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Abstract

One of the most significant impediments to advances in electrochemical energy storage lies in
the gap between fundamental understanding of atomistic phenomena and our understanding of
the impact of these phenomena on system performance at device scales. Atomistic models (DFT,
MD, MC) provide insight into such phenomena along with a means of quantification, but such
models are too computationally intensive to address device-scale behavior. Similarly, device-scale
insight for design and optimization can be obtained through continuum models that are sufficiently
fast, but these models account for only the simplest atomistic phenomena. There is thus a large gap
between our ability to develop fundamental understanding and our ability to use this understanding
to make rapid advances in energy storage technologies. The goal of this work is to help bridge this
gap through an innovative synthesis of atomistic and continuum approaches in which atomistic
phenomena are captured through fast reduced-order integral methods that can be imbedded into
continuum-like models describing device-scale behavior.
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Chapter 1

Introduction

Electrochemical energy storage is a critical technology for reducing petroleum consumption via
vehicle electrification and for reducing carbon emissions from both transportation and station-
ary power generation via increased reliance on intermittent renewable sources. Despite this im-
portance, however, batteries today suffer from low power density, low energy density, poor low-
temperature performance, limited cycle life, high cost, and a host of safety concerns [2, 1]. Capac-
itors offer high power density and more-or-less unlimited cycle life, but their energy densities are
very low even compared to present batteries and their costs are still much too high for widespread
adoption in these applications.

The many needed improvements in batteries and capacitors will require major advances on
multiple fronts, including improved electrolyte chemistries and improved anode, cathode, and sep-
arator materials [23]. These advances will in turn require improved fundamental understanding
of the underlying electrochemical and transport phenomena governing materials performance at
atomistic scales, as well as the practical embodiment of this fundamental understanding in com-
putational tools that enable device design and optimization at scales many orders-of-magnitude
larger than atomistic. This final step of linking atomistic phenomena to continuum scales is thus
an essential bridge between fundamental science and the practical innovations having large impact
at device scales.

Most atomistic phenomena relevant to energy storage are now well described by a suite of
computational tools including Density Functional Theory (DFT) at both molecular and subatomic
scales, various Monte Carlo (MC) methods, and Molecular Dynamics (MD). Collectively, these
tools provide fundamental insight into the double-layer structure, as well as the kinetics of charge
transfer at surfaces and in pores down to atomic size. Unfortunately, these methods are also ex-
tremely slow, requiring days, weeks or even months for solutions involving at most a million
atoms over times generally much less than a microsecond. As such, these methods cannot address
long-range ion transport and similar device-scale phenomena required for device design, and they
certainly cannot address materials optimization because this inherently involves numerous calcu-
lations as well as interactions between atomistic processes and device-scale transport. In contrast,
continuum-scale models do address device-scale phenomena such as heat transfer and long-range
transport, but this speed comes at the expense of neglecting nearly all atomistic phenomena due
to the widely disparate length and time scales of atomistic phenomena and the device. Moreover,
the coupled and multi-grid methods commonly used to address disparate scales are not helpful in
these problems because the required sub-grid calculations are still much too slow to perform in

13



real time.

The gap between atomistic theory and continuum models is thus substantial, and this seriously
impedes our ability to apply fundamental understanding of atomistic phenomena to the challenge
of making rapid advances in energy storage technologies. The objective of this project is to help
bridge this gap. To do so, we have undertaken efforts in three main areas. First, a quantum DFT
study of water under confinement has been performed to begin to understand how solvents change
in the near-surface region of electrolytic flows. In electrochemical applications, surface chemical
reactions are critical to device performance. Typically Butler-Volmer equations are used to model
the electrochemistry, but these relations are built upon many approximations. Without a deeper
understanding of how polar molecules are affected by the quasi-two-dimensional fluidic structure
and electric fields at interfaces, it is not possible to test these assumptions and develop better
models. The work performed in this project has shown that water forms previously unknown
structures under certain conditions, and quantifies how electron exchange becomes increasingly
important.

The second aspect considered in this work was to develop a computationally efficient but phys-
ically accurate reduced order model of the electric double layer. Prior MD and DFT efforts have
shown that atomistic effects dominate the Steric region of electric double-layers, and electrokinetic
flow experiments have repeatedly shown significant deviations from the predictions of Poisson-
Boltzmann theory. If atomistic behavior is not accounted for, a predictive model is not possible. A
goal of this work was to build a predictive DFT model which has sufficient accuracy for engineer-
ing analysis. Rigorous comparisons were made between MD and DFT calculations to understand
and rectify discrepancies between their results for a Lennard-Jones fluid at a charged surface. We
were able to obtain excellent agreement between the two methods, both of which captured the
divergence from the Poisson-Boltzmann double-layer model due to its lack of an atomistic de-
scription. As expected, the computational effort of the DFT model is orders of magnitude less
than the MD counterpart. We have extended this DFT model to a simple polar solvent modeled
by a dumbbell molecule. Because this model does not correspond to a real solvent, we have de-
veloped an optimization process to calibrate it against more accurate MD calculations involving
realistically structured solvents (e.g., water). The result is a highly efficient DFT model which can
correctly account for the discreteness of atoms at charged surfaces.

Finally, this work considered several methods to estimate classical transport coefficients from
molecular simulations such that they are directly informed by the atomistic dynamics but can be
used in efficient continuum models. Prior MD simulations had shown that accurate flow veloci-
ties can be obtained if the viscosity is based on mean densities integrated over the atomic density
profiles [74]. Chapman-Enskog models had also been used to account for the density variations in
electroosmotic flows [67]. In this work, we investigated two methods which can us MD simula-
tions to directly inform continuum transport properties. The first is the Green-Kubo method which
uses fluctuations in an equilibrium system to calculate transport coefficients such as viscosity and
conductivity. A limitation is that the method was restricted to bulk systems. We have extended the
theory to account for spatial inhomogeneities in one direction, in this case normal to the surface.
Thus, we can identify spatially-varying transport models which is necessary for energy storage
devices when the ionic concentration in the Stern layer can exceed that of the bulk by orders of
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magnitude. The other approach we considered is to use Bayesian inference to estimate polyno-
mial chaos expansions for transport coefficients from MD simulations. We demonstrated that this
method can successfully infer continuum thermal conductivity relations from MD. However, we
also identified regimes in which these models no longer hold. Specifically, at small length and
time scales as well as over very large temperature ranges. Similar estimates were obtained from
the Green-Kubo methodology. Thus, we can directly inform continuum transport models with
atomistic physics and obtain bounds for their applicability.

The synthesis of this work provides a means by which high fidelity atomistic simulations,
quantum DFT and MD, can be used to inform continuum DFT and transport models which are
orders of magnitude faster to evaluate. It is therefore reasonable to expect that such models could be
used for engineering analysis and design of electrochemical energy storage systems. The balance
of this report provides the technical details related to each effort. First, Chapter 2 describes the
results of confined water molecules obtained from quantum DFT associated with the first objective
of this work. The second goal, development of an accurate DFT model, is described in Chapters
3 and 4. Methods to obtain MD-informed transport coefficients are provided in Chapters 5 and
6, constituting the final objective of the project. Some conclusions and suggestions for follow-on
activities are provided in Chapter 7.
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Chapter 2

Density Functional Theory calculations of
water in confined systems

Hydrated anions exhibit a diverse range of complex interactions due to the strong stability of hy-
drogen bonds that are spontaneously formed throughout the aqueous network. Since the solvation
process usually results in a random orientation of molecules in the bulk, the formation of or-
dered anion/water clusters in chemical receptors allows a detailed characterization of molecular
interactions in these confined environments. In particular, there has been significant attention on
understanding the ordered water clusters in hydrophobic environments due to their importance in
chemical and biological interfaces. Hydrogen-bonded water networks can naturally grow at the
hydrophobic surface, often giving rise to a stable hydrate.

Upon solvation, a halide anion disperses its charge distribution spherically, making it an effec-
tive paradigm for anion hydration. Although hydrated halides such as X(H2O)n- have been the
subject of numerous theoretical studies over the last several years, examples of encapsulated an-
ion/water clusters by synthetic receptors are rare and are mostly limited to anions coordinated with
a single water as X(H2O)-. Other hydrated anions have been characterized within lattices formed
by a host matrix, a metal organic framework or between hosts. The structural characterization
and energetic formation of anion/water clusters are essential for understanding mechanistic details
of solvation processes, ion translocation in water-membrane interfaces, ion mobilities in the bulk,
and electrical phenomena within aqueous/salt interfaces. In this chapter we report an unanticipated
anion/water cluster assembled by one bromide and three highly-ordered “water tetramers” within
the cavity of a bicyclic host L, providing a perfect C3 symmetric propeller-shaped bromide/water
cluster [Br(H2O)12]- (Fig. 2.1). Such a highly symmetric, ordered assembly of a discrete an-
ion/water cluster has not been reported previously or predicted theoretically. The rigid geometry
of the host with its strategically-placed protonated nitrogens allows a stable, ordered assembly of
three tetramer rings with the encapsulated bromide-stabilized geometry that is not possible in a
bulk water system.

The bromide complex crystallizes as the hydrated bromide salt, [H6L(Br(H2O)12)]Br5, with
four water molecules per asymmetric unit. The cationic unit is found to sit on a crystallographic 3-
fold rotation axis, with the two tertiary nitrogen atoms unprotonated. One bromide is located inside
the cavity lying on the bridgehead N1/N14 axis. As shown in Fig. 2.2, the internal bromide is hex-

This work was done in collaboration with the Hossain group at Jackson State University and was published in
[83].
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Figure 2.1. Bicyclic receptor L and [Br(H2O)12]- guest.

acoordinated with three “water tetramers,” forming a propeller-shaped hydrate as [Br(H2O)12]-
. The encapsulated bromide is directly linked to three pairs of water molecules bound between
the cryptand arms. Each pair of water molecules is further connected to a water dimer (O4 and
O1) with two strong hydrogen bonds, completing the bromide/water pentameric cycle. The water
molecules are held with strong hydrogen bonds ranging from 2.66(3) to 2.77(2) , which are com-
parable to bond distances of 2.745(6) reported by Atwood and co-workers for the ice-like (H2O)8,
and 2.72/2.93 reported by Fujita and co-workers for molecular ice (H2O).

In the bromide/water complex, each coordinating water molecule (O2 or O3) is further bonded
with two protonated secondary amines (NH· · ·O = 2.75(2) to 2.92(2) ) at both ends of L, providing
an additional stability to these two water molecules as compared to other water molecules (O4S
and O1S) in a given cycle, which is also reflected in the thermal analysis (discussed later). Three
water molecules, which are directly coordinated with the bromide anion at each end of L, are linked
alternately with three secondary amines to form a circular hydrogen bonding network (Fig. 2.1a
and b). This specific arrangement of water molecules coupled with electrostatic interactions results
in an interlocking of [Br(H2O)12]- within the cryptand to bring the anion/water cluster inside the
cavity.

In order to characterize the nature of water molecules and the thermal stability of the complex,
thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) at Jackson State
University were performed. As shown in Fig. 2.3, the complex exhibited a first weight loss of
8.5% at a temperature of 200 ◦C, which corresponds to six water molecules. Another 8.5% weight
loss occurred in the temperature range of 200 to 262 ◦C, corresponding to the remaining six water
molecules. As seen in the solid-state structure, the complex contains twelve water molecules
which are tightly held in the strong H-bonding network. The equivalent loss (8.5%) in the TGA,
which corresponds to six water molecules at the two different temperature ranges, indicates that
the water molecules are held with two different strengths in the cluster. The first loss could be
due to the elimination of six water molecules that are not bound to the protonated amines, while
the second loss could arise from the removal of tightly bonded water molecules with the cryptand
as well as with the central bromide ion. This observation clearly indicates that the [Br(H2O)12]-
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Figure 2.2. Crystal structure of [H6L(Br(H2O)12)]5+ showing
the interlocked [Br(H2O)12]- guest with the cryptand: (a) side
view, and (b) view down the three-fold axis (external bromides
and hydrogen atoms of carbons are not shown for clarity); (c) per-
spective and (d) space filling views showing only [Br(H2O)12]-.

species is highly stable due to the interlocking with the cryptand, requiring high temperatures for
the elimination of water.3m,10d. In the DSC, two exothermic peaks are seen at around 210 and
240 ◦C with 23 J g-1 and 43 J g-1, respectively. Further major weight loss (51.7%) in the TGA
occurred at 350 ◦C, followed by 11.6% and 5.5% at 500 ◦C and 880 ◦C, respectively, due to the
decomposition and combustion of the complex.

The formation of discrete, ordered [Br(H2O)12]- with the cryptand was indeed a surprise since
the negatively-charged bromide was expected to interact directly with the hexaprotonated host. To
further understand the energetics of this unusual situation, density functional theory (DFT) calcula-
tions were performed on both the cryptand/[Br(H2O)12]- complex and the isolated [Br(H2O)12]-
species using the M06-2X hybrid functional which has been shown to accurately predict the bind-
ing energies of ions and other noncovalent bonding interactions in large molecular systems. Molec-
ular geometries (including the empty ligand) were completely optimized without constraints at the
M06-2X/6-31G(d,p) level of theory, and single-point energies with a very large 6-311+G(d,p) basis
set were carried out in vacuo. Optimized geometries, vibrational frequencies, and enthalpies of for-
mation were also calculated. Our calculations show that the cryptand/[Br(H2O)12]- complex has
a complexation enthalpy of 627.4 kcal mol-1 and further indicate that the isolated [Br(H2O)12]-
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Figure 2.3. Thermogravimetric analysis (TGA) curve of
[H6L(Br(H2O)12)]Br5 at a heating rate of 10 ◦C/min.

complex without the cryptand undergoes significant re-arrangement upon geometry optimization.
In contrast, the C3 symmetry of the cryptand with its unique positions of protonated nitrogens at
each of the C3-symmetric positions keeps each of the (H2O)4 tetramer units between the ligand
arms (Fig. 2.4). The symmetric geometry of [Br(H2O)12]- with the cryptand is undoubtedly due to
both the hydrogen bonding and positive charge of the cryptand as can be seen by the electrostatic
potential.

