paper that has been submitted to the Journal of Fluid Mechanics.

The Hybrid code which was used for these runs was designed specifically to minimize the
numerical (and unphysical) dissipation, thereby increasing the fidelity of the results. The code
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scales very well due to the fully explicit spatial/temporal nature of the method and the overlapping
computation/communication. On the BG/P, the weak scaling efficiency is 98% when going from 4
to 65,536 cores, and the strong scaling efficiency is above 85% when going from 256 to 65,536 cores
(where each processor has only 8× 162 = 2048 points).

Finally, we note that we have shared the computed DNS data sets with other researchers who
are using them to devise improved engineering models (within the DOE PSAAP program and at the
Indian Institute of Technology at Madras), improved large-eddy simulation models (both within
our SciDAC project and at TU Munich, Germany), and to elucidate the interaction-physics (at
Texas A&M University).

4 LES of canonical shock-turbulence interaction

The DNS databases of the canonical shock-turbulence interaction problem obtained as a result of
the work described in section 3 and reported in (4) are used to compare the performance of several
SGS models for large-eddy simulations (LES) of such flow type, focusing on the region immediately
downstream of the shock, which poses most of the modeling challenges (5).

4.1 Mathematical formulation and numerical method

We consider the following LES formulation for conservation of mass, momentum and total energy:

∂tρ+ ∂j(ρũj) = 0 (2)
∂t(ρũi) + ∂j(ρũiũj) = −∂jp+ ∂j ďij − ∂jτSij (3)

∂t(ρẽT ) + ∂j(ρẽT ũj) = −∂j(pũj) + ∂j(ďij ũi)− ∂j q̌j − cp∂jqSj , (4)

where ρ is the density, t the time, ui the velocity component in the xi-direction, p the thermo-
dynamic pressure, T the temperature and eT the total energy. For a flow variable f , f denotes
the LES filtering operation, f̃ = ρf/ρ is the Favre (density-averaged) quantity, and f̌ refers to the
formal expression of f with all constituent variables replaced with their Favre-filtered counterparts:
ďij ≡ dij(T̃ , ũ) ≡ µ(T̃ ) [(∂j ũi + ∂j ũj)− (2/3)∂kũkδij ], and q̌j ≡ qj(T̃ ) ≡ κ(T̃ )∂T̃ /∂xj . The shear
viscosity is given by a power law of temperature, µ(T ) = µ0(T/T0)3/4 and the thermal conductivity,
κ, is related to the viscosity through a constant Prandtl number, Pr: κ(T ) = cpµ(T )/Pr, where
cp is the heat capacity at constant pressure. The bulk viscosity has been considered nil. The
differential equations are completed with the equation of state for an ideal gas: p = RρT̃ , where R
is the specific gas constant. The modeling terms considered in this study are the SGS stress tensor,
τSij (both its trace and deviatoric part), the SGS heat flux, qSj , and the SGS pressure-velocity cor-
relation term, which, for the total energy equation, can be reformulated in terms of the SGS heat
flux as puj − pũj = RqSj , by using the equation of state, as already accounted for in Equation (4)
through the cp coefficient pre-multiplying the divergence of SGS heat flux. Other modeling terms
(see (5)), such as the SGS turbulent diffusion and the SGS viscous diffusion, are neglected.

The computational domain is a rectangular box of dimensions 3π × (2π)2 in the streamwise
(x) and transverse (y, z) directions. The equations are numerically solved using a finite-difference
methodology. A solution-adaptive, hybrid approach is utilized to numerically approximate the
inviscid fluxes. It combines a seventh-order accurate weighted essentially non-oscillatory (WENO)
scheme near shock waves with a sixth-order accurate central-difference scheme, on the split form
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of (6), elsewhere. Shock waves are identified by means of the sensor s = −∂juj/(|∂juj |+〈ωjωj〉1/2Y Z),
where 〈·〉Y Z is the instantaneous average on transverse planes and ωi is the vorticity. WENO is only
applied in the streamwise direction, for grid points where s > 0.6. The same sixth-order central
difference scheme is applied to the viscous terms everywhere. Integration in time is accomplished
through a fourth-order Runge-Kutta method.

The inflow turbulence is generated by means of an independent DNS of isotropic decaying
turbulence with an initial von Kármán spectrum that peaks at a wavenumber k = k0 = 6. To
ensure that the turbulence is fully developed, the DNS is allowed to decay for approximately three
eddy-turnover times. After the decay, the Taylor microscale Reynolds number is Reλ ≈ 75. The
LES resolutions chosen for this study ensure that the cutoff wavenumber lies within the inertial
range of the DNS. This inflow turbulence is then top-hat filtered to the LES resolution and advected
with a uniform streamwise velocity at the inlet of the LES domain, resulting in a mean Mach
number of the incoming flow of M = 1.5. A second case with M = 3.5 will be also considered. The
turbulent Mach number (defined as the ratio between the turbulent kinetic energy and the sound
speed) at the inlet in both cases is Mt = 0.16. The shock location is stationary in time on average,
by imposing a mean back pressure at the outlet (4). A sponge layer extends 2π/3 upstream from
the outlet, to prevent propagation of spurious reflections of acoustic waves at the outflow boundary
back into the computational domain, since the flow downstream of the shock is subsonic. Periodic
boundary conditions apply in the transverse directions.

4.2 Subgrid-scale models implemented

Two classes of SGS models are implemented: mixed eddy-diffusivity and structure-based models.
The former assumes that the effect of turbulent subgrid scales can be represented by a gradient
diffusion law through an appropriate eddy diffusivity, possibly complemented with an additional
term (e.g., based on scale invariance), whereas the latter assumes the SGS motion to be produced
by an ensemble of coherent structures from which the closure terms are derived.

4.2.1 Mixed eddy-diffusivity models

For a general SGS closure term ζ = ρ(ũiη − ũiη̃), where η(x, t) is a flow variable that will be later
particularized for each (scalar, vectorial or tensorial) quantity ζ to be modeled (see Table 4), a mixed
eddy-diffusivity model assumes the form ζmodel =MT + ED, where ED is an eddy-diffusivity term
and MT is the mixed term.

The eddy-diffusivity term is expressed as ED = ρνe(ui)G(η̃), where νe(ũi) = ceϑ(ũi) is the eddy
diffusivity that depends on the resolved velocity field through a function ϑ(ũi), and incorporates the
model coefficient, ce. The function G(η̃) mimics the corresponding physical diffusion law (typically
of the form of a turbulent gradient) for the modeled quantity (see Table 4). Two different forms
of eddy diffusivity are considered in this study: Smagorinsky’s version ( (7)) is based on the
assumption of a Newtonian-viscous-like SGS stress tensor, dimensional analysis and a simplified
balance of turbulent kinetic energy between production and dissipation that neglects convective
and diffusive terms, resulting in ϑSmag = ∆2|S̃|, where |S̃| ≡ (2S̃ijS̃ij)1/2, ∆ = (∆1∆2∆3)1/3 and
∆i is the local grid spacing in the xi-direction; Vreman’s version ( (8)) is based on the second
invariant, IIβ, of the tensor βij = ∆2

k∂iũk∂j ũk, whose collection of all local flow types with n zero
velocity derivatives (n ∈ [0, 9]) equals that of the theoretical SGS dissipation, −τSij S̃ij . By adding
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SGS quantity ζ η G ce

Kinetic energy, KS = 1
2τ

S
ii τSii ui 2|S̃| CI

Deviatoric stress tensor, τSij − 1
3τ

S
kkδij τSij uj −2S̃ij C

Heat flux qSi T −∂T̃ /∂xi C/Prt

Table 4: Modeled SGS quantities; associated η variable; eddy-diffusivity functional dependence, G;
coefficients, ce.

a realizability condition and imposing the correct behavior at the wall (νe = 0), it is obtained
ϑVrem
e = [IIβ/(∂j ũi∂j ũi)]1/3.

Three alternative mixed terms, MT , are considered. The first option assumes a nil term,
MT 1 ≡ 0, obtaining a purely eddy-diffusivity model. In the other two alternatives, the closure term
ζ is expanded in Galilean-invariant components, one of which, the Leonard term L = ρ( ˜̃uiη̃− ˜̃ui˜̃η),
is modeled by the mixed term. The gradient mixed-term approach uses a Taylor series expansion
of the Leonard term, assuming that the Favre-filter can be approximated by either a Gaussian or
a top-hat filter, resulting in the form MT 2 = ρ∆2

kũi,kη,k/12. The similarity mixed-term approach
approximates the unknown Favre-filter by an assumed numerical low-pass filter, F , computing the
Leonard term directly as MT 3 = ρ( ˜̃uiη̃ − ˜̃ui˜̃η) ≈ ρ[F(ũiη̃)−F(ũi)F(η̃)].

The model coefficient, ce, is dynamically calculated following Germano’s procedure (9), by
means of a test-filter, denoted by (̂·), which is applied on the resolved flow variables. It is assumed
that the same model form and model coefficient apply at the resolved and test-filtered scales and
that the variation of ce within the test-filter width is negligible compared to that of χ ≡ ρϑ(ũi)G(η),
obtaining

Λ ≡ ζL − (MT T − M̂T ) = ce(χT − χ̂) ≡ ceΥ, (5)

where ζL ≡ ρ̂ũiη̃ − ρ̂ũiρ̂η̃/ρ̂, MT T ≡ ρ̂(
̂̃̃
uiη̃ − ̂̃̃uî̃̃η), χT ≡ ρ̂ϑ(̂̃ui)G(̂̃η). Then, ce can be determined

by minimizing (in a least-squares sense that follows (10)) the total error in a given domain Ω,
E ≡ ∫Ω(Λ − ceΥ)2WdΩ: δE/δce = 0 ⇒ ce = IΛΥ/IΥΥ, where IAB =

∫
ΩABWedΩ and W is a

weighting function defined in Ω, which can be spatial and/or temporal. Different choices of Ω
and We have been proposed in the literature. When W is the Dirac-delta function, ce results
in a local quantity, which has been found to be highly fluctuating in space, thus violating one
of the assumptions on which the Germano procedure is based. A remedy is to use directions
of homogeneity, when available, that translate the integrals IΛΥ and IΥΥ into spatial averages
(either in volume, planes or lines). Alternatively, a Lagrangian averaging procedure (proposed for
incompressible flows by (11)) uses a particular combination of temporal domain Ω and a weighting
function W (t) following fluid particle trajectories, which makes it applicable to any flow type,
regardless of inhomogeneity.

In the canonical shock-turbulence interaction flow, transverse planes parallel to the nominal
shock can be approximately considered homogeneous. As the intensity of the incoming turbu-
lence increases, the shock becomes more corrugated or even broken, and the approximation of
homogeneity in transverse planes may lead to incorrect results in the computation of the model
coefficients near the shock, making the use of Lagrangian averaging advantageous. In this study,
the two averaging strategies (on transverse planes and along Lagrangian trajectories) will be con-
sidered. In the Lagrangian averaging, the initialization of the model coefficients (CI , C and C/Prt)
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is done with the values obtained from an independent LES of decaying isotropic turbulence with
a pure eddy-diffusivity model and both Smagorinsky and Vreman eddy diffusivities, resulting in
(0.0768, 0.0256, 0.0256) and (0.074, 0.0164, 0.0234) for each type of eddy diffusivity, respectively.

In this study, the discrete test-filter f̂i =
∑N

k=−N akfi+k used in the dynamic procedure has
coefficients ak = (1/4, 1/2, 1/4), N = 1 and width

√
6, whereas the unknown Favre-filter in the

similarity mixed term is approximated by a discrete filter with coefficients (1/8, 3/4, 1/8) and width√
3 (based on the second-order moment of the filter kernel).

4.2.2 Stretched-vortex model

The stretched-vortex model, originally developed for incompressible flows in (12) and extended to
compressible flows in (13), is a structural model which assumes the subgrid motion in each cell
to be produced by a superposition of nearly axisymmetric vortices, whose ensemble dynamics can
be characterized by a vortex aligned with the unit vector ev, modeled through a delta-function
probability density function (pdf). The SGS stresses are then defined as τSij = ρK(δij − evi e

v
j ),

where ρK = ρ
∫∞
kc
E(k)dk = τSkk/2 is the SGS turbulent kinetic energy (kc = π/∆ is the cutoff

wavenumber), which is estimated assuming the form of the energy spectrum proposed by (14). The
SGS heat flux is modeled by means of the SGS scalar flux model (15) as qSi = (∆/2)

√
K(δij −

evi e
v
j )∂T̃ /∂xj .
A vortex orientation model has to be specified for ev to be defined. Two different models are

considered in this study: the first, denoted V1, assumes the vortex to be aligned with the most
extensional eigenvector, ẽ3, of the resolved strain-rate tensor, S̃ij , associated with the eigenvalue
λ3; the second, V2, uses a local pdf of the form P (ev) = θδ(ev|ẽ3) + (1 − θ)δ(ev|ẽω), where ẽω is
the unit vector of the resolved vorticity (ωi), δ(m|n) is the delta-function probability density that
m is aligned with n, and θ is the fraction of SGS vortices aligned with ẽ3, given by the ansatz
θ = λ3/(λ3 +

√
ω̃iω̃i).

4.3 Conditional application of SGS models in a hybrid methodology

As discussed in Section 4.1, a hybrid approach that applies a WENO scheme in regions near shock
waves and a central-difference scheme elsewhere is used. To capture shock waves, WENO schemes
add excessive numerical dissipation, damping the turbulence in those regions, which affects the
post-shock turbulence (see (16)). Further application of an SGS model in WENO regions can
result in an overly dissipative combination, which can be avoided by conditioning the application
of the SGS model to flow regions where WENO is not active. The same WENO sensor is used by
the SGS model to set the modeled SGS terms to zero. This is done prior to the calculation of the
divergence of those SGS terms, as they appear in the equations of motion, ensuring conservation
of momentum and total energy. Results of LES with and without this conditional SGS application
in use will be compared in Section 4.4. Note that this technique is independent of the SGS model
in use.

When Lagrangian averaging is used for eddy-diffusivity models, regions where the model is
not active simply transport the model coefficients from the previous point of the fluid particle
trajectory, and thus, across the shock wave region. A more elaborate approach could incorporate
theoretical elements of linear interaction analysis (LIA) or rapid distortion theory (RDT) to modify
the model coefficients across the shock wave, instead of transporting them from the upstream side
to the downstream (which assumes the same level of turbulence on both sides). We use the latter

19



ID Class Mixed term Eddy-diffusivity/ Averaging Line style
orientation model

MNSP Mixed None Smagorinsky Transverse planes Red solid
MGSP Mixed Gradient Smagorinsky Transverse planes Red dashed
MSSP Mixed Similarity Smagorinsky Transverse planes Red dotted
MNSL Mixed None Smagorinsky Lagrangian Green solid
MGSL Mixed Gradient Smagorinsky Lagrangian Green dotted
MSSL Mixed Similarity Smagorinsky Lagrangian Green dashed
MNVP Mixed None Vreman Transverse planes Brown solid
MGVP Mixed Gradient Vreman Transverse planes Brown dashed
MSVP Mixed Similarity Vreman Transverse planes Brown dotted
MNVL Mixed None Vreman Lagrangian Blue solid
MGVL Mixed Gradient Vreman Lagrangian Blue dashed
MSVL Mixed Similarity Vreman Lagrangian Blue dotted
SPM Stretched-vortex N/A Extensional (V1) Transverse circle Cyan solid
SPL Stretched-vortex N/A Local pdf (V2) Transverse circle Cyan dashed

Table 5: Implemented models.

approach for its simplicity. Note also that the values of the coefficients will adjust dynamically to
the actual new levels of turbulence found downstream.