In conclusion, we have presented a very unusual, highly-ordered anion/water cluster assembled
by one central bromide anion and three “water tetramers” forming a discrete [Br(H2O)12]- species
interlocked with a bicyclic receptor. Each “water tetramer” is involved in coordinating the encap-
sulated bromide at both ends, resulting in a perfect C3 symmetric propeller-shaped bromide/water
cluster. The specific orientation of the cryptand provides both directional H-bonds and an accurate
spacing for water molecules to be coordinated with the central anion, resulting in a complemen-
tary host for the large hydrated bromide. Our results from both experimental studies and theoretical
calculations clearly demonstrate that the formation of the stable [Br(H2O)12]- species is assisted
by the hydrophobic environment of the host and efficient molecular recognition within the cavity
via water· · ·amine3m and water· · ·anion7 interactions. This finding represents a prototype for new
types of highly-ordered, anion/water hybrid clusters and a step towards the understanding of com-
plex aqueous phase environments of an anion, particularly with large hydrophobic surroundings in
biological systems.
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Figure 2.4. (a) Optimized DFT geometry of
[H6L(Br(H2O)12)]5+ showing stabilization of the [Br(H2O)12]-
guest with the cryptand at the M06-2X/6-31G(d,p) level of theory.
(b) Electrostatic DFT potential of [H6L(Br(H2O)12)]5+ in PCM
water solvent.
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Chapter 3

Comparison of Molecular Dynamics with
Classical Density Functional and
Poisson-Boltzmann Theories of the Electric
Double Layer in Nanochannels

3.1 Introduction

The structure of the electric double layer (EDL) on a charged surface has long been modelled us-
ing the Poisson-Boltzmann (PB) theory. PB incorporates Coulombic interactions among charged
particles but treats them as point charges, neglecting their finite size. Although this omission is
relatively unimportant at low charge densities, it permits physically unrealistic ion packing densi-
ties when the surface potential and charge density become large, as occurs for example in energy
storage applications [15]. To treat this deficiency, a number of modified PB theories have been
devised over the years [105] and have met with some success, though they lack the fundamental
foundation needed to accommodate a broad range of molecular interactions.

Molecular dynamics (MD) simulation provides the most fundamental and flexible platform
for analysis of molecular interactions. As such, it has been used rather extensively in modelling
of electro-osmotic flow (EOF) [27, 75, 94, 76, 49, 111] and to treat the higher charge densities
of importance in EDL capacitors [17, 24, 103]. However, MD simulations entail considerable
computational cost, making them impractical for treatment of time and length scales found in many
applications. Difficulties also arise in applying boundary conditions and in computing long-range
Coulombic interactions. For these reasons, alternative methods are still sought.

Alternative methods include modified PB approaches, integral equation methods, and classical
Density Functional Theory (c-DFT). c-DFT, sometimes referred to as fluids DFT, yields the time-
mean density distributions of molecular species that minimize a free energy functional [96, 91, 90,
70, 106, 34]. The free energy at any point is defined by a density weighted integration of molecular
pair-potentials over the surroundings. Thus, c-DFT and MD are readily comparable given the
same pair-potentials and input parameters. Unlike MD, however, c-DFT readily incorporates long-
range Coulombic interactions as the product of ion charge with the electric potential obtained by

This chapter was originally published in [59].
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solving Poisson’s equation. In addition, the c-DFT formalism yields an expression for the chemical
potential in terms of pair-potential integrals over the surrounding field. This chemical potential can
be incorporated into existing finite element models of steady and transient transport processes, thus
facilitating the introduction of atomistic physics into efficient multiscale models. Finally, c-DFT
computing times are far shorter than those required for MD.

Validation of c-DFT for EDL applications has been ongoing for the past twenty years; it has
encompassed a broad range of variants on the basic methodology and has been largely quite suc-
cessful [91, 90, 70, 106]. However, these past validations are largely limited to comparisons be-
tween c-DFT and Monte Carlo (MC) simulations for the so-called primitive model (PM), in which
the ions have defined charge and finite size but the solvent is treated as a background continuum
defined only by its dielectric constant. Two exceptions to this are the studies by Goel et al. [35, 36]
and Lamperski and Zydor [53] which compare c-DFT with MC for a non-primitive three com-
ponent model (3CM), in which the solvent and ions are all treated as distinct molecular species
differing in charge and size. However, all of these comparisons with MC simulations treat the ions
as hard spheres and the charged surface as a hard wall.

Unlike those previous studies, the present paper compares c-DFT with MD results for the
3CM. In further contrast with prior work, 12-6 Lennard-Jones interactions among all species are
included, and the wall interaction is modelled by the one-dimensional Lennard-Jones 10-4-3 po-
tential, as these are more realistic and more compatible with MD practice than hard interactions.
In addition, the present comparisons are extended to considerably greater charge densities than
previously explored, reaching into a range relevant to energy storage.

We view these increases in complexity and range of the EDL model as a first step toward
validation of c-DFT in a more realistic setting. This step is in the direction of the more general
MD studies of EOF [27, 75, 94, 76, 49, 111] which also include the additional complexity of polar
solvents, atomistically structured walls, and cross flow. An added complication for EOF is the
apparent enhanced visocity within the EDL [111]. In our earlier effort to model EOF [67], we
achieved favorable velocity-profile comparisons with MD simulation [75] by assuming a uniform
viscosity, and even better results when applying the modified Chapman-Enskog model for density-
dependent viscosity [10]. Comparison with EOF results is also hindered by absence of knowledge
regarding a reference state or chemical potential that is typically needed for comparison with c-
DFT. In order to directly extract that information, the reference state (adjoining reservoir or bulk
fluid in this case) must be explicitly modelled. Otherwise those properties must be inferred via
other means, such as the Widom insertion method for the chemical potential [108]. In addition,
previous MD simulations of the EDL [27, 75, 94, 76, 49, 111, 24, 89, 16, 113, 110] have generally
dealt with large ion concentrations and low surface charge densities, hence narrow EDLs with a
single dominant “Stern layer” peak more nearly consistent with PB theory. In the current work,
MD simulations were performed for a large range of ion concentrations and for surface charge
densities many times greater than is typical of EOF. In most cases, the bulk region can be clearly
distinguished, thereby revealing the reference state needed for comparison with c-DFT.

For the results of this paper, agreement between c-DFT and MD is deemed excellent, though
it degrades somewhat with increasing charge density. The following three sections describe the
details for PB, c-DFT simulations, and MD simulations. This is followed by a discussion of the
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results and concluding remarks.

3.2 PB Theory

Here, we provide an overview of the classical PB theory. While it is understood that modified
PB theories exist and provide improved model predictions[52], we choose to compare specifically
with the classical standard since it is still in widespread use. Moreover, the classical result provides
model validation for a specific regime, which will be discussed in more detail later in the paper.

In the PB formulation, ions near the wall form according to the Boltzmann distribution. The
first order approximation for the electrolytes is expressed as:

n+ = no
+ exp

(−φ e
kBT

)
and n− = no

− exp
(

φ e
kBT

)
. (3.1)

n is the concentration of the ion species, the superscript o denotes the bulk value, φ is the local
value of the total electric potential (relative to the bulk value), e is the elemental charge value, kB
is the Boltzmann constant, and T is the temperature. The summation of the two densities is the
volume density of ionic charge, ρ . For a 1:1 electrolyte, i.e. no = no

+ = no
−, ρ is then given by
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The 1D Poisson equation [73] is
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Multiplying both sides by 2(dφ/dz) gives
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. (3.4)

Integrating both sides from a point with zero potential (i.e. in the bulk) to some point at a finite
potential (i.e. in the double layer, z > d) yields
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Following the application of the Neumann boundary condition for the bulk, the result becomes

dφ(z)
dz

=−2κkBT
e

sinh
(

φ(z) e
2kBT

)
, (3.6)

where κ ≡
√

2noe2

εkBT is the inverse Debye length. After a separation of variables, a second integration
from the wall to a point in the double layer ultimately leads to

φ(z) =
4kBT

e
tanh−1

(
tanh

(
φw e
4kBT

)
exp [−κ (z−d)]

)
, (3.7)

where φw is the total electric potential evaluated at the wall-fluid interface. Inserting Equation 3.7
back into the ionic charge density equation, Equation 3.2, yields the charge density as a function
of position. Integrating the ionic charge density over all space yields the applied surface charge
density.

3.3 c-DFT Simulations

In c-DFT, the equilibrium density distributions, ρi(r), of multiple molecular species are determined
by minimizing the grand potential energy, Ω, of the system [96, 91, 90, 70, 106, 34],

Ω [{ρ}] = ∑
i

∫
ρi (r)( fi(r)−µ i)dr. (3.8)

Here, fi(r) is the Helmholtz free energy per molecule of the ith species, µ i is the corresponding
chemical potential, and the integral extends over the three dimensional domain of interest. The
curly braces on ρ denote the set of unknown equilibrium density distributions. Here, we utilize
a version of c-DFT developed at the University of Minnesota by Davis, Scriven, and colleagues
[96, 91, 90]. In particular, our EDL calculations will utilize the 3CM in which the two ion species
are represented as centrally charged spheres and the solvent molecules are treated as neutral spheres
[90, 35, 53]. Electrostatic interactions arising from the solvent molecules are represented by the
dielectric constant of the solvent, presumed to be spatially uniform.

The free energy consists of contributions from ideal gas behavior, the external potential field,
v(r), excess hard sphere repulsions, Lennard-Jones attractions [47], Coulombic forces, and short
range electrostatic interactions evaluated using the Mean Spherical Approximation (MSA) of Wais-
man and Lebowitz [101, 102]:

fi (r,{ρ}) = f ig
i + v(r)+ f hs

i +
1
2

(
f LJ
i + fCoul

i + f MSA
i

)
. (3.9)

The ideal gas component depends on the local species density, temperature, deBroglie wavelength,
Λi, and Boltzmann’s constant:

f ig
i (ρi(r)) = kBT

[
ln
(
Λ

3
i ρi(r)

)
−1
]
. (3.10)
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The external field, v(r), is the non-electrical portion of the potential field induced by the solid
walls. In most of the calculations presented here, v(r) is obtained by integration of a Lennard-
Jones potential over planar sheets of wall atoms. The integration [60] leads to the LJ 10-4-3
potential of the form:

v(z) = 2πε
LJ

2
5

(
d
z

)10

−
(

d
z

)4

−
√

2d3

3
(

z+
(

0.61/
√

2
)

d
)3

 , (3.11)

where d is the LJ diameter and z is the wall-normal position measured from the wall. Note that
the potential is a one-dimensional potential and is therefore a function of z, and not the general
position, r. The potential is cut off outside of 3.5 molecular diameters and shifted by subtracting
the value at the cutoff.

Hard sphere exclusions of liquid molecules, modelled by f hs
i , are included to avoid integration

of self-interactions. The excess free energy is based on the following formula derived from the
Carnahan-Starling equation of state:

f hs
i (ρ̄(r)) = kBT η

4−3η

(1−η)2 , η = ρ̄
πd3

hs
6 . (3.12)

The normalized mean density, η , appearing here represents the volume fraction occupied by
molecules having a hard sphere diameter dhs. The local mean density, ρ̄(r), used in calculating
these repulsions is a weighted average over the surrounding fluid,

ρ̄(r) =
∫ [

ω
0(s)+ω

1(s)ρ̄(r)+ω
2(s)ρ̄2(r)

]
ρ(r

′
)dr

′
. (3.13)

The weight functions, ωk(s), are chosen in accordance with a third-order scheme derived by Tara-
zona [92]; a corrected version is given by Vanderlick, Scriven, and Davis [96]. The weighting
functions are prescribed as:

ω
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{
3

4πd3 , s < d,
0, s > d,

(3.14a)

ω
1 (s)≡


0.475−0.648

( s
d

)
+0.113

( s
d

)2
, s < d,

0.288
(d

s

)
−0.924+0.764

( s
d

)
−0.187

( s
d

)2
, d < s < 2d,

0, s > 2d,

(3.14b)
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0, s > d,
(3.14c)

where s =
∣∣∣r− r′

∣∣∣ is the relative atomic position. Here we will assume that all molecular species
have the same diameter, dhs, thus permitting the local summation of all species into the total den-
sities, ρ(r), used in computing ρ̄(r).
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Attractive energies are defined by a density weighted integral of a pair potential function,
Ui j(s), over the surrounding fluid, separately summing the contributions from each species,

f LJ
i (r,{ρ}) = ∑

j

∫
ρ j(r

′
)Ui j(s)dr

′
. (3.15)

Although the LJ 12-6 potential is used in nearly all c-DFT modelling, authors differ in how they ex-
tract the attractive part. We follow one common approach by splitting the potential at its crossover
point, s = d, and cutting it off at s = smax = 3.5d.

Ui j(s) = 4εLJ
i j

[(d
s

)12−
(d

s

)6
]

for d ≤ s≤ smax (3.16)

Outside this interval, U = 0. To avoid a slight discontinuity in Ui j at s = smax, this truncated
function is shifted by subtracting Ui j(smax).

Coulombic contributions to the free energy are computed as the product of the molecular
charge, qi = ezi, with the local electric potential, φ :

fCoul
i (r) = qiφ(r). (3.17)

The electric potential field is obtained by solving Poisson’s equation [73],

∇
2
φ =−4π

ε

N

∑
i=1

zieρi, (3.18)

in which ε is the permittivity of the liquid, e is the elementary charge, and zi is the number of
charges per molecule.