4.4 Results

LES results are compared with filtered DNS data through streamwise profiles obtained from aver-
aged statistics in time and across transverse planes for two different mean Mach numbers of the
incoming flow (M = 1.5, 3.5). LES are performed on an isotropic grid G1 with 98 × 642 points,
for which the LES cut-off is still separated from the large scales. For the M = 1.5 case we also
present results for a second grid G2 which doubles the resolution in the streamwise direction (i.e.,
196×642 points). The DNS used for comparison was performed on a grid with 2234×10242 points,
stretched in the streamwise direction to allow a three-fold increase of the resolution at and behind
the shock and later filtered to each LES resolution.

Mean flow quantities obtained from the LES show good agreement with the filtered DNS results
and are not presented. We focus on turbulence-related quantities, namely the streamwise and
transverse Reynolds stresses normalized with their values upstream of the shock, Rxx/Ruxx and
Ryy/R

u
yy, their anisotropy, the turbulent kinetic energy, TKE, and the SGS dissipation, −τSij S̃ij .

Figures 9, 10 and 12 contain plots of these quantities, for the implemented models specified in
Table 5. Filtered DNS and no-model LES are included for comparison. We plot the subdomain
x − xs ∈ [−1.25, 5], which excludes the sponge region near the outlet and part of the upstream
region farther from the shock.

For M = 1.5 and grid G1, the shape of the profile of normalized streamwise Reynolds stress,
Rxx/R

u
xx (Figure 9a), is well captured by most models, although the amplification level across the

shock is overestimated by all models. Mixed models with Vreman’s eddy-diffusivity present the
best agreement with filtered DNS data and lead to rates of change upstream and downstream of
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Figure 9: LES results for M = 1.5 and grid G1. Filtered DNS, solid black; no-model LES, dashed
black. See Table 5 for SGS-LES line styles.
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Figure 10: LES results for M = 1.5 and grid G2. Filtered DNS, solid black; no-model LES, dashed
black. See Table 5 for SGS-LES line styles.
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Figure 11: Streamwise velocity spectra obtained from LES with different models compared to
filtered DNS for M = 1.5 and grid G1 at four locations relative to the average shock position.
Filtered DNS is plotted in solid black and LES with no model in dashed black. The line styles
corresponding to the LES with the different implemented models are specified in Table 5.

the shock which are closest to the filtered DNS results. The selection of the mixed term in use has a
small effect on the result, for this particular flow. The stretched-vortex model performs better with
the orientation model V1, providing a peak value immediately downstream of the shock closest to
the filtered DNS, although the subsequent rate of decay is underpredicted (also upstream of the
shock).

Results for the normalized transverse Reynolds stress, Ryy/Ruyy, show (Figures 9b) worse agree-
ment than for Rxx/Ruxx. The best agreement with filtered DNS is provided by mixed models with
Vreman’s eddy-diffusivity and Lagrangian averaging, even though the value immediately down-
stream of the shock is still underpredicted. Upstream of the shock, the decay rate of Ryy is also
best captured by those models. Note that other models result in Ryy that are not monotonically
decreasing downstream of the shock.

The normalized turbulent kinetic energy, TKE/TKEu, shown in Figures 9c, reflects a consistent
underprediction of the amplification occurring immediately after the shock, due to the underpre-
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diction of Ryy. This is compensated by the overprediction of Rxx farther downstream, recovering
the proper rate of decay. Models with Vreman’s eddy-diffusivity provide the best results.

Overprediction of Rxx and underprediction of Ryy downstream of the shock, described above for
all models, result in levels of anisotropy (Ryy/Rxx) that differ significantly from the filtered DNS
data (Figure 9d). Note that even upstream of the shock there is a lack of agreement. As before,
models with Vreman’s eddy-diffusivity show better results.

Figure 10 shows results obtained by doubling the resolution in the streamwise coordinate (grid
G2), for M = 1.5. The finer streamwise grid has the greatest impact in Ryy which reproduces the
results of the filtered DNS more accurately (Figure 10b) than for grid G1, particularly in the region
immediately downstream of the shock. This could indicate that high streamwise-wavenumbers
contain motions primarily leading to transverse Reynolds stresses. As a result, the profiles of TKE
and Reynolds stress anisotropy (Figure 10c,d) follow the filtered DNS results more closely. Again,
the best results are obtained with Vreman’s eddy-diffusivity models. Note, nonetheless, that a
Vreman’s eddy-diffusivity model with similarity mixed term and transverse plane averaging results
in a wrong prediction of turbulence quantities for x− xs > 2, which was traced back to changes in
the trend of eddy-diffusivity model coefficients.

Figure 11 shows streamwise velocity spectra computed on transverse planes at four streamwise
locations relative to the average shock position (x− xs = −1.0, 1.0, 3.0, 5.0), for all LES models on
grid G1, compared to filtered DNS and no-model LES (which acts as an upper bound). Upstream
of the shock, Vreman’s eddy-diffusivity models appear to dissipate slightly more energy than that
required in the resolved part of the inertial range, particularly when Lagrangian averaging is used.
After the shock, an energy transfer to the low-wavenumber part of the spectra occurs for all models.
Pile-up of the spectra at high wavenumbers is noticeable at x−xs = 1.0 for most models, increasing
downstream, except for mixed Vreman’s eddy-diffusivity models with Lagrangian averaging and the
pure Vreman’s eddy-diffusivity model with transverse plane averaging, whose spectra remain close
to the filtered DNS and below them for the majority of wavenumbers.

Figure 12 shows streamwise profiles of turbulence-related quantities for the case with M = 3.5
and grid G1. Errors in the amplification of normal Reynolds stresses increase with respect to the
M = 1.5 case: Rxx/Ruxx is more overpredicted and Ryy/R

u
yy is more underpredicted immediately

downstream of the shock. These two effects cancel out in the TKE/TKEu, obtaining reasonable
agreement with filtered DNS at both Mach numbers, but add up, on the other hand, in the pre-
diction of Reynolds stress anisotropy, which worsens for the larger Mach number. Consistently
with the lower M case, the best results are provided by Vreman’s eddy-diffusivity models. Note
the increase in SGS dissipation immediately downstream of the shock provided by the Lagrangian
averaging compared to the transverse plane averaging from M = 1.5 to M = 3.5 (Figures 9e
and 12e).

4.4.1 Impact of the order/directionality of WENO scheme and conditional SGS

The results presented so far were obtained with a seventh-order accurate WENO scheme applied
only in the streamwise direction near the shock. In addition, SGS models were not applied in
regions where WENO was active. This subsection evaluates the effect of 1) modifying the order of
accuracy of the WENO scheme, 2) applying WENO also in the transverse directions (common in
more complex flows where the shock orientation is unknown or might involve multiple coordinate
axes), and 3) applying SGS everywhere.

Figure 13 shows turbulence-related quantities for LES performed with the Lagrangian-averaged
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Figure 12: LES results for M = 3.5 and grid G1. Filtered DNS, solid black; no-model LES, dashed
black. See Table 5 for SGS-LES line styles.
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Figure 13: LES and filtered DNS results for M = 1.5 and grid G1 with the Lagrangian-averaged
dynamic Vreman’s eddy-diffusivity model. Filtered DNS, solid line; LES with third-, fifth- and
seventh-order WENO schemes applied only in the streamwise direction near shocks and conditional
SGS (only applied where WENO is not active) are plotted in dashed lines of thickness increasing
with the WENO order of accuracy; LES with seventh-order WENO scheme applied in the three
coordinate directions and conditional SGS is plotted in dash-dotted line; LES with seventh-order
WENO scheme and SGS model applied everywhere is plotted in dotted line.
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dynamic Vreman’s eddy-diffusivity model (MNVL) and different variants of WENO schemes, di-
rectionality and conditional SGS application. The order of accuracy of the WENO scheme plays a
decisive role in the amplification of turbulence across the shock and its downstream evolution, at
this grid resolution. The results obtained with a third-order WENO compare poorly with filtered
DNS: in particular, instead of the expected amplification of Ryy after the shock and its monotonic
decrease downstream, their values are significantly reduced immediately after the shock, remaining
almost constant farther downstream. Fifth-order WENO improves substantially the results: even
though there is still no amplification of Ryy after the shock, the monotonic decrease downstream
is better reflected, approaching the correct value at x− xs = 5. Rxx is also significantly improved.
Seventh-order WENO provides better results, particularly for Ryy and TKE. These three cases
applied WENO only in the streamwise coordinate direction.

The additional damping obtained when seventh-order WENO is applied in all three coordinate
directions (dash-dotted line in Figure 13), instead of only in the streamwise direction, is more
noticeable for Rxx than for Ryy. The transverse Reynolds stress and TKE are comparable to those
obtained with a fifth-order WENO applied only in the streamwise direction, although the decay
rate farther downstream is more underpredicted.

When the SGS model is applied everywhere, the extra SGS dissipation added in WENO regions
(see dotted line in Figure 13e) considerably damps the turbulence across the shock. Rxx levels
are comparable to those obtained with a third-order WENO, whereas Ryy lies between a third-
and a fifth-order WENO. The rate of change downstream follows the filtered DNS results, but the
absolute values are considerably lower.

5 Shock-turbulence interaction in spherical geometry

The canonical problems of shock-turbulence interaction and Richtmyer-Meshkov instability (RMI)
are central to understanding the hydrodynamic processes involved in Inertial Confinement Fusion
(ICF). Over the last few decades, there has been considerable analytical, computational and ex-
perimental work on the planar versions of these problems. In spite of the problem of interest being
spherical in nature, there have been almost no studies in any of the three areas for these problems.
It is not clear a priori, that the conclusions drawn from their planar versions carry over to the
spherical domain. The research presented in this section represents a first attempt to understand
the hydrodynamic processes involved in an Inertial Fusion Engine (IFE) from capsule implosion to
interaction of the resulting shock waves with the chamber gases. To abstract the key hydrodynamic
components from the complex physics involved in an IFE, three canonical problems are identified
and simulated: interaction of a blast wave with isotropic turbulence, interaction of a converging
shock with isotropic turbulence and RMI in spherical geometry. The last problem is a hydrody-
namic abstraction of the capsule implosion itself, while the first two problems attempt to model
the late stage interaction of fusion induced shock waves with chamber gases.

5.1 Interaction of a converging shock wave with isotropic turbulence

5.1.1 Isotropic Turbulence

The turbulence here is taken to be isotropic turbulence in a periodic box, as this is one of the most
well understood forms of turbulence. The turbulent field is one of decaying isotropic turbulence
with eddy shocklets. The parameters characterizing this field are the turbulence Mach number Mt,0
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Figure 14: Volume rendering of isosurfaces of vorticity for isotropic turbulence. Simulation domain
is 2563.

and the Taylor scale Reynolds number Reλ,0. Before launching the shock, the turbulence is first
allowed to evolve to a state where the nonlinear energy transfer mechanism becomes fully active.
This is indicated by the velocity derivative skewness attaining a steady negative value. The time
at which the enstrophy is at its peak, indicating that the vortical fluctuations are at their greatest
before viscosity starts dissipating them is selected as the time to launch the shock. This occurs at
about t = 1.5τ0, where τ0 is roughly the eddy turnover time.

Taylor scale Reynolds number of the flow Reλ is 45 and the turbulent Mach number Mt is 0.4.
The turbulence field can be considered to be weakly compressible. This value of Mt is however
high enough to form eddy shocklets that persist up to late times.

5.1.2 Converging shock

A schlieren wave diagram for the converging pure shock problem elucidates the driving flow. This
is shown in figure 15. At the time of shock launch, one can observe two fronts, the shock wave
propagating radially inwards and the expansion wave traveling outwards. Note the absence of a
contact surface due to appropriately chosen shock tube parameters. The shock gets progressively
stronger as it approaches the origin at which point, it is at its strongest. It then reflects off of
the origin and propagates outwards. The expansion wave propagates outwards and interacts with
the buffer layer where windowing is applied. This layer absorbs the wave with no reflections or
transmission from neighboring periodic images. Pressure and density achieve very large values as
the converging shock nears the origin which leads to large gradients. Additionally, the shock is
relatively poorly resolved near the origin compared to the rest of the domain. This results in higher
numerical dissipation, which is seen as a diffuse patch in the schlieren plot near the origin. Radial
velocity decays linearly to zero at the origin in the reflected shock regime.
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Figure 15: Density schlieren wave diagram for converging pure shock. Quantity plotted is 10log|∇ρ|.
Shock initial Mach number Ms0 = 1.4. ts is time taken for shock to reach the origin, i.e. ts = tRs=0.

5.1.3 Converging shock-turbulence interaction

We now add the two components described earlier to generate a spherical shock propagating through
a field of isotropic turbulence. The converging shock starts out relatively weak, but gains strength as
it propagates inwards. The Taylor scale Reynolds number Reλ is 45 and the turbulent Mach number
Mt is 0.4. The shock is captured by 4 grid points, a characteristic of the artificial viscosity method
employed here (see (17)), giving a shock thickness ls = 3∆ and a shock thickness to turbulence
length scale ratio ls/l0 of 0.05, i.e the shock length scale is much smaller than turbulence. All
shocks including eddy shocklets in the isotropic turbulence field are captured, and not resolved.

A shock time scale is computed based on the time it takes for its pressure ratio to increase to
twice its value and this is compared with the turbulence time scale τ0. For the weakest converging
shock, τs/τ0 ∼ 1, while for the strongest, τs/τ0 << 1, so the assumption of frozen turbulence is
only valid for the strong shock case.

The Kolmogorov scale, the smallest length scale in the flow, below which dissipation takes over,
initially decreases behind the shock and remains lower than the pre-shock value. These scales
are slightly underresolved in our 2563 simulations. We have conducted a grid-resolution study to
establish that the numerical results for turbulence statistics are essentially grid-independent.

Vorticity dynamics Figure 35 shows slices vorticity magnitude at midplane for the converging
shock. Vorticity is amplified by the flow following the expanding shock. The reason for this is that
the vorticity dilatation term, −ω(∇ · u), which acts as a source of vorticity in regions of negative
dilatation, such as the one following a converging shock. The overall effect of the converging and
reflected shocks is a decrease in size of the eddies, as can be seen in figure 35, which plots slices of
vorticity magnitude along the midplane. Plot 35(a) shows the vorticity field before shock launch
and plot 35(b) shows it at a late time, t/τ0 = 0.9 when Rs/Rs0 ∼ 1, i.e the reflected shock is almost
out of the domain. Smaller scale structures in the post reflection plot can be noted.
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(a) (b)

Figure 16: Slices of total vorticity superimposed on dilatation contours showing shock location at
mid plane for (a) Converging shock at t/τ0 = 0, (b) Reflected shock at t/τ0 = 0.9 for case C2G288.