The free energy associated with short range electrostatic interactions is modelled using MSA
[101, 102]

f MSA
i (r,{ρ}) = ∑

j

∫
ρ j(r

′
)∆ci j(r− r
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′
, (3.19)
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1+2d∗
d∗ , d∗ = d/λ , (3.21)

λ =

[
4π

εkBT ∑
i

ρiq2
i

]−1/2

. (3.22)

Here, λ is the Debye length which we evaluate using local values of the species densities in the
manner suggested by Gillespie et al. [34] and Wang et al. [106], rather than using the reference
densities that refer to the bulk reservoir fluid, as was done in most early implementations of MSA
[91, 90]. The molecular diameter appearing here is taken as the exclusion diameter, dhs.
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By taking the variation of Ω with respect to ρi(r) we obtain the following expression for the
chemical potential of each species, applicable to all points, r:

kBT lnρi + vi + f LJ
i + fCoul

i + f MSA
i + f hs

i + f hs2
i = µ i. (3.23)

The new term, f hs2
i , arises from (Fréchet) functional differentiation of the nonlinear hard sphere

repulsion term,

f hs2
i (r,{ρ}) =

∫
ρ̄(r)

∂ f hs
i

∂ρi
(r
′
)dr

′
. (3.24)

Numerical solutions to the preceeding integral equations are obtained on a discrete grid having a
uniform spacing of d/30. All of the integrals appearing in the c-DFT equations are represented
as weighted summations over the surrounding grid points. The weight factors in these summa-
tions are calculated by numerical quadrature prior to numerical solution, and these weights remain
fixed unless the grid is redefined. Moreover, in the case of 1D c-DFT, integration over two of the
three dimensions can be performed at the onset to obtain weights describing interactions between
slabs of volume bounded by parallel planes defined by their distance from the planar electrode
surfaces. Introduction of this discretization into Eqn 3.23 then yields an independent equation
for each species density at each grid point. This system of nonlinear algebraic equations is then
solved iteratively to obtain the equilibrium density field. For a 1-D system with channel width of
w = 10d, iterative solutions to the resulting system of coupled nonlinear equations require about a
minute of computing time on a single 3GHz Dual-Core Intel Xeon CPU processor to obtain five
digit accuracy after 4000 iterations. The numerical quadratures and primitive iteration scheme are
detailed in Ref. [92].

3.4 MD Simulations

MD simulations of a similar electrically charged nanochannel were performed with the LAMMPS
software package [72]. Important to note is that the MD domain is sufficiently wide in the wall-
normal direction so that the bulk fluid can be explicitly modelled to measure ion molarities, solvent
density, and the electric potential. The simulation domain consists of the electrolyte fluid bounded
in the z-dimension by LJ 10-4-3 walls, as discussed previously, and in the transverse directions
with periodic boundary conditions. Transverse dimensions are 5 nm × 5 nm, and the longitudinal
dimension varies depending on the bulk ion concentration. Interatomic potentials were modelled
with the superposition of a typical LJ 12-6 potential with Coulomb’s law, both with a 1.3 nm cutoff.
The pairwise potential is an abrupt cutoff, contrary to c-DFT which is cut and shifted. Fluid-wall
interactions are treated as described in the c-DFT section.

Equations of motion were integrated with the velocity-Verlet algorithm [97, 98] and a timestep
of 0.0005 picoseconds (ps). The electrolyte fluid is comprised of positive, negative, and neutral LJ
atoms, all with the same interaction parameters. The atoms are assigned a mass of 18.0154 grams
per mole. To account for the dielectric effects of a polar solvent, the dielectric constant εr was set to
80 to approximate water [27, 94]. In general, polar solvent molecules will solvate ionic charges and
prevent oppositely charged ions from approaching too closely. This can be mimicked by reducing
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all Coulombic interactions by the value of the dielectric constant. Long range Coulombics are
computed using the PPPM algorithm [42] with slab geometry [114].

To facilitate equilibration, the initial system contains only uncharged particles. The number of
particles must be selected such that the final steady state configuration produces the correct bulk
concentrations and densities. Note that this procedure requires some iteration to target the desired
values, and it can be approximately informed by the steady state configuration from the c-DFT
calculations or PB theory. The atom velocities are all initialized to zero since potential energy
variations will cause the system kinetic energy to increase rapidly. This uncharged system is equi-
librated to 300K for 100,000 timesteps using the Nosé-Hoover [69, 43, 61] thermostat. Following
the initial equilibration, fluid particles are randomly selected and assigned positive or negative
electric charges. The selection process fills each approximate EDL region with counterions and
randomly assigns the rest of the ions to the remainder of the domain according to a uniform distri-
bution. This produces a biased overall distribution aimed to expedite equilibration. A background
electric field is applied to simulate equally and oppositely charged surfaces. The charged system
is then equilibrated for 500,000 more timesteps to 300K. To avoid any local minima in the energy
landscape, the system is annealed to 1000K for 500,000 timesteps, followed by a cooling step back
to 300K for one million timesteps.

Following equilibration, thermostats are turned off. The system is allowed to evolve toward
a steady state solution for five million timesteps. The first one million timesteps are treated as
transient, and the remaining timesteps are confirmed to be statistically steady. Five permutations of
this simulation are performed for each molarity and surface charge combination. The permutations
differ in the initial configuration of atom positions. To increase sampling in the larger domain
for 10mM, an additional five permutations are simulated, and each production run is shortened
by one million timesteps. Not all molarity and surface charge combinations are tested due to
computational difficulty in achieving good statistics for low ion counts and low surface charges.

Spatial dependent particle concentrations are extracted by species from the domain via an
atomistic-to-continuum (AtC) interpolation method [117]. The resolution of the 1-D continuum
mesh is approximately 0.1 Å. Density data is sampled every 0.25 ps. After removing the tran-
sient data, the remaining data is time- and ensemble-averaged. Species concentrations, scaled by
the atomic charge, yield the spatially resolved free charge density, ρ f ree. Integrating Poisson’s
equation,

∇ · (ε0εrE) = ρ f ree, (3.25)

produces the z-component of the electric field. Note that, consistent with c-DFT, εr = 80 is assumed
to be pervasive in this integration, regardless of the presence or absence of solvent. Furthermore,
the electric field is offset by the applied field, which is also augmented by the relative permittivity.
The electric potential can similarly be obtained by integrating the electric field:

−∇φ = E. (3.26)

The bare wall potential, also known as the electric surface potential, is determined by taking the
electric potential at the fluid-wall contact point in reference to the electric potential evaluated in the
bulk; see Figure 3.4. For this study, the contact plane, not to be confused with the shear plane where
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the Zeta Potential is measured, is defined to be one half-molecular diameter away from the LJ 10-
4-3 origin, to be consistent with the c-DFT calculation. Moving the measurement location within
the free space region will merely add a linear offset to the electric potential (linear with respect
to the applied surface charge) since the amount of charge does not change. The ion molarities are
also measured by taking the average density of the channel center.
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Figure 3.1. Diagram of zeta potential (blue) and bare wall poten-
tial (red), also known as the electric surface potential. Since finite
atom sizes are foreign to PB theory, it makes no distinction be-
tween the two. The diagram also shows where the channel width,
w∗, is measured from.

3.5 Results

Results are reported in terms of normalized position, z∗ = z/d, channel width w∗ = w/d, density
ρ∗ = ρd3, potential φ∗ = φ e/kBT , and surface charge σ∗ = σd2/e. Parameters used in the EDL
simulations are given in Table 3.1.

Bulk ion densities are varied from 1mM to 1M. The lower end of this range is typical of mi-
croscale chemical laboratory devices while the upper end applies to electrochemical energy storage
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Parameter c-DFT MD

Atom-Atom εLJ (eV) 0.006596 0.006596
Atom-Atom d (Å) 3.1507 3.1507
Atom-Atom inner cutoff (Å) 2.9302 N/A
Atom-Atom outer cutoff (Å) 11.0275 13.0
Atom-Wall εLJ (eV) 0.1351 0.1351
Atom-Wall d (Å) 3.1507 3.1507
Atom-Wall outer cutoff (Å) 11.0275 11.0275
Relative Permittivity εr 80 80
Nominal Temperature (K) 300 300
Atomic Mass (g/mol) N/A 18.0154

Table 3.1. Simulation parameters for c-DFT and MD calcula-
tions. The word “atom” is used to represent either a solvent or
solute particle, as opposed to the LJ wall.

devices and desalination processes. Within this range of ion concetrations, the Debye thickness
from PB theory λ decreases from approximately 97 to 3 Å or, equivalently, λ/d decreases from
30 to 1 with increasing concentration. Thus, to avoid excessive EDL overlap, we utilized a chan-
nel width of w∗ = 12.55 for bulk concentrations of 100mM and 1M, but increased the width to
w∗ = 100 for the 10mM and 1mM runs. Note that these bulk ion concentrations refer to the state
that would exist in a zero-potential reservoir of infinite extent in equilibrium with the charged
channel. The same state would also be found at the center of a charged channel having a width
much greater than the Debye thickness. For comparison purposes, the bulk of the MD domains is
defined as the center ∼12 Å and ∼45 Å for the w∗ = 12.55 and w∗ = 100 channels, respectively,
where the electric potential is observed to be relatively flat.

Channel widths quoted here represent the distance between the liquid/solid contact surfaces
on opposite sides of the channels, as indicated in Figure 3.4. Similarly, the bare wall potentials
reported here are measured at these same contact planes. Zeta potentials, by contrast, refer to the
potential at the Stern plane: the center plane of the first layer of fluid molecules at a distance d/2
from the contact plane.

3.5.1 Preliminary Model Validation

Prior to the comparisons presented here, we had previously [67] used our c-DFT to replicate c-
DFT results presented by Vanderlick et al. [96] and Tang et al. [90], as well as two of the MD
simulations presented by Magda et al. [60].
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As a prelude to the upcoming comparisons of our MD and c-DFT for the EDL, we performed
an initial comparison of density profiles for a fluid confined between uncharged planar walls. The
parameters are taken from an MC simulation by Snook and van Megen [88] for a channel width of
7.5 measured between the center planes of the first layers of wall atoms in the 10-4-3 LJ walls; this
is a width of 6.5 between fluid/solid contact planes. The LJ energies for the fluid-fluid and fluid-
solid interactions are both taken as εLJ/kBT = 0.833 and the chemical potential is γ/εLJ =−2.477,
which corresponds to a bulk fluid having a normalized density of ρ∗ = 0.5925. Since the authors
reported the number of fluid molecules in their MC simulations, we used this to guide the number
needed in our MD.

Figure 3.2 compares Snook’s MC and our MD with our c-DFT results for two different choices
of the hard sphere diameter. The c-DFT result for dhs = dLJ (dotted lines) has a spacing between
molecular layers slightly greater than that of the MD and the MC simulations. This mismatch is
corrected by the use of dhs = 0.93dLJ in the c-DFT calculation indicated by the solid line. This
adjustment, similar in concept to the Barker-Henderson diameter [8], helps to align the spacing
while having negligible influence on the magnitude of the density peaks. Thus, we make this
adjustment of spacing mainly to facilitate the upcoming comparisons between c-DFT and MD for
the EDL.

3.5.2 Comparison of c-DFT and MD Simulation of EDL

Figure 3.3 provides an overview comparison of computed surface potential versus surface charge
density among our MD, our c-DFT, and classical PB modelling. This is a very important metric
as the inverse slope of this plot is the capacitance. Since kBT/e ≈ 25mV, the upper range of the
potential slightly exceeds 1V, typical of double layer capacitors.

MD results (symbols) are shown for three charge densities (0.44, 0.88, and 1.75) and for bulk
concentrations of 10mM, 100mM, and 1M. Additional charge densities (0.22, 0.66, 1.32) are in-
cluded for 1M. The agreement between MD and c-DFT is judged as excellent for 1M but degrades
moderately at the lower concentrations. MD results are not included for 1mM due to the statistical
difficulty in obtaining convergence of the very low ion densities in the channel center.

The classical PB results shown in Figure 3.3 are obtained by application of the Grahame equa-
tion [38] which is strictly applicable only to a semi-infinite medium,

σ
∗2
=

ρ∗B
πP

[cosh(zφ
∗
w)−1] , (3.27)

where ρ∗B =CBAd3, CBA is the bulk ion concentration in ions/Å3 (molarity × Avogadro’s number
× 10−27), and P = e2/4πεkBT d is the plasma constant. Thus, the very precise agreement in
electric surface potential between MD/c-DFT with PB at low charge density is an indication that
our channel widths are sufficiently large to minimize the effects of EDL overlap. Also, such a
precise agreement at low charges might not have been anticipated given that the layered density
profiles of c-DFT and MD differ greatly from their smooth PB counterparts. Most importantly,
it is seen that the PB substantially deviates from MD/c-DFT at charge densities of 0.5 or greater.
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Figure 3.2. Snook MC (green circles) and present MD (red
squares) compared to c-DFT (solid and dashed lines) with differ-
ent choices of the hard sphere diameter, dhs, relative to LJ diameter,
dLJ .
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In an effort to find a fairer comparison to the PB, we tried two alternatives. In the first of these
attempts, we treated the bare wall potential of the PB as though it were a zeta potential and used the
surface slope to extrapolate backward by d/2 to the corresponding bare wall location (see Figure
3.4). This produced a PB that rose much faster than the c-DFT/MD. As a second alternative, we
compared the bare wall potential of the PB with the zeta potential of the c-DFT. This reduces
the disparity between c-DFT/MD and PB at large surface charges since the zeta potential of the
c-DFT/MD increases far more slowly than the bare wall potential, but such a comparison still
involves substantial error.

Example concentration profiles for three charged cases are shown in Figures 3.4a, 3.5a, and
3.6a. All three examples are targeted to a 100mM ion solution with varying surface charge load-
ings. Corresponding MD and c-DFT solutions are overlaid to show the agreement. Since populat-
ing the MD domain to a corresponding c-DFT case is a complex inverse problem, the MD models
used as inputs: integrated solvent and solute density profiles, and surface charge density outputs
from the c-DFT simulations. Since agreement is good between the two models, this method pro-
duces nearly analogous cases for comparison. An additional c-DFT iteration to match the MD is
also done in some cases. The left hand side of Figures 3.4a-3.6a show the concentration profiles
on a linear scale, distinguished by atom types. The right side of the figures are the analogous plots
displayed on a logarithmic scale to showcase good agreement even over five to six decades.

The peak heights and widths appear to differ slightly between the two models, particularly near
the wall. c-DFT tends to have broader, shorter peaks while the MD has narrower, tall peaks. This
is especially noticable in the first two layers in Figure 3.6.

The particle density profiles are multiplied by the atom types’ respective valences to obtain
a charge density profile, which is shown in the top graph in Figures 3.4b, 3.5b, and 3.6b. The
second and third plots correspond to the density profile once- and twice- integrated to obtain the
z-component electric field and electric potential, respectively. The results from the two models are
overlaid again in these plots, and the agreement is shown to be quite good. Even despite the slight
mismatch in peak values observed in Figures 3.4a, 3.5a, and 3.6a, the integrals seem to converge
to similar solutions. This is a result of having an equal amount of charge per layer, only differing
in the mobility of the atoms within those layers.