Time evolution of the shock We seek to understand the effect of the turbulence on shock
evolution and compare it with the case with no background turbulence. In absence of turbulence,
the shock is nominally spherical. Turbulence distorts this sphericity depending on its relative
strength compared to the shock. As also described in (18), we define a shock asphericity parameter
χ based on the shock radius.

Figure 17 shows these quantities for the converging shock at Ms0 = 2.4. The shock radius
deviates considerably from the pure shock case, which as noted in §5.1.2 follows Guderley’s scaling
for a converging shock.

This is seen in the asphericity which starts out higher than the pure shock case. The reason for
initial asphericity is that the shock is initialized to have the same Mach number at all points that
define the initial shock radius. However, due to fluctuations in local density and pressure, the local
speed of sound is different at these points. Consequently, local shock speed is different and the
shock therefore starts out aspherical. A strong shock, as it propagates inward, strengthens rapidly
and does not acquire further asphericity due to interaction with turbulence. A weaker initial shock
on the other hand, acquires further asphericity until it becomes strong enough not to be affected
by surrounding turbulent fluctuations. This is seen in figure 18, which compares slices of pressure
contours during the converging phase of the shock at the same mean shock radius (Rs/Rs0 ∼ 1/2)
for different initial shock Mach numbers. The stronger initial shock retains retains only the initial
distortion, while the weaker initial shocks are relatively more aspherical.

5.1.4 Maximum compression

We also compare the maximum compression achieved by the converging shock in presence and
absence of turbulence. One would expect that for a shock propagating through turbulence, the
maximum compression achieved would be less than for a pure shock with the same initial Mach
number. We are interested in the magnitude of this decrease in maximum compression and how is
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Figure 17: Evolution of (a) Shock radius and (c) Shock asphericity, for converging (Case C2G288).
Shock with Turbulence (+ symbol), Pure shock (o symbol)
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Figure 18: Slices of pressure contours during the converging phase at (a) Ms0 = 1.4 (Case C1G288),
(b) Ms0 = 2.5 (Case C2G288) and (c) Ms0 = 4.0 (Case C3G288) at different times but same mean
shock radius, Rs/Rs0 = 0.45. Contour levels are not same across plots.
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Ms0 Pure shock Shock-Turbulence
ρmax/ρ0 Pmax/P0 ρmax/ρ0 Pmax/P0

1.4 14 72 9 29
2.4 40 781 34 422
4.2 65 2496 57 1696

Table 6: Comparison of pressure and density ratios at maximum compression for a pure shock with
shock propagating through turbulence
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Figure 19: Pressure and density ratios at maximum compression in presence of turbulence com-
pared to pure shock case. Quantities plotted are (ρmax/ρ0)shock−turbulence/(ρmax/ρ0)pure−shock (�
- symbol) and (Pmax/P0)shock−turbulence/(Pmax/P0)pure−shock (3 - symbol)

it affected by initial shock Mach number.
Table 6 tabulates maximum density and pressure ratios at different Mach numbers for pure

shock and shock with turbulence cases. As expected, these increase with increasing shock strength.
Figure 19 plots the maximum pressure and density ratios as a percentage of their highest values
for the corresponding pure shock cases. It is seen that the decrease in maximum compression is
greatest for the lowest Mach number case (65% for density and 40% for pressure compared to
pure shock case) and tends to level off for stronger initial shocks (90% for density and 70% for
pressure). This is expected, since stronger shocks are less distorted by turbulence and therefore
remain more symmetric as they propagate inwards and consequently are able to compress the fluid
more effectively.

6 Shock-accelerated mixing

The Richtmyer-Meshkov (RM) instability occurs when a shock wave impulsively accelerates a ma-
terial interface. Misalignments between the pressure jump in the shock and the density jump
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across the (slightly perturbed) material interface cause baroclinic generation of vorticity, which
subsequently begins mixing the two materials. This phenomenon is of practical interest in inertial
confinement fusion, where the growth of the initial RM instability seeds later Rayleigh-Taylor in-
stabilities with adverse effects on the implosion process. The objective of the work presented in this
section is to study the physics of nonlinear RM mixing and to develop improved models. We take
a two-step approach involving first the study of the planar geometry (also including shock-curtain
interaction) and moving later to the spherical case, that will use the insight acquired through the
analysis of shock-turbulence interaction in such geometry.

6.1 Planar Richtmyer-Meshkov mixing

In the experiment of Vetter and Sturtevant (19), a Mach 1.5 shock impinged upon an interface
between air and SF6. A regular wire mesh containing a membrane was used to separate the two
fluids initially. Since a closed shock tube was used, the incident shock reflected from the end of
the shock-tube and re-shocked the evolving interface. Following reshock a very complex, turbulent
flow was observed in the domain.

The thermodynamic conditions in the experiment are matched in our simulations. The experi-
ment used a wire mesh with 28 intervals along each direction and a membrane to initially separate
the two fluids. In the computations the initial interface is a linear combination of a regular egg-
carton perturbation and a much smaller irregular perturbation to seed chaotic motions, with 4, 8
or 14 egg-carton intervals in each direction. Presently, we have performed computations on grids
with transverse resolutions of 1282 (coarse) and 2562 (medium) points. The number of grid points
in the shock-normal direction is approximately 2.5 times higher than in the transverse direction.
The results shown here correspond to computations carried out using the supercomputing facilities
at the National Center for Computational Sciences (NCCS) through their Early Access program.

6.1.1 Mixing Zone Width

The total mixing width is a global measure of mixing between the two fluids. Figure 20 shows
the evolution with time of the mixing width for the three different initial condition cases (4, 8, 14
egg-cartons along each direction of the interface), as well as the results from previous numerical
simulations of Hill and Pantano (20) and experimental data, for comparison. Exact match with the
experimental data should not expected, primarily due to the uncertainty about the exact initial
interface in the experiments. Nonetheless, we observe a good agreement of the growth rate of the
interface. As time progresses, the “bubbles” and “spikes” in RM mixing merge and become larger;
this explains the dependence on the initial condition at late times, where the cases with fewer initial
wavelengths present become limited by the size of the computational box.

6.1.2 Spectra of scalar variance

The scalar mass fraction is related to the mixing process. Figure 21 shows spectra of its variance
in the transverse directions at two different times. Immediately after re-shock, the spectra are
peaked primarily at the dominant wavenumber in the initial condition. This shows how the flow
still retains its original characteristics. At later time, when the flow has become fully turbulent,
the scalar mass fraction is instead very broadband without any dominant peaks. A k−5/3 range is
visible in the spectra, followed by a sharp drop-off due to the numerical dissipation.
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Figure 20: Growth of the mixing zone in planar Richtmyer-Meshkov mixing.

Figure 21: Two dimensional spectra of scalar variance just after re-shock (5ms) (left) and at late
times (14ms) (right). Dotted green line indicates the −5/3rd slope. See figure 20 for color reference.

6.1.3 Interface

Figure 22 shows qualitative plots of the interface at three different time instants resulting from
an initial condition with 8 egg cartons along the cross-sectional directions. Cross-sectional cuts at
planes Y = ±4.5 are also shown in that figure for each instant in time. At t = 4.5 ms (just after
re-shock) the remains of the 8 egg cartons are still visible, as indicated by the presence of 8 bubble-
spike-like structures. At later times the flow appears more mixed (turbulent mixing) and there is
no visual trace of bubble-spike-like structures. This is consistent with the spectra discussed above,
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in that the mixing zone retains a “memory” of the initial condition until shortly after re-shock.