3.5.3 Sequential Layer Charging Phenomenology

Charging of the EDL proceeds largely as a sequential layer-by-layer displacement of solvent
molecules by counterions, as illustrated in Figure 3.7 with c-DFT results at 10mM. Similar results
were observed in the MD, particularly at higher concentrations. As seen in the inset density profiles
for σ∗ = 1.0, all of the solvent has been displaced from the first layer prior to the formation of a
second layer of counterions. With increasing surface charge density, the counterion density peaks
in the first and second layers both continue to increase in height and narrow in width until all of
the solvent has been excluded from the second layer, as seen in the inset for σ∗ = 2.1. The third
stage of the process continues in a similar fashion until all of the solvent has been displaced from
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(b) Charge density, electric field, and electric potential comparison of MD/c-DFT/PB

Figure 3.4. MD/c-DFT EDL comparison for 0.44 normalized
surface charge. Electryolyte concentration is 93.239mM (100mM
target). Bulk solvent density, normalized by d3, is 0.71711 (0.7
target).
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(b) Charge density, electric field, and electric potential comparison of MD/c-DFT/PB

Figure 3.5. MD/c-DFT EDL comparison for 0.88 normalized
surface charge. Electryolyte concentration is 113.45mM (100mM
target). Bulk solvent density, normalized by d3, is 0.72227 (0.7
target).
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(b) Charge density, electric field, and electric potential comparison of MD/c-DFT/PB

Figure 3.6. MD/c-DFT EDL comparison for 1.75 normalized
surface charge. Electryolyte concentration is 107.59mM (100mM
target). Bulk solvent density, normalized by d3, is 0.74146 (0.7
target).
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Figure 3.7. Layer filling phenomenology. Aside from initial non-
linear behavior, the capacitance trend is a nearly piecewise linear
function. Inflection points correspond to solvent depletion from
subsequent near-wall layers, as depicted in the figure insets.
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the third layer at σ∗ = 3.6.

Another interesting feature of this step-like layer filling process is that each stage proceeds
with a nearly constant capacitance, as indicated by a constant slope in Figure 3.7. The transition
from one stage to the next is smooth but most of the charging occurs as a piecewise linear process
with the slope increasing (and the capacitance decreasing) with each successive stage. This seems
physically reasonable, as it becomes more difficult to accumulate charge in layers more remote
from the surface. However, this interpretation does not appear to apply in the initial charging of
the first layer which begins with a very steep slope (small capacitance) before turning off onto
a much flatter, nearly constant slope. The initial non-linear phase occurs because ionic charges
are relatively evenly distributed through the EDL for low surface charges. As loading increases,
peak formation becomes energetically favorable, and most of the charge is found distributed near
the walls, as shown in Figure 3.8. As the peak builds up (likewise for subsequent layers), the
peak-structure’s contributions begin to dominate those of the tail. Aside from the initial non-linear
phase, these features of the charging behavior are expressly absent from theories not accounting
for finite size effects since the physics arise from layered density profiles and solvent displacement
processes entirely foreign to PB.

3.5.4 MSA Treatments Leading to Charge Inversion

In MSA formulations of c-DFT, the Mean Spherical Approximation of Waisman and Lebowitz
[101, 102] is used to solve the Ornstein-Zernike equation relating the radial distribution functions
and direct correlation functions of ion species. The resulting pair interactions can then be par-
titioned into a direct Coulombic contribution, a hard sphere repulsion, and an electric residual
contribution with the latter given by our Eqns 3.19-3.22 [106]. Historically, the Debye length
appearing in Eqn 3.19 had been evaluated using the ion concentrations of the bulk state existing
within the center of a very wide channel or within an external reservoir, referred to here as the
MSAB approach. This was traditionally done, in part at least, to ensure electrical neutrality of the
reference state since the MSA theory is derived as a perturbation about a neutral reference state.
The expectation of the perturbation approximation is that the final result is a small correction to
the reference. Given that large density variations occur near the walls, the perturbation ansatz can
not be expected to work. More recent MSA implementations by Gillespie et al. [34] and Wang et
al. [106] have used a local, non-uniform fluid as the reference state, as opposed to the bulk fluid.
Because local ion concentrations are not electrically neutral, these authors defined an equivalent
charge-neutral reference state having the same ionic strength as the local state. Thus, denoting
reference densities with the subscript “ref,” a pair of ion densities must satisfy the requirements
that

ρ
+
ref +ρ

−
ref = ρ

++ρ
−, (3.28)

ρ
+
ref

(
q+
)2

+ρ
−
ref

(
q−
)2

= ρ
+
(
q+
)2

+ρ
− (q−)2

. (3.29)

For the present univalent examples, the net result is that

ρ
+
ref = ρ

−
ref =

(
ρ
++ρ

−)2
. (3.30)
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Figure 3.8. The distribution of charge in the EDL as surface
charge increases (according to PB – similar trends are expected for
MD and c-DFT since all three models are in good agreement in this
regime). The fractional amount of charge found nearest the wall
increases as surface charge increases. Prior to peak formation, the
long tail of the EDL impacts the electric surface potential greatly,
which causes the non-linear charging trend.
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Wang et al. [106] found this approach to be in good agreement with MC simulations [95] of
a solvent primitive electrolyte. Here we test this approach, referred to as MSAL, against MD
simulations of the 3CM in which ion and solvent species are all of finite size.

All of the preceding comparisons of c-DFT with MD use local ion densities evaluated at indi-
vidual grid points to implement MSAL. We find that those comparisons with MD are moderately
degraded when the “local” Debye length is computed in an alternative manner by averaging over
a surrounding sphere of molecular size, as suggested in previous versions of MSAL [101, 102].
But these differences are very minor compared to deviations between MSAL and MSAB versions
of c-DFT. As seen in Figure 3.9a, the ion concentrations in the first layer do not differ greatly in
using these different versions of MSA, but the MSAL produces a broader spreading of non-neutral
ion concentrations into the central region of the channel. This leads to a substantial difference in
the electric potential distributions depicted in Figure 3.9b. The MSAL profile has a much broader
region of gradually changing slope, resulting in a surface potential about 20% greater than MSAB.
Also included in Figure 3.9b is a c-DFT calculation that entirely excludes the MSA electric resid-
ual terms while retaining the Coulombic and hard sphere interactions, referred to as MSA0. This
leads to a surface potential that is about 20% above MSAL. Given the excellent agreement of
MSAL with MD in our earlier results, we conclude that MSAB and MSA0 should be rejected in
favor of MSAL.

Differences between MSAL and MSAB are further illustrated in Figure 3.10 which displays
bare wall and zeta potentials. The potentials for MSAB (solid lines) generally fall below the cor-
responding results for MSAL (dotted lines). This can be seen by comparing the MSAB and MSAL
results for 1mM which are both indicated in Figure 3.10 in green and by comparing Figure 3.10
with Figure 3.3. Another interesting feature of Figure 3.10 is that the zeta potential for MSAB
becomes negative for bulk concentrations of 1M and for charges ranging from 0.4 to 0.9. This
is an indication of over-screening or charge inversion which occurs when counterions adjacent to
the electrode are more than sufficient to screen the surface charge. Although this phenomenon has
been seen in some previous MD simulations (with polar solvent) [75, 76], it does not occur in our
MD (with non-polar solvent) or MSAL predictions for the parameter ranges considered here. So
it is suspected that the charge inversion seen in Figure 3.10 may be an incorrect c-DFT result that
arises from the MSAB approximation. To better understand this phenomenon, we are studying the
effects of polar solvents in an ongoing research.

Charge inversion attributed to MSAB is also illustrated in Figure 3.11. Here, the solid symbols
indicate the MC results of Lamperski and Zydor [53] for a 3CM similar to the present 3CM except
that the molecules are hard spheres and the electrode surface is a hard wall; there are no LJ inter-
actions. Also, the bulk density is 0.573 rather than 0.7 and the problem is posed on a semi-infinite
domain. Our MSAL results for this configuration are in reasonably good agreement with Lamper-
ski’s MC, whereas our MSAB results indicate charge inversion and a resulting region of significant
opposite potential near the electrode. The charge inversion is reversed in regions further from the
electrode where the coions outnumber the counterions, as apparent in the inset of Figure 3.11.

Figure 3.12 compares the zeta and bare wall potentials computed by Lamperski (symbols) with
our MSAL and MSAB results. It is seen here that the two versions of c-DFT tightly bracket the
MC results. So, from this comparison, there is no reason to prefer one approach over the other. We
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(a) Species Density Profiles (b) Electric Potential Profiles

Figure 3.9. Comparison of results obtained with alternative im-
plementation of MSA. Local evaluation of Debye length in MSAL

produces broader distribution of counterions and higher surface
potentials than bulk evaluation in MSAB. MSAL is in best agree-
ment with MD results, as suggested by comparisons in Figures
3.3-3.6.
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Figure 3.10. Capacitance comparison for MSAB (solid lines)
vs. MSAL (dashed lines). The bare wall potentials are the upper
curves, labeled as φBW , and the zeta potentials are the lower curves,
labeled as ζ . Colors denote bulk ion molarities, as indicated in
the plot. MSAB predicts strong charge inversion and negative zeta
potentials for 1M, in contrast to MSAL and MD.
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Figure 3.11. MSAB and MSAL implementation schemes com-
pared with Lamperski MC electric potential and ion density pro-
files. MSAB produces charge inversion in contrast to MSAL and
MC.

46



note that differences between our c-DFT MSAL and Lamperski’s MC results, particularly those
in the potential profiles of Figure 3.11, may arise partly from differing treatments of electrostatic
interactions. The MC uses the method of charged planes to estimate long-range forces which is
thought to be less accurate [16] than the corrected 3D Ewald summations used in our MD and the
Poisson solver used in our c-DFT.

3.6 Conclusion

MD and c-DFT models of electrolyte fluids contained within nanochannels were studied and com-
pared to classical PB theory. To facilitate proper comparison, special care was taken to model anal-
ogous parameters with both techniques. The simulations performed in this study used the 3CM,
in which solvent and solute are represented by three distinct molecular species. The fluid-fluid
and fluid-solid interactions use LJ-type potentials, in contrast to previous c-DFT-to-MC compari-
son studies, which utilized hard-sphere and hard-wall repulsions. In further contrast with previous
studies, our simulations cover a wide range of electrolyte concentrations and surface charge densi-
ties. Our MD models are able to simulate concentrations as low as 10mM and still produce density
profiles in agreement with c-DFT over a five to six decade range. All of our nanochannels are suf-
ficiently wide to prevent overlapping EDLs, even in the case of low ion concentrations (hence large
Debye lengths). A discernible bulk region with zero potential is important for direct comparison
between MD and c-DFT.

As a result, MD and c-DFT methods are in excellent agreement for various qualitative and
quantitative assessments, particularly for large molarities. Metrics for assessment include atomic
density, charge density, electric field, and electric potential profiles, as well as capacitance trends
for various loadings and concentrations. Specifically, density profiles agreed particularly well
on peak location and spacing, while differing slightly on peak height and width. Comparisons
are improved when c-DFT uses a modified hard sphere radius of dhs = 0.93dLJ and the MSAL
implementation. MD calculations tended to have taller, narrower peaks than the c-DFT; this is
resolved by the fact that there is an equivalent amount of charge in the layer.

Moreover, as electrolyte concentration decreases and surface charge loading increases, devi-
ation from PB becomes increasingly apparent. These trends highlight the effect of distinct ion
packing layers, which is due to the finite sizes of electrolyte and solute. Distinct layers result in
significantly reduced capacitances relative to the predictions from PB theory. Further investigation
shows a layer packing phenomenon in which a new ion peak begins to form when solvent is com-
pletely expelled from the previous fluid layer. The onset of the new ion peak produces a kink in
the electric field and electric potential profiles, thereby reducing the capacitance of the EDL. Since
this behavior arises from finite size effects, it is not captured in PB theory.
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Figure 3.12. Bare wall and zeta potential trends of MSAB and
MSAL implementation schemes compared with Lamperski’s MC.
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Chapter 4

Comparing TIP3P Solvent in Molecular
Dynamics with Asymmetric Dipole in Fluids
Density Functional Theory for Electrolyte
Solutions in Charged Nanochannels

4.1 Introduction

As device miniaturization and electrical energy storage becomes increasingly relevant in today’s
technologies, we must strive to better understand the structure and basic physics of the electric
double layer (EDL). In a recent study, we have shown using molecular dynamics (MD) simulation
and Fluids Density Functional Theory (f-DFT) that a simple coarse-grained solvent model with
a uniform dielectric constant was sufficient to illustrate large deviations from classic Poisson-
Boltzmann theory [59]. It was shown specifically that beyond a certain surface charge loading, a
steric layer of ions (the Stern layer) would form near the interface which causes a local depletion
of the solvent. Furthermore, the ions have a finite packing structure which dictates the size of the
Stern layer. This phenomenon is expressly absent from PB theory, which allows infinite packing.

Note that the dielectric constant is applied specifically to model the polar nature of the solvent,
since this aspect is missing from the coarse-grained model. The approximation is expected to
break down as the fluid becomes non-bulk-like, and it is definitely invalid for regions where the
solvent is depleted. To understand the actual nature of the solvent and ion-solvent interaction
at a charged surface, we shift our model from the coarse-grained solvent to a solvent molecule
with explicitly described dipole(s). The solvent molecule is modelled based on water. Given the
speed of f-DFT calculations, being able to model those interactions accurately with f-DFT would
be an ideal resource for exploring a large parameter-space of this type of system. Unfortunately,
the current code capabilities and limitations of the theory constrain our ability to model bonded
systems. Conversely, for MD simulations, we can easily apply the TIP3P water model, where
three rigidly bonded atomic sites serve as charge carriers, and the “oxygen” site also interacts with
a Lennard-Jones potential. In an effort to find an appropriate f-DFT model for the water solvent,
the f-DFT solvent is modelled as a dumbbell molecule with varied site sizes, charges, and bond

The primary authors of this chapter are J. Lee and J. Templeton
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length. The f-DFT solutions are matched against the MD solutions in an optimization routine to
find the most ideal set of parameters.