6.2 Shock-curtain interaction

Moderate and high-resolution three dimensional numerical simulations of a shock interacting with
a curtain of dense gas are carried out using the FDL3DI-SU code. The flow is initialized in three
regions: a post-shock region of air, an ambient region of air and a curtain of heavy gas in the
ambient region. The thermodynamic state of the fluids in the flow domain is shown in Fig 23. The
concentration profile in the curtain region is given by the Mikaelian fit indicated in Fig. 24 where
the parameters (A,B,β,α,κ) are assumed to be Gaussian random variables with mean (0.7,0.2,-
0.04,0.836,1.745) and standard deviation (5,5,10,0.5,0)% of mean. These are the values reported in
the experiment (21) except that the standard deviation of κ is assumed to be zero, to maintain the
periodic boundary condition in the cross-sectional plane. A sample line cut of φHeavyGas through
the X and Z is shown in Fig. 24. Time is initialized to zero when the incident shock meets the
interface. A case of reshock is also studied, where the incident shock reflects off the end wall and
reimpacts the interface at ∼ 600µs.

The heavy gas is a mixture of SF6 and acetone. The effect of acetone (used as a tracer species
for PLIF visualization purpose) on the flow is found to be non-negligible (24). In this study we
account for the presence of all the three species-air, SF6 and acetone. Molecular viscosity µi of
the pure species are computed using the Chapman-Enskog equation (similar model is used for
mass diffusivity Di and thermal conductivity ki). The molecular properties of the fluid mixture
are calculated using Wilke mixing model (for µ and k) and the Ramshaw self-consistent effective
diffusivity model (for D).

The accurate characterization of the absolute concentration levels of the species in the heavy
gas mixture at the initial conditions in the experiments is a challenging task and reliable data of the
same are not available. Three simulations with different peak concentration levels of the heavy gas
mixture are conducted. SF6 and acetone composing the heavy gas are assumed to be well mixed and
have the peak mass fraction values of (0.80, 0.14), (0.70, 0.14) and (0.70, 0.10). Higher concentration
levels of the heavy gas mixture cause larger vorticity deposition on the interface following the shock
impact, leading to a larger instability growth rate. The measure of the curtain width with time
shown along with the experimental data (21) in Fig. 6.2(a) (before reshock) and Fig. 6.2(b) (after
reshock) exhibits this trend. The numerical simulation corresponding to (0.70, 0.14) is seen to
be in good agreement with the experimental data. The following results will correspond to this
case. Results are non-dimensionalized by using a reference length scale lref = 1mm and a reference
velocity scale uref = ao∞(upstream sound speed).

Temporal evolution of the iso-surface of the heavy gas mass fraction is shown in Fig. 6.2.
Vorticity deposited by the initial shock impact causes counter rotating vortex pairs to be formed
which result in the mushroom-like shapes (Fig. 6.2(a),(b)). Re-shock at 635µs deposits higher
energy into the non-linear flow-field causing the large scale structures to break up and resulting in
a chaotic flow-field at late times (Fig. 6.2(c),(d)).

The fluctuating velocity field is defined as: ui′(x, y, z, t) = ui(x, y, z, t)−〈ui(x, t)〉 where the aver-
age velocity field is the velocity averaged over the cross section: 〈ui(x, t)〉 =

∫ Ly/2
−Ly/2

∫ Lz/2
−Lz/2

ui(x, y, z, t)dydz.
A measure of the turbulent kinetic energy given by TKE = 〈u′iu′i〉 is plotted in Fig. 27. Following
the initial shock impact the TKE in the domain shows a slow decay and a double peak structure
after re-shock followed by a rapid decay of TKE. The fluctuating velocity field is characterized by
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Figure 22: Left: three-dimensional iso-contours of density at three different time instants (top,
center and bottom) after initial shock impact, for an initial condition corresponding to K = 8.
Right: X − Z plane cuts of density at locations Y = ∓4.5 for each time instant.
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Figure 23: Initial conditions
Figure 24: Mass fraction of heavy gas across cur-
tain
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Figure 25: Temporal evolution of curtain width (a) before and (b) after reshock
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(a) (b) (c) (d)

Figure 26: Time evolution visualizing at iso-surface of φHeavyGas=45% φMax
HeavyGas colored by the

value at time (a) 152 (b) 547 (c) 943 (d) 1247 µs
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Figure 27: Evolution of turbulent KE before
(blue) and after (red) re-shock
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Figure 28: Histogram of fluctuating streamwise
(M) and spanwise (�) velocity at t=715µs
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the histogram at t∼ 715µs plotted along with the experimental data(21) in Fig. 28. While the
span-wise component of velocity shows good agreement with the experimental data, the stream-
wise component is seen to have a double-peak structure. This is perhaps due to the fact that
the velocity measured in the experiments only records the velocity of the seeded heavy gas while
the component of velocity of the surrounding air is ignored while the numerical result takes into
account the velocity field in the entire domain (including air and heavy gas).

Hence in the present studies impulsive acceleration of a dense gas curtain in air is investigated
by carrying out three-dimensional multi-species compressible Navier Stokes simulation of the flow.
The growth of the primary instability is seen to be sensitive to the initial concentration profile of
the species present in the flow requiring accurate characterization of the initial flow conditions. The
reshock destroys the ordered velocity field present in the flow leading to a transition to turbulent
flow causing enhanced mixing of the species present in the flow. Statistics of the fluctuating velocity
field from the numerical simulations are compared to experimental measurements.

6.2.1 High resolution simulation

A high-resolution calculation is conducted to investigate in detail the physics underlying the mixing
phenomenon. The initial conditions follow the same configuration represented in figure 23. This
case had the cross-sectional plane resolved by 5522 grid points. The total number of grid points in
the domain was nearly 500M and the case was run in parallel on 8192 processors.

Isosurface of Q-criterion colored by density

Isosurfaces of the Q-criterion are used to identify vortical structures in the flow, as shown in
Fig. 29 and 30 at four different times of the flow evolution. In these figures, red color indicates
heavier fluid and blue color indicates lighter fluid. In this simulation the reshock takes place at
approximately 600 µs. It is observed that a high degree of anisotropy still remains in the domain
for up to 150 µs after reshock. The existence of large scale structures is seen as the presence of
the long strands of vorticity in Fig. 29, 52 µs and 103 µs after reshock. At late times (Fig. 30) the
uniformity in the colored contours indicate that the fluids are more mixed with each other.

Mixing models: closure for species mass fraction equation

The high-resolution dataset is put to use to test the assumptions made in the BHR mixing
model (25), that was developed for variable density flows. The Favre-averaged Navier-Stokes equa-
tions are solved and the unclosed terms are modeled by certain approximations. The coefficients in
the model have been trained on datasets that were made available from simulations of variable den-
sity flows such as Rayleigh-Taylor instability and flows with shear-driven instability. However, lack
of robust datasets of RMI prevented calibration of the model for these flows. Using the high reso-
lution dataset of the flow field from the present simulation of RMI, certain modeling assumptions
made by the BHR model are tested below.

The Favre-averaged species mass fraction equation of the heavier gas SF6 (ignoring the molecular
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Figure 29: Isovolume of Q-criterion colored by density at times 652 and 703, from top to bottom
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Figure 30: Isovolume of Q-criterion colored by density at times 845 and 1007 µs, from top to bottom
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Figure 31: Budget of terms in the Fravre-averaged species mass fraction equation for SF6 (see
equation 6). Black = right-hand-side, yellow = left hand side, which is decomposed into: orange
= convective term, and green = temporal term.

transport terms) is given below.