Following the optimization, the f-DFT is applied to a number of surface charges and ionic
concentrations, which would be too time consuming (and virtually impossible in some cases) to
simulate using MD. The following section describes the MD and f-DFT methods. This is followed
by a presentation and discussion of the optimization and parameter study results, and lastly, we
give final remarks and discuss future work.

4.2 Methodology

4.2.1 Molecular Dynamics

MD simulations of an electrolyte solution in an electrically charged nanochannel were performed
with the LAMMPS software package [72]. The TIP3P water model (MSM) [48] is used in order to
simulate some of the complexities of a molecular polar solvent. The models are examined over a
range of surface charge densities. The simulation domain consists of a 1:1 electrolyte fluid bounded
in the z-dimension by two substrate walls, which are positioned such that the EDLs do not overlap
and a bulk region can be defined. Classically, EDL lengths are determined by the Debye lengths,
which depend on the ionic molarity. For ease of computation, we only explore the 1M case, which
has a Debye length of 3.08 Å. Periodic boundary conditions are applied in the transverse directions
with a cross-section of 5nm × 5nm. Atomic interactions are modelled with Lennard-Jones (LJ)
[47] and Coulomb’s law. Simulations are performed at a nominal temperature of 300K.

In the TIP3P water model, there are three charge and mass carrier sites, and only the oxygen site
interacts via LJ with other atoms and molecules. The charges on the hydrogen and oxygen atoms
are fractional charges, and the masses are obtained from the periodic table. Bonds and angles
are held rigid using the SHAKE algorithm [82]. All ions have the same atomic size and mass as
the oxygen atom, and the mass is the same as the total water molecule. We use an unstructured
one-dimensional LJ-type potential to model the substrate-fluid interaction.

Equations of motion are integrated with the velocity-Verlet algorithm [97, 98]. A timestep of
0.0005 picoseconds (ps) was used. LJ and Coulomb interactions both use a 1.3 nm cutoff radius.
Long range Coulombics are computed using the PPPM algorithm [42] with slab geometry [114].
A summary of simulation parameters is shown in Table 4.1.

The systems are initialized according to the following procedure. Oxygen atom and ion coor-
dinates are randomly placed at body-centered-cubic lattice sites. Hydrogen atoms are placed in a
random configuration around the oxygen atoms. The total number of solvent atoms is chosen such
that the bulk solvent density targets that of water at standard temperature and pressure. Similarly,
the number of ions is chosen such that the the bulk molarity is targeted towards a desired value.
Note that for MD simulations, bulk densities and molarities can not be determined a priori, so
some iteration is often required. To estimate the number of ions to place in the system given a
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Atom ε (eV) d (Å) m (g/mol) q (e−)

H 0.0 0.0 1.008 +0.415
O 0.006596 3.1507 15.9994 −0.830
+ Ion 0.006596 3.1507 18.0154 +1
− Ion 0.006596 3.1507 18.0154 −1

Table 4.1. Atomistic parameters for all simulation variations.
Inter-species parameters are obtained by the usual mixing rules:
geometric mean for ε and arithmetic mean for d.

particular bulk molarity, an approximate bulk region is defined. The definition is based on the PB
Debye length:

λD =

√
εkBT
2noe2 , (4.1)

where kB is the Boltzmann constant, T is the temperature, no is the bulk molarity, and e is an
electron charge. The region extending beyond the Debye length (from both substrates) is regarded
as the bulk, for initialization purposes. Inside this bulk region, the number of ions is computed
directly from the target molarity. Inside the PB EDLs, the number of counterions is sufficient to
perfectly screen the surface charge, while the number of coions is set to zero.

The z-dimension is bounded by LJ 10-4-3 walls[60], of the form:

E = 2πε
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−
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−
√

2d3
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(

r+
(

0.61/
√

2
)

d
)3

 . (4.2)

The wall potential uses a cutoff of 3.5 times the corresponding d. The parameters are also listed
in Table 4.1. To model oppositely charged surfaces, a linear background electric field is applied to
the system proportional to the surface charge density. Note that for the 3CM system, the dielectric
constant effectively reduces the applied electric field by a factor of 80. All atom velocities are ini-
tialized to zero since lattice vacancies will cause the system kinetic energy to increase rapidly. The
fluid box is equilibrated for one million timesteps to 300K. A Nosé-Hoover [69, 43, 61] thermostat
is used to regulate the temperature. To avoid any local minima in the energy landscape, the system
is annealed to 1000K for one million timesteps, followed by a cooling step back to 300K for two
million timesteps.

After the system is equilibrated, the thermostat is turned off. The systems are allowed to
naturally evolve toward a steady state solution for five million timesteps. The first one million
timesteps after equilibration is considered transient, and the rest are confirmed to be steady state.
Five permutations are performed for each surface charge case.

Spatial dependent particle concentrations are extracted by species from the domain via an

51



atomistic-to-continuum (AtC) interpolation method [117]. The resolution of the 1-D continuum
mesh is approximately 0.1 Å. The concentration data is collected every 0.25 ps to facilitate post-
processing. After removing the transient data, the remaining data is time-averaged and ensemble-
averaged. The concentrations, scaled by the atomic valence, can be integrated once to get the
z-component of the electric field and twice integrated to get the electric potential. The ζ -potential
is determined by taking the difference in electric potential evaluated at the fluid-wall interface from
the electric potential evaluated in the bulk. The electric potential at the wall is measured at the LJ
10-4-3 origin. The ion molarities are also measured in reference to the average behavior of the
center 10 nm of the bulk region.

4.3 Fluids Density Functional Theory

Fluids Density Functional Theory (f-DFT) calculations are performed using the Tramonto software
package [https://software.sandia.gov/tramonto/publications.html]. In f-DFT, the grand potential
energy, Ω, of the system is expressed as a function of the atomic density distributions and posi-
tion. Contributions are summed from atomic interactions, external potential fields, and ideal gas
behavior. Atomic interactions are modelled with a cut-and-shifted LJ between an inner and outer
cutoff and Coulombic forces. Inside the inner cutoff (typically the LJ length parameter or slightly
smaller), a hard sphere repulsion is added. Ω is minimized to find the steady state equilibrium
solution. The domain is the same as with MD, except for a change in the functional form of the LJ
wall potential. The wall potential is of the 9-3 form, i.e.

E = ε

[
2

15

(
d
r

)9

−
(

d
r

)3
]
. (4.3)

The evaluated fields are three-dimensional, but restricted to vary only in the wall-normal dimen-
sion.

Due to limitations of the current software and theory, the f-DFT solvent model could not be
exactly analogous to that of the MD model. Instead, the solvent molecule is modelled as an asym-
metric dumbbell. The bond is treated as a constraint on the free energy of the two atomic species.
The sites are given equal and opposite fractional charges, and their LJ sizes, as ‘viewed’ by each
other, are both equal to the bond length such that they are tangentially touching. However, the
LJ sizes, as ‘viewed’ by themselves and the solute atoms, are not necessarily equal. The non-
dimensional LJ parameters are given in Table 4.2. The masses are not relevant for this f-DFT
calculation, and the charge on the ions are the same as the MD model.

To find the model parameters, we ran an optimization routine to minimize the difference relative
to the MD results. The cost functions consisted of counterion density, coion density, electric field
(from ionic contributions only), and electric potential (from ionic contributions only) profiles on
both the positive and negative electrodes. The parameters that were varied include the dumbbell
charge, q, dumbbell bond length, b, LJ size of the positive dumbbell site (applied to self-self,
self-ion, and self-wall interactions), s, and the dielectric permittivity, εr. The optimization was
performed using DAKOTA [http://dakota.sandia.gov/publications.html].
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d: ‘2H’ ‘O’ + Ion − Ion
‘2H’ s b s s
‘O’ b 1.0 1.0 1.0
+ Ion s 1.0 1.0 1.0
− Ion s 1.0 1.0 1.0

ε: ‘2H’ ‘O’ + Ion − Ion
‘2H’ 1.0 1.0 1.0 1.0
‘O’ 1.0 1.0 1.0 1.0
+ Ion 1.0 1.0 1.0 1.0
− Ion 1.0 1.0 1.0 1.0

Table 4.2. Atomistic parameters for all f-DFT simulation varia-
tions. Mixing rules are specifically not used for these interactions.
All values are in non-dimensional units.

4.4 Results

The following results are from a positively charged wall case. The applied surface charge is 0.9922
electrons per dimensionless area. The physical parameters used for the f-DFT in these results are
shown in Table 4.3. The (dimensionless) dipole moment for the f-DFT is 0.6; the dipole moment
for TIP3P is 0.154.

f-DFT MD
q: 1.0 0.830
σ : 0.1 0.0
b: 0.6 0.186
εr: 1.0 1.0

Table 4.3. Physical parameters used for f-DFT calculation of
case presented in Results. The four parameters are the positive
dumbbell site charge, the positive dumbbell site size parameter,
the dumbbell bond length, and the relative permittivity constant.
As a comparison, the corresponding parameters for the MD TIP3P
model are shown. The charge and bond length refer to the resultant
dipole moment from the two individual dipoles summed together.
All parameters are dimensionless.

Figure 4.1 shows the ionic number density comparison between the two models. The co-ion
data from MD is not smooth because the number of positive ions near a positively charged wall
are so low; it is difficult to gather good statistics using MD. While this may adversely affect the
optimization results, the matching of co-ion structure is much less significant to that of the counter-
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ion structure. There are key differences in the counter-ion structure that need to be addressed,
namely the number of observable peaks, and the peak shape(s) and location(s). The f-DFT shows
only one dominant peak whereas the MD shows the emergence of a second peak. It is possible
that this surface charge uniquely corresponds to the transition point from a single counter-ion peak
to double counter-ion peaks; as such, it would not be unreasonable to expect some disagreement
between the two models on the exact conditions of the transition. Also, the counter-ion peak
magnitude has been truncated in the figure, and it is actually approximately 2.5 times higher than
that of the MD. It is common, however, to expect taller, sharper peaks in f-DFT as compared with
MD. The location of the peaks is also slightly offset, which could be caused by the hard-sphere
functionals and inner cutoffs used by the f-DFT, which is the primary difference in interaction
potentials of the two models. Lastly, the two models are using slightly different wall potentials,
which further complicates the comparison.

(a) Counter-Ion Number Density (b) Co-Ion Number Density

Figure 4.1. Counter-Ion and Co-Ion number density profiles. The
f-DFT and MD results are overlaid to show the comparison.

Figure 4.2 shows the ionic contributions to the: charge density profile, wall-normal component
of the electric field profile, and electric potential profile of the two models. The charge density
is just a linear combination of the previous figures. The electric field is the integral of the charge
density with the applied field as a background offset. The electric potential is the integral of the
electric field with an arbitrary offset. The wall-normal electric field shows agreement in the bulk,
which means both models have sufficiently shielded the surface charge by that point. Furthermore,
the contribution from the first MD peak shields the majority of the surface charge while the f-
DFT essentially shields all of it (with a long exponential-like decay). This suggests that the first
counter-ion peak is actually in fairly decent agreement between the two models. Unfortunately, the
disagreement also shows up quite prominently in the electric potential profile, since there is only
one significant change in slope in the f-DFT profile.
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Figure 4.2. Charge density, Electric Field, and Electric Poten-
tial profiles. The f-DFT and MD results are overlaid to show the
comparison.
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Chapter 5

Spatial resolution of diffusivity and
conductivity for ionic fluids using
Green-Kubo methods

This chapter develops methods to spatially resolve transport properties in a wall-ionic fluid system
that is in electro-chemical equilibrium. A solid interface induces spatial gradations and anisotropy
in the fluid. In steady-state/equilibrium the electro-chemical potential (not the chemical potential)
is constant. The methods developed here are based on Green-Kubo/linear response methods which
are typically applied to full systems but herein extended to a collection of disjoint cells covering
the system.

5.1 Theory

5.1.1 Mixture theory & Linear irreversible thermodynamics

The per-species mass densities ρa) are such that i.e. ρ(a) = 1
V ∑α m(a)

α (followomg mixture theory,
refer to [18, Chap. XIII],[28])

ρ = ∑
a

ρ
(a) (5.1)

and satisfy the conservation equation

∂

∂ t
ρ
(a)+∇x ·

(
ρ
(a)v(a)

)
= 0 (5.2)

The primary authors of this chapter are S. Davidson, R. Jones, J. Templeton, and D. Ward.

57



These balances are consistent with the overall conservation of mass ρ,t + ∇x · (ρv) = 0 with
barycentric velocity

ρv = ∑
a

ρ
(a)v(a) (5.3)

Given that the material time derivative is defined with respect to the barycentric velocity

ρ̇
(a) ≡ ∂

∂ t
ρ
(a)+v ·∇xρ

(a)

=−∇x ·
(

ρ
(a)v(a)

)
+v ·∇xρ

(a)

=−ρ
(a)

∇x ·v−∇x ·ρ(a)
(

v(a)−v
)

︸ ︷︷ ︸
J(a)

(5.4)

consistent with ρ̇ =−ρ∇x ·v.

Eq. 5.4 implies that the diffusive flux for species a should be defined as

J(a) = ρ
(a)
(

v(a)−v
)
= J(a)0 −ρv (5.5)

which satisfies the conservation equation (Fick’s 2nd law)

ρ ċ(a)+∇ ·J(a) = 0 (5.6)

Here, species concentrations can be defined

ρc(a) = ρ
(a) (5.7)

so that they satisfy the conservation equation

ρ ċ(a)+∇x ·J(a) = 0 (5.8)

Also, ∑a J(a) = ∑a ρ(a)v(a)−v∑a ρ(a) = 0 by construction Eq. (5.5) and the definitions (5.1) and
(5.3).

The electrical current is simply the flux of charge (density) I0 =
1
V ∑α qα :

I0 = ∑
a

ρ
(a)z(a)v(a) = ρzv+

n

∑
a=1

z(a)J(a)︸ ︷︷ ︸
I

(5.9)

Fluxes associated with various reference velocities and normalizations based on number versus mass appear [18,
Chap. XI Sec. 2]. These just change the diffusion coefficient but not the form of the governing equation. In general
the mass fluxes are defined with respect to the barycentric velocity; but, according to Prigogine’s theorem, under
mechanical equilibrium ρ v̇ = 0 and p constant, and the fluxes can be defined with repect to an arbitrary velocity
v̄ = ∑a a(a)v(a) here a(a) is coefficient [18, Chap. XI Sec. 2]. The Gibbs-Duhem relation ∑a X(a) = 0 is also invoked
to remove an flux [107].
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where z(a) = ∑α q(a)α /∑α m(a)
α = q(a)/m(a) is the charge per unit mass and ρ(a)z(a) is the charge per

unit volume of species a such that the net charge per mass z is given by

z =
1
ρ

∑
a

ρ
(a)z(a) = ∑

a
c(a)z(a) (5.10)

Note the convective term ρzv is zero if : (a) the fluid is quiescent v≡ 0 or (b) charge neutral z≡ 0,
locally. With this flux I the conservation equation

ρ ż+∇ · I = 0 (5.11)

is satisfied [18, Chap. XIII Sec. 3] after using Eq. (5.8) the fact that z(a) is constant.

The electrochemical potential
Ψ

(a) = µ
(a)+ z(a)φ (5.12)

is defined in terms of the chemical potentials µ(a) for the species a and the electrostatic potential
φ . For an isothermal mixture, entropy production ς is

ς =− 1
T

(
∑
a

J(a) ·∇µ
(a)− I ·E

)
=− 1

T ∑
a

J(a) ·∇Ψ
(a) (5.13)

see [18, Chap. XIII Sec. 4] where the electric field is E = −∇φ . In equilibrium, with zero
barycentric velocity, and the Helmholtz vector potential independent of time

∇xΨ
(a) = ∇xΨ

(b) ∀b (5.14)

i.e. the electro-chemical potentials are equal up to a constant.

Linear phenomenological relations between the driving forces and the flux are assumed

J(a) =− 1
T

n−1

∑
b=1

L(a,b)
∇µ

(b) (5.15)

and
I =− 1

T
σ∇xΨ (5.16)

see [28]. See also [115, 107]. [107] relates L(a,b) to σ see later. Specific to binary mixture.
Ψ = (Ψ(1)−Ψ(2))/(z(1)− z(2)) and I = (z(1)− z(2))J(1)

ς =
1
T

I ·∇xΨ

For the isothermal electrical resistance R

T ς = I0 ·
(

E−∇
µ

z

)
︸ ︷︷ ︸

RI0

(5.17)
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For a mixture of two ionic species (1,2) and a neutral solvent (0):

−T ς = J(0) ·∇µ
(0)+J(1) ·∇µ

(1)+J(2) ·∇µ
(2)− I ·E

= J(1) ·∇
(

µ
(1)−µ

(0)
)
+J(2) ·∇

(
µ
(2)−µ

(0)
)
− I ·E

= I ·∇Ψ+
(

J(1)+J(2)
)
·∇
(

z(1)µ(2)− z(2)µ(1)

z(1)− z(2)
−µ

(0)

) (5.18)

after use of construction of J(a) Eq. (??) Extra term disappears if J(1) =−J(2) i.e. if J(0) ≡ 0.

Alternatively, assuming mech eq Prigogine’s thm. following [], use fluxes J̃(a)≡ ρ(a)
(

v(a)−v(0)
)

relative to arb vel specifically v0 s.t. J̃(0) ≡ 0 and ∑ J̃(a) = ρ

(
v−v(0)

)
so that

−T ς = J̃(1) ·∇µ
(1)+ J̃(2) ·∇µ

(2)− I ·E

= I ·∇Ψ+
(

J̃(1)+ J̃(2)
)
·∇
(

z(1)µ(2)− z(2)µ(1)

z(1)− z(2)

)

= I ·∇Ψ+ρ

(
v−v(0)

)
·∇
(

z(1)µ(2)− z(2)µ(1)

z(1)− z(2)

) (5.19)

Specifically if z(1) =−z(2) but not necessarily electroneutrality

−T ς = I ·∇Ψ+
1
2

(
J(1)+J(2)

)
·∇
(

µ
(2)+µ

(1)
)

(5.20)

[107, Eq. (9)] relates to diffusion coeff

ς = ∑
a,b6=0

L(a,b)
0 ϑ

(a)
ϑ
(b) (5.21)

[14, Eq. (23)] relates this to the Nerst-Einstein relation and drop the cross terms.

5.1.2 Green-Kubo & Linear response theory

The Green-Kubo formulae are usually derived via one of two routes: (a) linear response of per-
turbed Hamiltonian or (b) a Laplace-Fourier transform of macroscale PDE.

Following the first route, the Hamiltonian perturbed by the flux is

H = H0−V ∑
a

r(a) ·X(a) (5.22)

where ṙ(a) = v(a). The response

〈A〉0 + 〈∆A〉=
∫

dΓexp[−β (H0−λB(p,q))]A∫
dΓexp[−β (H0−λB(p,q))]

= β (〈B(0)A(t)〉0−〈B(0)〉0〈A(t)〉0) = β 〈B(0)A(t)〉0
(5.23)
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where 0 subscript is at equilibrium. The response is

〈J(a)(t)〉1 = 〈J(a)(0)〉0 +
V

kBT

∫ t

0
ds〈J(a)(s)∑

b
J(b)(t) ·X(b)〉 (5.24)

so

L(a,b)
0 ≡ lim

t→∞,X(b)→0

∂ 〈J(a)(t)〉
∂X(b)

=
V

kBT

∫ t

0
ds〈J(a)(s) ·J(b)(t)〉 (5.25)

A phenomenlogical equation is asssumed for

〈∆A〉=
∫ t

−∞

dsχAB(t− s)λ (s) (5.26)

Mutual diffusion

Fick’s 1st law

J(i) =− 1
T

n−1

∑
j=1

L(i j)
∇x

(
1

m( j)
µ
( j)− 1

m(0)
µ(0)

)
=−ρ

n−1

∑
j=1

D(i j)
∇xc( j) (5.27)

together with Eq. 5.6 gives Fick’s 2nd law. The coefficient matrices are related by

D(i j) = L(ik) 1
ρT

∂

∂c( j)

(
1

m(k)
µ
(k)− 1

m(0)
µ
(0)
)

(5.28)

Mutual diffusion
L(a,b) =

1
3kBV

∫
∞

0

〈
J̄(a)(0) · J̄(b)(t)

〉
dt (5.29)

where
J̄(a) = v̄(a)− v̄(0) (5.30)

i.e. the velocity of the a-th species relative to the 0-th. Note

v̄(a) ≡ 1
N(a) ∑

α∈G (a)

vα =
1

M(a) ∑
α∈G (a)

mαvα (5.31)

Ionic electrical conductivity

σ =
V

3kBT

∫
∞

0
〈I(0) · I(t)〉dt (5.32)

where I0 =
1
V ∑α qαvα = I for a system with zero barycentric velocity. Note I does not appear to

be a constant of the motion.

I =
1
V ∑

α

qαvα =
1
V ∑

a
q(a)∑

α

v(a)α =
1
V ∑

a

q(a)

m(a)
J(i)

This formulation is in [28, Eqs. (11)&(12)] for a binary system, and [107, Eq. (29)] which is
derived from the sum of the diffusion coefficients for a general electroneutral solution and fluxes
v(a)−v(0) = ∑b L(a,b)

0 X(b).
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5.2 Methods

To construct a computational method suitable for molecular dynamics, first microscopic quantities
such as the electrical flux

i(x) = ∑
α

qαvαδ (x−xα) (5.33)

must be defined. For the collective properties such as the electrical flux we just computed the sum
of microscopic fluxes per cell. To minimize non-smoothness in time we have also employed a
(continuous) partition of unity

J(xI) =
1
V ∑mαvα∆(xα −xI) (5.34)

where ∆I(x) = ∆(x−xI) and ∑I ∆I(x)≡ 1. A smooth PU creates overlap and therefore bin-to-bin
correlation. For any PU, the correlation J(0,xI) ·J(t,xI) for a single spatial coordinate x.

〈J(0)J(t)〉=
〈

∑
I

JI(0)∑
J

JJ(t)

〉
= ∑

I,J
〈JI(0)JJ(t)〉 (5.35)

so clearly the bin-to-bin spatial correlations can contribute to the estimate of a transport coefficient
localized to any particular bin. Note Eq. (5.35) results from the partition across cells

J(t) = ∑
I

JI(t) (5.36)

where
JI(t) = ∑

α∈NI(t)
jα(t) (5.37)

and N = ∪INI(t).

Also note that, given that the system is in equilibrium, the net flux between partitions is zero〈
J(i)I

〉
= 0. The center of mass is not zero instantaneously and jumps when particles enter/leave

region. On average net outflux is zero and 〈
J(i)
〉
= 0 (5.38)

but the instantaneous flux is

J(i) = ∑
α

m(i)
α v(i)α +net in f lux≈ 1

∆t ∑
α

m(i)
α ∆x(i)α +∑ in−∑out

5.3 Results

To test the method a homogeneous system was partitioned in to cells in one direction. Here the
expectation is that all cells are statistically equivalent and that the estimate for the cell should
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match, to within appropriate noise, the estimate for the whole system. For a solid-fluid system
representing the electrode-electrolyte the expectation is that layers nearest to the wall are the least
mobile and therefore have the lowest diffusion constants (and narrowest concentration peaks).
Both simple Lennard-Jones fluids and systems with Si walls with extended water molecules were
investigated.

5.3.1 Homogeneous ionic fluid

Using a Lennard-Jones (LJ) ionic fluid with 10:10:80 ratio of positive,negative and neutral species
we see in Fig. 5.1 that the cell auto-correlations appear to match the whole system auto-correlation.
Now if we examine the integral of the correlation, which is proportional to the estimate, we see
from Fig. 5.2 that only with cell cross-correlations (i.e. off-diagonal entries of the coarse-grained
spatial correlation matrix) does the cell estimates converge to the true, system value. Likewise,
Fig. 5.3 shows that integral of the cell auto-correlation does converge to the system value if the bin
size is large enough.

Other sensitivities were investigated. For instance, increasing the cell dimensions transverse to
the open cell boundaries only decreased the noise in the cell estimates not their accuracy. Likewise,
increasing the sampling frequency for the flux had the same effect. Interestingly the behavoir of
the correlation of the flux normal to the open cell boundary was different than that transverse to
the open cell boundary, i.e. in a periodic direction. For the saltwater system, Fig. 5.4 shows that
the integral of the auto-correlation of the transverse fluxes has a well-defined limiting value; where
as the integral of the auto-correlation of the normal fluxes does not. For the normal fluxes the
correlations with the neighboring cells are need to get a good estimate, as the plot of the decay of
the cell-to-cell spatial correlations Fig. 5.5 bears out.

Lastly, the effects of the omitting the long range Coulomb effects was investigated. Fig. 5.6
shows the expected result, i.e. the long range effects increase the cell-to-cell correlation length
and therefore decrease the ability to resolve transport coefficients. Also, Fig. 5.7 shows the effects
of changing the charge density. With lower charge concentration we get worse statistics and less
screening i.e. longer correlation. Lower charge density also implies that it is less likelyfor ions to
cross cell boundaries.

5.3.2 Solid-fluid system

For an overall neutral system with a charged Si wall and a TIP3 water with K+ and Cl− ions
shown in Fig. 5.3.2 we were able to extract the spatial variation of viscosity, at least qualitatively.
Fig. 5.9 shows the viscosity increases significantly near the walls as is expected from the fact that
molecules at the walls are nearly immobile. We also see that the transverse and normal fluxes are
giving different correlations which may indicate anisotropy in the transport coefficients.
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(a) mean of x and y (transverse) directions

(b) z (cell normal) direction

Figure 5.4. Transverse vs. normal flux integrated correlations for
each cell for a saltwater system
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Figure 5.5. Spatial distribution of transverse vs. normal inte-
grated correlations for a saltwater system
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Figure 5.8. Wall-fluid system
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Figure 5.9. Cell autocorrelation and integrals of autocorrelation
for a Si wall with TIP3 saltwater system
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Chapter 6

Continuum Scale Constitutive Laws
Extracted from Atomistic Simulations
Using Bayesian Inference and Uncertainty
Quantification

6.1 Introduction

Predictive simulation of engineering systems are often challenged by different phenomena oper-
ating over a broad range of length and times scales spreading from atomistic to continuum levels.
Such phenomena are encountered for example in different engineering applications such as nan-
otechnology [25, 78, 54, 104, 112] and fluid dynamics [22, 50, 77, 5, 84, 37]. The ubiquity of
such dynamics is illustrated by the need to supply constitutive relationships in mathematical mod-
els of physical phenomena to compensate for the unresolved degrees of freedom. For example,
continuum mechanics can be derived from molecular mechanics [45, 41] in an average sense, but
the missing degrees of freedom give rise to the complex constitutive relations found in solid me-
chanics, fluid mechanics, and heat transport. While combinations of experiments and theory can
provide useful estimates of the impact of truncated information on the remaining degrees of free-
dom (examples: turbulence, solids), difficulties have been encountered when applying continuum
theories at the atomistic scale, i.e., in the regimes when atomistic information becomes important.
From a mathematical point of view, the challenge is that multiple scales, albeit without strict sep-
aration, are present everywhere in a domain rather than at on a lower dimensional manifold (e.g.,
interfaces and boundary layers). Developing accurate constitutive models for continuum descrip-
tions of nanosystems has the potential to enable a new generation of devices characterized and
optimized by predictive simulation.

As an illustration, the following observations are useful. Discretized continuum models always
have a smallest resolved length sale associated with the mesh size. While mesh refinement can
minimize this error and generate a family of solutions converging to the solution of the originating
continuum equations, in reality the applicability of the equations breaks down as the discreteness
of the atomistic processes becomes increasingly pronounced (e.g., [19]). In contrast, atomistic

The primary authors of this chapter are M. Salloum and J. Templeton.
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simulations have a bounding length scale above as only a finite number of atoms can be simulated
on a computer. As this length scale is increased, statistical mechanics increasingly accurately
relates averages over the atomic system to established continuum quantities [116].