∂(ρ̄ỸSF6)
∂t︸ ︷︷ ︸

roc

+
∂(ρ̄ũỸSF6)

∂x︸ ︷︷ ︸
Cnflux︸ ︷︷ ︸

LHS

= −∂(ρu′′Y ′′SF6
)

∂x︸ ︷︷ ︸
RHS

(6)

The relative magnitude of the ‘RHS’ term compared to the ‘Cnflux’ and ‘roc’ term is shown
in Fig. 6.2.1 at a time t∼1007 µs along the flow evolution. The large value of the ‘RHS’ term when
compared to the ‘Cnflux’ term indicates the importance of modelling it accurately in this flow.
This term is comparable to the time rate of change of the species mass fraction. The ‘RHS’ term
is the turbulent transport of species and requires closure. The yellow curve denotes (LHS-RHS)
which should be zero in an inviscid flow. The deviation from zero value is attributed to the presence
of molecular (and artificial) dissipation and errors associated with calculation of temporal rate of
change in an unsteady flow field from two time instances.

The term marked RHS is modeled using a gradient diffusion hypothesis. In the BHR model
suggested by Schwarzkopf et al (25) this unclosed term appearing in the Favre-averaged specie mass
fraction equation is modeled as,

−∂(ρu′′Y ′′SF6
)

∂x
≈
∂(Cc S√

K
ρ̄R̃11

∂(ỸSF6
)

∂x )

∂x
(7)

where Yn is the mass fraction of nth species. To test the validity of this modelling assumption, the
quantity −(ρu′′jY ′′n ) indicated as ‘SO’ (second-order term) is plotted along with (ρ̄R̃jmỸn,x/

√
K)

42



(indicated as ‘Model’) in Fig. 32. Results from the simulation on two different grid resolutions are
presented. The agreement of slopes of these profiles would indicate validity of the model. It is seen
that at early times and intermediate times before reshock the model does not capture the trend in
the second-order quantity. Good agreement is obtained after reshock. This is expected because of
the high degree of anisotropy existing in the flow field prior to reshock. Reshock provides additional
energy in the already complex flow field to help transition to a turbulent flow where the gradient
diffusion hypothesis is valid.

Similar analyses to the one presented above are conducted for unclosed terms appearing in other
equations (Favre-averaged equations for turbulent mass flux, total energy and Reynolds stresses)
and the corresponding details and results can be found in (26).

6.3 Richtmyer-Meshkov instability in spherical geometry

Lombardini et al. (22) have recently carried out Richtmyer-Meshkov instability (RMI) simulations
in cylindrical geometry. RMI for a spherical axisymmetric flow was investigated by Dutta et al.
(23). We consider a more general initial interface perturbation, with a spherical egg-carton profile
similar to the one used in planar RMI simulations (19; 20). An interesting feature of this profile is
that the perturbation wavelength is nearly constant over the spherical shell spanned by the material
interface as seen in figure 33. The fluids considered in this study are air outside and SF6 inside.
The shock is launched from the air (lighter) side of the interface. As the flow evolves, a series of
reflected and transmitted shocks are generated, which via baroclinic deposition of vorticity and its
subsequent transport serve to mix the two fluids in a turbulent mixing zone.

To help elucidate the figures and discussion in the sections below, it is useful to define the dif-
ferent regimes of the flow. Three broad regimes can be identified. The first is the converging shock
regime, when the shock is propagating inwards, not yet having reached the origin. The second is
the reflected shock regime, when the shock has rebounded off of the origin, but is still within the
simulation domain. The material interface is reshocked during this regime. The third regime is
that of turbulent mixing, when the baroclinic vorticity deposited by the initial shock and reshock
events, rises to a maximum and then decays as the two fluids mix.

These phases can be seen in slices of density and vorticity plotted in figures 34 and 35 where
the left plot shows the converging phase of the flow and the right plot shows the reflected phase
just after reshock and the turbulent mixing phase.

The mixing layer width is defined as h =
∫ s=Rmax

s=0 〈Y 〉(1 − 〈Y 〉)ds where angled brackets 〈.〉
indicate a tangential average as a function of radius. Figure 36 compares mixing layer widths for
the same initial perturbation, only the incident shock Mach number is varied. For all temporal
profiles, time has been normalized with time taken for the shock to reach the origin so that the
time of first shock and reshock are similar for all cases. Note that they cannot be identical, as in
the planar case, because shock speed is a nonlinear function of time for a spherically converging
shock. We also plot spatial profiles of 〈Y 〉(1 − 〈Y 〉) for the MI = 1.8 case which corroborates the
trend observed in the temporal profiles.

The h profile has a shape similar to that observed in the planar case, with a slight initial drop
as the incident shock compresses the perturbation, then a rise as the interface perturbation to grow
into spikes and bubbles under the action of baroclinically deposited vorticity. The compression due
to the reshock causes another drop in h, followed by a rise as the mixing layer grows in size and
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Figure 32: Validity of modelling assumption based on gradient diffusion hypothesis to close the
Favre-averaged specie mass fraction equation given by Eqn. 6. ‘SO’ denotes the second order term
appearing in the exact equation for species mass fraction (Eqn. 6) and ‘Model’ denotes its modeled
approximation (Eqn. 7).

44



(a) (b)

(c) (d)

Figure 33: Evolution of spherical RMI for MI = 1.8 and k0 = 32. Contours of mass fraction,
Converging shock regime: (a) t/ts = 0, (b) t/ts = 0.8. Post-reshock regime: t/ts = 2.4, t/ts = 3.1
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Figure 34: Evolution of spherical RMI for MI = 1.8. Slices of density, ρ/ρunshockedair (a) Converging
t/ts = 0.4, t/ts = 0.8, (b) Post-reshock regimes. t/ts = 2.4, t/ts = 3.1 Only half of the computed
octant is shown.

Figure 35: Evolution of spherical RMI for MI = 1.8. Slices of density, ρ/ρunshockedair (a) Converging
t/ts = 0.4, t/ts = 0.8, (b) Post-reshock regimes. t/ts = 2.4, t/ts = 3.1 Only half of the computed
octant is shown.
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Figure 36: (a) Comparison of mixing layer width. MI = 1.2 (red), MI = 1.8 (black), MI = 3.0
(blue). Width normalized by initial perturbation amplitude. (b) Profiles of 〈Y 〉(1 − 〈Y 〉) for
MI = 1.8 case, Converging (black) and post-reshock (magenta) phases. (a) Converging, t/ts = 0.2
(dotted), t/ts = 0.36 (solid), t/ts = 0.52 (dashed), t/ts = 0.68 (dash-dotted). (b) Post-reshock
regimes, t/ts = 2.23 (dotted), t/ts = 2.88 (solid), t/ts = 3.1 (dashed), t/ts = 3.74 (dash-dotted).
Y is the mass fraction of Air

becomes turbulent. The Mach number dependence is quite evident. In the linear growth phase,
the profiles line up at early times, except for the lowest Mach number, which flattens out earlier.
After reshock, peaks of the turbulent mixing layer widths occur at different times with the chosen
time normalization. The shock speed based scaling of time therefore does not apply to the post
reshock phase of the mixing layer growth. It is not clear that simple scaling parameters exist for
this highly nonlinear process. The slope of the h/h0 curve when evaluated against the scaled time
is similar. This is an indication that the scale used in the plot captures an important dependence.
Simulations at other Atwood numbers and interface perturbations are needed to judge if this is a
robust scaling.