With this observation, the problem of constitutive modeling becomes one of a lack of mul-
tiscale information propagation. Several approaches have made progress at deriving constitutive
relations from this perspective. Classical homogenization (e.g., [9]) focuses on deriving a govern-
ing equation for the large-scale field informed by the overall form of the equations and knowledge
of the small scale field. Asymptotic analysis is used to extract the large-scale equations, so ho-
mogenization is usually only applicable to systems with two well-separated scales, although we
do note recent efforts incorporating uncertainty in the large scale equations arising from the fine
scale [68]. A computational analog is the heterogeneous multiscale method [21]. In this approach,
molecular dynamics (MD) are instantiated at finite element (FE) quadrature points to compute the
stress of a material. While effective, the drawbacks are potentially much larger simulation time
with all MD evaluations as well as ambiguity regarding the length scale which should be used for
the atomistic system. Within the context of FE methods, the variational multiscale method [44] has
been used to modify constitutive models at particular scales and extended/enriched elements [64]
add extra degrees of freedom to a system to account for specific small-scale behavior when known.
Finally, the well-known dynamic Smagorinsky model for large-eddy simulation (LES) [30] uses
scale similarity [33] to adaptively set the model coefficient.

There are also approaches which aim to directly reconstruct the missing small-scale informa-
tion needed for the constitutive law. By using the known energy cascade in turbulence, a fractal-
based model has been derived for LES to construct sub-grid velocity fields [12]. The necessary
statistics are extracted from these fields and used to close the equations governing the resolved
fluid motions. A different approach relies on application of an approximate filter inverse to esti-
mate the total velocity field from the filtered (i.e., large-scale) motions [40]. However, it still relies
on a Smagorinsky closure to account for the velocity fluctuations which cannot be represented on
the grid under consideration.

For the purpose of this work, continuum descriptions are taken as appropriate models for phys-
ical systems at a macroscopic scale. As the macroscopic scale is taken smaller and smaller, it
begins to approach the length scales of the microscopic, or atomic, system. Given the lack of a
large scale separation between the atomistic and continuum descriptions, smaller-scale motions at
the atomistic level give rise to larger-scale structures at the continuum level. Incomplete under-
standing of these sub-continuum processes leads to unresolved fluctuations at the continuum level,
making application of existing modeling approaches problematic. There have been many efforts to
develop techniques for combining atomistic and continuum representations, for example in solid
mechanics (see the review article by Miller and Tadmor [63]), heat transfer [99, 7], and fluid me-
chanics [51, 66], although such methodologies are typically used for problems where the region
requiring an atomistic description is (roughly speaking) on a lower-dimensional manifold than the
over all system of interest, e.g., interfaces, cracks, and defects. In addition, most atomistic-to-
continuum methods utilize continuum models based on macroscale behavior like Fourier’s law.
A notable exception is the concurrent coupling method for direct simulation Monte Carlo parti-
cles and continuum fluid mechanics of Donev et al. [20] which demonstrated that the Landau-
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Lipfschitz Navier-Stokes equations, in which Brownian fluctuations are retained, are required to
obtain an accurate solution to the overall problem. It is crucial therefore to derive such consti-
tutive laws with their associated fluctuations directly informed from atomistic simulations to be
appropriate models of the behavior of matter at the nanoscale.

Because of the difficulty in characterizing the mean and fluctuating components of the consti-
tutive relations using existing means (even central limit theorems may not hold due to small sample
sizes), atomistic simulations have to be performed to extract suitable constitutive laws. Figure 6.1
shows a one-dimensional version of such problem. The continuum simulation is characterized
from a large length scale, Lc, down to the smallest resolved length scale representing the mesh
size, h. The red dashed line illustrates an atomistic region of appropriate size to characterize the
sub-continuum information at that mesh size level. A MD simulation is performed in order to
extract suitable constitutive relationships between the problem variables.

Such an exercise should be performed on-the-fly during a large scale continuum simulation.
This would result in a highly expensive cost of the overall simulation since many expensive MD
simulations have to be performed in different regions in the computational domain over the course
of the simulation. However, new advanced computer architectures [3] will have the power to realize
such on-the-fly extraction of constitutive laws from MD simulations and can exploit extreme levels
of concurrency for sampling-based methods. Before proceeding with such expensive simulations,
it is expedient to first analyze and study the extraction of a constitutive law from MD simulations
while accounting for the uncertainty due to finite sampling in MD simulations. The result of such
study would be the derivation of the constitutive relationship between the physical entities in the
simulation and the quantification of the uncertainty level associated with this relationship as a
function of the system time and length scales.

In this paper, we focus on the study of a one-dimensional heat transfer problem at the nanoscale.
This problem offers the advantages of being efficient to simulate on both atomistic and continuum
scales while at the same time of sufficiently complex to develop a general constitutive law extrac-
tion methodology because the behavior of our atomistically-informed continuum can be compared
to the true all atoms solution. We present an approach to extract the law that relates the heat flux
to the temperature and temperature gradient from MD simulations, together with its associated un-
certainty. The uncertainty we consider in this study is due to the intrinsic noise in MD simulations
where finite sampling is required as well as the approximate nature of any continuum description.
We seek methods that offer both flexibility and efficiency in order to propagate the uncertainty
quantified in the constitutive law in continuum scale simulations. We assume that heat conduction
is governed by Fourier law, that is the heat flux f is the product of the thermal conductivity κ and
the temperature gradient ∇T ,

f =−κ(T )∇T (6.1)

where κ has a parametric dependency on the temperature T . We infer these parameters and express
as polynomial chaos expansions (PCE) due to the facility with which they propagating uncertainty
in continuum simulations [31, 56, 57, 55, 84]. We use Bayesian inference [29, 87, 62] to build
the constitutive law. Bayesian inference has been found highly effective in handling different
sources of uncertainty including noisy data typically obtained in MD simulations [80, 79]. We
extract the heat conduction constitutive law and quantify its associated uncertainty as a function
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of the spatial- and time-averaging scales and the amount of data used. This former are closely
related to the time step and spatial discretization sizes in the continuum model. We then propagate
the obtained constitutive law into a continuum scale simulation and compare with an equivalent
simulation consisting only of atoms.

This paper is organized as follows. In section 6.2 the mathematical underpinnings of polyno-
mial chaos expansions and Bayesian inference are provided. Section 6.3 overviews the molecular
dynamics and multiscale methods used in this work. The mathematical formulation and specific
formulation for the inferred conductivity is given in section 6.4 with results in provided in section
6.5.

6.2 Mathematical Background

6.2.1 Polynomial Chaos Expansions

We consider random entities parameterized by a finite collection of real-valued independent and
identically distributed (i.i.d.) random variables ξ1, . . . ,ξn that share a common distribution func-
tion, P . If, for example, ξ is a standard normal random variable on Ω, we write ξ ∼N (0,1) and
Pξ (x) =

1√
2π

e−x2/2 is the Probability Density Function (PDF) of ξ . Any random variable admits
an expansion of the form:

u =
∞

∑
k=0

ukΨk(1), (6.2)

where the {Ψk}∞
k=0 is an orthogonal basis with respect to the density of 1 = (ξ1, . . . ,ξn),

〈ΨkΨl〉=
∫

Ω

Ψk(x)Ψl(x)P1(x)dx = δkl〈Ψ2
k〉 (6.3)

where δkl is the Kronecker delta. The expansion (6.2) is known as the polynomial chaos expansion
(PCE) [109, 13, 46, 31, 55] of u. A common case, and the one considered in this work, takes
ξi

iid∼ N (0,1) with {Ψk}∞
k=0 being n-variate Hermite polynomials [4]. In practical computations,

we approximate u(1) with a truncated series,

u(1)≈
P

∑
k=0

ukΨk(1), (6.4)

where P is finite and depends on the truncation strategy adopted. We consider truncations based on
the total degree of the retained polynomials in the series, such that P is a function of the stochastic
dimension n and expansion order p according to:

P+1 =
(n+ p)!

n!p!
. (6.5)
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Here p refers to the largest polynomial degree in the expansion. One way to derive the polyno-
mial chaos (PC) coefficients of u is by projection on the PC basis following:

uk =
〈uΨk〉
〈Ψ2

k〉
, k = 0, . . . ,P. (6.6)

This approach is referred to as non-intrusive spectral projection (NISP) [55] and requires numerical
evaluation of the projection integrals 〈uΨk〉 using quadrature rules. An alternate strategy involves
computing PC coefficients using Bayesian inference, which will be introduced in the following
section.

6.2.2 Bayesian Inference

Let 1∈Ω denote a vector of model parameters and 1 a vector of observable data. A forward model
Γ relates the data 1 to the parameters 1 by 1≈ Γ(1) [62]. We use Bayes’ rule to derive the posterior
PDF for the model parameters 1 given the observed data 1 [62, 87]:

P(1|1) = P(1|1)P(1)∫
Ω

P(1|1)P(1)d1
(6.7)

The prior P(1) and posterior P(1|1) probabilities represent degrees of knowledge of 1 before
and after observing the data 1, respectively. The denominator in (6.7) is independent of m and is
merely a normalizing constant for the purposes of this work. The key component in (6.7) is the
likelihood function L(m) = P(1|1). To construct the likelihood, one needs to make assumptions
regarding the distribution of the discrepancy between the model prediction and the data. Assuming
that a forward model Γ predicts N realizations of the data 1 with a discrepancy 1 = [ε1,ε2, · · · ,εN ]

T

distributed according to the PDF P1(·), i.e. 1 = Γ(1)+1, we can write the likelihood as:

P(1|1) = P1(1−Γ(1)). (6.8)

Further, if {εi}N
i=1 are i.i.d. with εi ∼Pε(·) (a condition which holds in the present context, as

explained when used later below) then we have:

P(1|1) =
N

∏
i=1

Pε(di−Γ(1)) (6.9)

In the present paper, we apply this Bayesian inference machinery to extract the heat conduction
constitutive law from noisy MD simulations data. We infer the polynomial coefficients of the
temperature dependent thermal conductivity (see Section 6.4.1). The Bayesian inference approach
is preferred over the NISP methods (see Section 6.2.1) when inferring PC coefficients because it
is more suitable in the presence of noisy data [80]. The NISP approach partially accounts for the
noise information while the Bayseian approach fully captures the uncertainty due to noise in terms
of probability density functions (PDF) for each PC coefficient. Starting from prior knowledge on
these coefficients and given data 1 in the likelihood function, the posterior distribution calculated
using (6.7) includes better knowledge of these coefficients.
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6.3 MD Simulation

6.3.1 Simulation Domain Geometry and Setup

Figure 6.2 shows a stationary quasi-1D bar simulated by MD as a three-dimensional domain of
size La×w×w in the x, y, and z directions, respectively. MD computations were performed with
LAMMPS [71] atomic simulator. The domain is occupied by Argon atoms with mass 39.95 g/mol
with a lattice constant of α = 5.405 Åand width w = 3.24 nm. The soft interparticle interaction is
modeled by the Lennard-Jones (LJ) pairwise potential φi j [6, 58, 26]. For particles i and j separated
by a distance ri j, φi j is given by:

φi j = 4φ0

[(
ρ

ri j

)12

−
(

ρ

ri j

)6
]

(6.10)

We set the LJ parameters for Argon to φ0 = 0.238 Kcal/mole and ρ =3.405 Å [6], and atomic
motions are resolved with a time step size of ∆ta = 2 fs. The boundary conditions are periodic in
the y and z.

This MD simulation is intended to simulate a quasi-1D heat transfer problem, thus we must
impose Dirichlet boundary conditions at x = 0 and x = La. To do so, we use the atomistic-to-
continuum formalism initially proposed by Wagner et al. [100] to partition the domain using a FE
mesh. Partitioning enables both the identification of a local temperature using FE projection, as
well as imposition of localized temperature constraints via the FE shape functions. Temperatures
are held fixed by augmenting the atomic forces from the interatomic potential by deriving a La-
grange multiplier which takes the form of a Gaussian isokinetic thermostat which varies on the
length scale of the elements [93]. Specifically, the force on atom α is

fα =
∂Φ

∂xα

− mα

2
vα ∑

I
NIλI, (6.11)

where NI is the shape function associated with node I and λI are the nodal Lagrange multipliers. To
set up the temperature gradient, we constrain the temperature of the atoms where 0 ≤ x ≤ Lb (red
region) such that it is fixed at T = TMD,1 while at La−Lb ≤ x≤ La, the temperature is constrained
to be T = TMD,N , which is effected by setting λI = 0 for all I except for I = 1,N.

The simulation is divided into three main parts. Argon atom are positions are on a FCC regular
grid in a minimum energy configuration with initial velocities randomly assigned such that the
initial (total) temperature of the system is equal to T = TMD,N . The simulation is first run for
2000 fs until the initial temperature reaches a statistical steady state using the localized rescaling
thermostat of [100]. Next, the localized temperature constraint is applied. The temperature at node
1 is ramped from TMD,N to TMD,1 over 2000 fs, after which the system is allowed to come to a
steady state. This simulation time is proportional to L2

a. Finally short-time averaged samples of the
heat flux q, ∇T and T are collected at the mesh points using the coarse-graining postprocessor of
Zimmerman et.al. [116] until the noise amplitude due to finite sampling is reduced below a desired
threshold.
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6.3.2 Thermal Fields

The heat flux q, temperature gradient ∇T , and temperature T extracted at x = La/2 as a function
of MD simulation time are shown in Figure 6.3. For La = 53 nm, it takes about 3 ns for the
temperature of the system to reach a statistial state where the amplitude of the velocity noise
decreases with increasing the averaging time window. The mean of the heat flux remains constant
throughout the simulation, as expected. The short-term averaged data for ta > 3 ns is used in the
inference of the heat conduction constitutive law as further described in this paper.

Figure 6.4 depicts the thermal steady state of the quasi 1D-bar. Higher temperatures cause
higher atoms velocities thus, the noise level decreases when the temperature decreases from TMD,1 =
60 K to TMD,N = 40 K. We compute the thermal conductivity κ as the opposite of the short-term
averaged flux divided by the short-term averaged temperature gradient. This exercise results in
a significant increase in the noise level since the value of temperature gradient samples could be
close to zero. When plotting this κ as a function of temperature, it is not surprising to observe that
it takes negative values, since unlike the continuum scale at such low atomistic time scale there is
a substantial probability that the heat flux is in the same direction as the temperature gradient. The
negative values decreases with increasing time averaging window, as expected, and the PDF of κ

approaches a log-normal distribution.