Figure 37 shows the evolution of domain integrated vorticity variance i.e enstrophy and per-
turbation kinetic energy, which eventually becomes turbulent kinetic energy (TKE) as the flow
becomes turbulent. For ease of nomenclature, both are referred to as TKE in this paper. Similar to
the planar case, it shows a double peak structure. The first rise and decay corresponds to the linear
growth phase, while the second corresponds to the post-reshock turbulent mixing layer growth and
eventual decay. Enstrophy is normalized by a time scale based on the initial velocity impulse to
the interface by the incident shock, while TKE is normalized by shock speed. The vorticity profiles
collapse quite well during the linear phase, but diverge at late times, when the flow is nonlinear
and turbulent. The TKE profiles do not show such a good collapse, but the chosen normalization
yields the best comparison between different cases.

7 Interactions, outreach and acknowledgments

A fundamental aspect of the SciDAC program is its collaborative nature. This SciDAC Applica-
tion includes groups from several institutions: Stanford University, Lawrence Livermore National
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Figure 37: Comparison of Enstrophy and TKE. MI = 1.2 (red), MI = 1.8 (black), MI = 3.0 (blue).
(a) Enstrophy (b) TKE.

Laboratory, University of California Los Angeles and NASA Ames (through a SciDAC Science Ap-
plication Partnership). Active collaborations have been maintained during this project with all its
members. As an example, we cite the novel DNS of shock-turbulence interaction that Prof. Xiaolin
Zhong, co-PI on our SciDAC Science Application team at UCLA, is conducting using shock-fitting
algorithms. This new focus resulted from our collaborative work on comparative assessment of
algorithms for shock-turbulence interaction problems, and became possible by re-directing some of
Dr. Zhong’s SAP effort for this science application.

Besides collaborations within the SciDAC context, several opportunities have arisen during the
course of this work for external interactions with other members of the scientific community. These
can be categorized into three types, based on the resources that are being shared: science, software
and computer power.

Scientific collaborations include interactions with NASA Hypersonics and Supersonics projects,
DOE PSAAP project at Stanford University on multi-physics simulations and uncertainty quantifi-
cation for hypersonic vehicle and propulsion system flow, and the AFOSR-MURI project on inlets
and scramjets combustors. We regularly organize shocks meetings to discuss work-in-progress re-
lated to high-speed flows, sharing new ideas and fostering collaborations among members of those
projects. As already stated in this report, our DNS databases of shock-turbulence interaction have
been shared with members of the PSAAP project, with scientists at TU Munich, Germany, and
with scientists at Texas A&M University. We would like to acknowledge also valuable scientific
exchanges with D. A. Donzis at Texas A&M University, B. J. Balakumar and K. Prestridge at
Los Alamos National Laboratory, A. Cook, W. Cabot and B. Sjogreen at Lawrence Livermore
National Laboratory, H. C. Yee at NASA Ames Research Center and X. Zhong at the University
of California, Los Angeles.

Examples of software collaborations include our use of visualization tools, such as the VisIt soft-
ware developed by VACET, and the optimization of our Hybrid code guided by the HPCToolkit
software developed at Rice University, as directed by their Performance Engineering Research In-
stitute. In addition, one of our graduate students completed a summer internship at Lawrence
Berkeley National Laboratory working with a high-order adaptive mesh refinement code and ap-
plying it to simulations of shock-turbulence interaction.
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The necessary use of supercomputers to carry out our numerical simulations has brought a con-
tinued collaboration with the DOE Leadership Computing program and the NCCS Early Access
program. We have received valuable help from computer scientists at Lawrence Berkeley National
Laboratory (NERSC), Oak Ridge National Laboratory and Argonne National Laboratory (ALCF).
Reciprocally, our most demanding simulations performed at BG/P have helped to improve paral-
lel I/O libraries developed at ANL for their application to large datasets. In the course of this
SciDAC project we have received several Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) awards, allowing us to carry out the most computationally demanding
numerical simulations.

8 Publications and presentations

Below is a list of the publications and presentations produced during the course of this project by
the SciDAC team.

8.1 Journal Articles

A. Bhagatwala, S.K. Lele “Interaction of a converging spherical shock wave with isotropic turbu-
lence.” Phys. Fluids, 24, 085102 (2012)

J. Larsson, I. Bermejo-Moreno and S. K. Lele, “Reynolds- and Mach-number effects in canonical
shock/turbulence interaction” J. Fluid Mech., submitted (2012).

S.K. Shankar, S. Kawai, S.K. Lele, “Two-dimensional viscous flow simulation of a shock accelerated
heavy gas cylinder”, Phys. Fluids, 23, 5 (2011)

A. Bhagatwala, S.K. Lele “Interaction of a Taylor blast wave with isotropic turbulence.” Phys.
Fluids, 23, 035103 (2011)

J. Larsson, “Effect of shock-capturing errors on turbulence statistics” AIAA J. 49 (2010) 582–597.
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ods for numerical simulations of compressible turbulence”, J. Comput. Phys. 229 (2010) 1213-1237.
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large-eddy simulation of compressible turbulent flows”, J. Comput. Phys., 229 (2010) 1739-1762.

M. Kupiainen and B. Sjogreen, “A Cartesian Embedded Boundary Method for the Compressible
Navier- Stokes Equations”, J. Scient. Comput. 41 (2009) 94-117.
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of turbulent flows with shocks”, J. Comput. Phys. 228 (2009) 7368-7374.
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J. Larsson and S. K. Lele, “Direct numerical simulation of canonical shock/turbulence interaction”,
Phys. Fluids 21, 126101 (2009). 0

W. Wang, C. W. Shu, H. C. Yee and B. Sjgreen, “High order well-balanced schemes and applica-
tions to non-equilibrium flow with stiff source terms”, J. Comput. Phys. 228 (2009) 6682-6702.

A. Bhagatwala and S. K. Lele, “A modified artificial viscosity approach for compressible turbulence
simulations”, J. Comput. Phys. 228 (2009) 4965-4969.
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J. Larsson, “Blending technique for compressible inflow turbulence: algorithm localization and ac-
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J. Larsson and B. Gustafsson, “Stability criteria for hybrid difference methods”, J. Comput. Phys.
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8.2 Conference Proceedings

S.K. Shankar, S. Kawai, S.K Lele, “Numerical simulation of multicomponent shock accelerated flows
and mixing using localized artificial diffusivity method”, 48th AIAA Aerospace Sciences Meeting
352.

E. Johnsen and J. Larsson, “A low-dissipation method for DNS of compressible turbulent multi-
component and multiphase flows with shocks” 7th International Conference on Multiphase Flow,
ICMF 2010, Tampa, FL, May 30 – June 4, 2010

S. Hickel and J. Larsson, “On implicit turbulence modeling for LES of compressible flows”, in Ad-
vances in Turbulence XII, B. Eckhardt (Ed.), Springer, 2009.

S. Chumakov and J. Larsson, “Lag-modeling of subgrid-scale dissipation in large eddy simulation”,
in Turbulent Mixing and Beyond, 2009.
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from peta-scale simulations”, J. Phys.: Conf. Ser. 180, 012032, 2009.

J. Larsson and S. K. Lele, “Direct numerical simulations of canonical shock/turbulence interac-
tion”, Sixth International Symposium on Turbulence and Shear Flow Phenomena, June 22-24,
2009, Seoul, Korea.
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P. Rawat and X. Zhong, “High-Order Shock-Fitting and Front-Tracking Methods for Numerical
Simulation of Shock- Disturbance Interactions”, AIAA paper 2009-1138, 2009.

8.3 Presentations

A. Bhagatwala and Lele, S., “Shock Turbulence Interaction In Spherical Geometry, Thermal and
Fluid Science Aliates Conference, Stanford University, Stanford, California, February 2011.

S. Shankar and Lele, S., “LES of Multi-material Shock Induced Mixing, Thermal and Fluid Science
Aliates Conference, Stanford University, Stanford, California, February 2011.
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2009), Chamonix, France, June 28 - July 3, 2009.
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