6.4 Mathematical Model Formulation

6.4.1 Building the Heat Conduction Constitutive Law

For given La, TMD,1 and TMD,2, we extract the thermal entities q, ∇T and T at M mesh points and
gather Nt short-time averaged samples of each of these three entities after the simulation reaches a
statistical steady state. As such, we obtain Nd = MNt independent noisy samples {q j,∇Tj,Tj}Nd

j=1.
We use these samples as data in a Bayesian inference process to determine the posterior distribution
on the parameters that relate q, ∇T and T .

In this approach we assume that heat conduction is governed by Fourier’s law that is the heat
flux q is the product of a temperature dependent thermal conductivity κ and the temperature gra-
dient ∇T . According to Figure 6.4, κ a nearly decreasing trend with temperature thus, we assume
the following relationship:

κ = A−BT (6.12)
q = −(A−BT )∇T

where A and B and their associated uncertainty are to be determined by the Bayesian inference
machinery. We assume a Gaussian noise model that relates A and B to the short-time averaged
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samples {q j,∇Tj,Tj} such that:

q j = −(A−BTj)∇Tj +ση j (6.13)
= −A∇Tj +BTj∇Tj +ση j

where the i.i.d. standard normals η j represent the noise in the short-term MD sample averages, an
assumption based on the central limit theorem (CLT). The variance σ2 of the discrepancy is related
to the fluctuation in the flux which level depends on the temperature. σ2 is expected to decrease
inversely proportional to the number of samples N and will be inferred as a hyperparameter [65, 62]
along with A and B. Bayes’ rule is then written as:

P(A,B,σ2|1,d) ∝ P(1,d|A,B,σ2)P(A,B,σ2) (6.14)

where 1 ∈ RN is the heat flux data q j and d ∈ RN×2 is a matrix containing the temperature and
temperature data obtained from the MD simulations such that d j = (−∇Tj,Tj∇Tj). Note that we
assume that the inference relies on a constant σ noise model even though the noise level changes
with temperature. The inferred value of σ would be then correspond to the fluctuations at the mean
mean temperature in the MD system.

The likelihood function based on 6.14 is written as:

P(1,d|A,B,σ2) = (2πσ
2)−N/2exp

(
−1T 1

σ2

)
(6.15)

where the elements of the discrepancy vector 1 are given by:

ε j = ση j

= q j +(A−BTj)∇Tj (6.16)

We assume independent priors for A, B and σ2, i.e. P(A,B,σ2) = P(A)P(B)P(σ2) and assign
to both A and B an improper uniform prior [87] on [−∞,+∞]. For the hyperparameter, σ2, lever-
aging the fact that there is a complete a-priori ignorance about its value except that it cannot be
negative, we assume a Jeffreys prior:

P(σ2) =
1

σ2 (6.17)

If the likelihood (6.15) incorporates a large amount of data then the joint prior has a minimal role
in the resulting posterior. Conversely, if the likelihood function only brings a small amount of data,
the distribution of the resulting posterior is comparable to the prior. The effect of the amount of
data will be discussed in Section 6.5.

Based on the chosen priors and the Gaussian noise model, the corresponding posterior over
{A,B} is a Student-t distribution [81, 39, 84] S (γ,1,S) where the mean vector 1, the number of
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degrees of freedom γ and the scale matrix S are given by [84]:

1 = νd1
γ = N−2

S =
1
γ

(
1T 1−1T d1

)
ν

ν =
(
dT d

)−1
(6.18)

Thus we can express A and B as: (
A
B

)
= 1+Λ1∼S (γ,1,S) (6.19)

where Λ∈R2×2 is the lower-triangular Cholesky factor of the scale matrix S = ΛΛT , and the vector
1 ∈ R2 comprises i.i.d. random variables distributed according to S (γ,0,1). For large values of
Nd , the Student-t distribution S (γ,0,1) approaches the normal distribution N (0,1), such that, in
this limit, P(A,B|1,d) is close to a binormal distribution. A and B are finally written as a first order
(p = 1) PCEs with two stochastic dimensions (n = 2) representing the finite sampling noise [84]:

A = µ1 +L11ξ1 (6.20)
B = µ2 +L21ξ1 +L22ξ2

where ξ1 and ξ2 follow N (0,1) for large Nd . The thermal conductivity κ = A− BT thus
becomes an uncertain variable. Our main goal is to propagate this uncertainty in continuum sim-
ulation. However, since both A and B follow a Student-t distribution, they can take any value in
[−∞,+∞] allowing for κ to have negative values that are not defined in continuum. Thus, addi-
tional operations have to be performed on the distributions of A and B to enforce their positivity.

Enforcing the Positivity of the Thermal Conductivity

The mathematics of the diffusion equation require a positive thermal conductivity everywhere.
However, the procedure described above would result in negative values as, due to nanoscale fluc-
tuations, the heat flux follows the temperature gradient with non-zero probability. In order to
guarantee solutions exist for the continuum heat transport equations, we propose a set operations
on the distributions of A and B that simultaneously allow enforcing the positivity of κ = A−BT
for a given range TMD,2 ≤ T ≤ TMD,1. The effect of the procedures is to build new distributions for
A and B (continuum formulations without these descriptions will be the subject of future work).
We proceed as follows:

1. We draw a large number, Ns, of realizations (A,B)i from the Student-t distributions of A and
B derived in Section 6.4.1.
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2. We eliminate from this set of realizations all the (A,B)i that satisfy Ai− BiTMD,2 < 0 or
Ai +BiTMD,1 < 0.

3. Using Kernel Density Estimation (KDE) [11, 84], we build new distributions for A and B
from the remaining realizations.

Remark #1 Another method to enforce the positivity of κ = A−BT is to assign an appropriate
prior on A and B in the Bayesian inference procedure in Section 6.4.1. The prior expression would
then be:

P(A,B) = 0, for A−BTMD,2 < 0 or A+BTMD,1 < 0

P(A,B) =
1

(Amax−Amin)(Bmax−Bmin)
, otherwise (6.21)

where Amax, Amin, Bmax and Bmin determine a known range of variation of A and B. This
approach however, does not allow an analytical derivation for the distribution of A and B. It requires
sampling the posterior in Eq. 6.14 using the Markov Chain Monte Carlo method that is more
expensive and complicated than the method described above.

Remark #2 The initial number of realizations Ns should be large enough such that after elimi-
nating the (A,B)i, the number of the remaining realizations is sufficient for statistical significance
of the resulting distribution.

Spectral Projection of the Thermal Conductivity

The distributions of A and B obtained in Section 6.4.1 are not guaranteed follow any of the tradi-
tional distributions such as normal, log-normal, uniform, etc., particularly for the smaller sample
sizes. Thus, the representation of the random variables A and B as PCEs requires high order poly-
nomials. We first employ a RosenBlatt transform to map the jointly distributed random variables A
and B (after enforcing the positivity of their corresponding κ) into two independent uniform ran-
dom variables. We then apply an approximate inverse RosenBlatt to compute the PC coefficients of
A and B at a given expansion order. These operations are further detailed in the work of Sargsyan
et.al. [85, 86]. In this work we found that a fourth order expansion (p = 4) with one stochastic
dimension (n = 1) can accurately represent both A and B. Hence, after enforcing the positivity of
κ , A and B are written as:

A =
4

∑
k=0

Akψk(ξ ) (6.22)

B =
4

∑
k=0

Bkψk(ξ )
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where the ψks are Hermite polynomials given in [32, 55]

6.4.2 Propagating the Uncertain Constitutive Law into the Continuum Sim-
ulation

In this section we propagate the uncertainty in the thermal conductivity κ quantified in the previous
section into a 1-D continuum problem.

ρcp
∂T
∂ t

=
∂

∂x

[
−(A−BT )

∂T
∂x

]
(6.23)

6.5 Results
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Figure 6.1. A schematic showing: (top) a one-dimensional con-
tinuum level finite element simulation domain characterized by a
length scale Lc, a time scale τc and a mesh size h, and (bottom) an
atomistic scale simulation domain characterized by a length scale
La = 2h and a time scale τa, where atomistic information is re-
quired to quantify physical phenomena that are beyond the reach
of the continuum description.

Figure 6.2. A schematic showing the MD simulation domain.
The temperature is constrained in the red and blue regions to be
T = TMD,1 and T = TMD,N , respectively. The black dots repre-
sent mesh points where the local heat flux, temperature gradient
and temperature are extracted using the formalism of Zimmerman
et.al. [116].
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Figure 6.3. Plots showing short-time averaged heat flux q, tem-
perature gradient ∇T , and temperature T extracted at x = La/2
from the MD simulation as a function of time for TMD,1 = 60 K,
TMD,N = 40 K and La = 53 nm, and different moving time averag-
ing window widths, as indicated. Note for the method being used
to apply the temperature gradient [93], the flux is expected to be a
constant.
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Figure 6.4. Plots showing (Left column): (top) temperature gra-
dient field ∇T in the quasi-1D bar, (middle) temperature field
T in the quasi-1D bar, (bottom) thermal conductivity κ as func-
tion of temperature, (Right column): the PDFs of ∇T , T and κ

at x = La/2. Results are generated from the MD simulation for
TMD,1 = 60 K, TMD,N = 40 K and La = 53 nm when the statistical
steady state is reached for different moving time averaging win-
dow widths, as indicated.
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Figure 6.5. Plots showing the PDFs of: (left) the inferred coef-
ficient A, (middle) the inferred coefficient B, and the correspond-
ing the thermal conductivity κ for T =50 K. Results are obtained
from data averaged at tw =8 ps using 4 replica MD simulations for
T1 = 60 K, T2 = 40 K and La = 53 nm. Plotted are the PDFs of
the coefficients before (solid line) and after (dashed line) enforc-
ing the positivity of κ for different amounts Nd of data used for the
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Figure 6.6. A schematic showing the 1-D continuum simulation
domain. The temperature is controlled such that it fluctuates in the
red and blue regions around T = TC,1 and T = TC,2, respectively.
The black dots represent mesh points.
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Figure 6.8. Plots showing the PC coefficients as a function of
the amount Nd of data used for the inference of: (left panel) the
inferred coefficient A, and (right panel) the inferred coefficient B.
Results are obtained from data averaged at different values of tw,
using 4 replica MD simulations for different ranges of temperature
by local and global sampling of the {∆T,T} space, as indicated.
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Figure 6.9. Plots showing the expectation E and standard devi-
ation σ of the flux q = (A−BT )∆T surface obtained after the in-
ference of A and B, as a function of the amount Nd of (q j,∇Tj,Tj)
data. Results are obtained from data averaged at tw =8 ps, using
4 replica MD simulations for different ranges of temperature by
local and global sampling of the {∆T,T} space, as indicated. q is
given in Wm−2, ∇T in Km−1 and T in K.
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Figure 6.10. Plots showing the expectation E and standard de-
viation σ of the flux q = (A−BT )∆T surface obtained after the
inference of A and B, as a function of the amount time averaging
window tw. Results are obtained from Nd = 16 short-time aver-
aged (q j,∇Tj,Tj) data, using 4 replica MD simulations for dif-
ferent ranges of temperature by local and global sampling of the
{∆T,T} space, as indicated. q is given in Wm−2, ∇T in Km−1 and
T in K.
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Figure 6.11. Plots showing the expectation E and standard de-
viation σ of the flux q = (A−BT )∆T surface obtained after the
inference of A and B. Results are obtained from Nd = 16 short-
time ( f j,∇Tj,Tj) data averaged at tw =512 ps, using 4 replica MD
simulations for different ranges of temperature by local and global
sampling of the {∆T,T} space, as indicated.
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Figure 6.12. Plots showing the (top) temperature increase as
a function of time in the middle of a continuum scale 1D bar
(x = 0.26µs), (middle) the steady state temperature distribution
in the bar, and (bottom) the steady state thermal conductivity as a
function of the temperature. Results are obtained by simulating a
continuum scale 1D bar with Lc = 0.53µm using a heat conduction
constitutive law extracted from a MD at ∆TMD = 20 and K TMD =
50 K with Nd = 64 short-time averaged data points and different
time averaging windows, as indicated. Each curve corresponds to a
quadrature point when sampling the PCE of A and B (κ = A−BT ).
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Figure 6.13. Plot showing the PDFs of the time scale (response
time) of a continuum scale 1D bar with Lc = 0.53µm using a heat
conduction constitutive law extracted from a MD at ∆TMD = 20
and K TMD = 50 K with Nd = 64 short-time averaged data points
and different time averaging windows, as indicated.
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Chapter 7

Conclusions

The efforts in this work have focused on three key knowledge areas in which improvement is
required to bridge the gap between atomistic simulation and engineering models capable of pre-
dictively simulating electric double layers. Bridging this gap in length and time scales, while
retaining the effects of the discrete atoms near charged surfaces, is required to enable next gen-
eration battery and super-capacitor technology. To better understand the behavior of water-ion
complexes at interfaces, quantum DFT calculations were performed. They showed that unantici-
pated hydration structures form as a result of the effectively reduced dimensionality resulting from
confinement near the surface. In energy storage devices near interfaces, similar types of physical
phenomena will likely occur. While the quantum calculations have successfully elucidated the
physics, it proved difficult to tightly integrate them into the other models in this work. We suggest
a future activity should focus on one of the missing aspects of multiscale research: quantum-to-
atomistic (QtA) modeling. It is known that quantum models are needed to accurately capture
electron transport and for understanding chemical reactions, as well as developing accurate inter-
atomic potentials for surfaces and other non-bulk structures. Future work in this field would enable
development of high-fidelity, low-expense chemistry models.

The second focus of this work was on development of a DFT model for the electric double
layer DFT computes the equilibrium distribution of solvent and solute species by minimizing the
energy defined as a function of the various densities. Calculations in this work all required less than
one minute to perform, in contrast to the more accurate MD method which typically took on the
order of a week using tens of processors. As we described, significant effort was required to obtain
good agreement between the DFT and MD double layer representations. In particular, determining
the most accurate electrical formulation for the DFT was critical. Once this form was identified,
both models were in excellent agreement for a Lennard-Jones double layer. Note only does this
result meet one of the goals of this project, to develop a fast and accurate double layer model, but
the inclusion of atomistic effects results in the electrical properties significantly departing from
classical PB theory. Therefore, it is important to utilize the DFT for engineering analysis and
discovery. In order to increase its utility, a simple polar DFT model has been built to begin to
account for solvent structure. An important near-term extension of this work would be to calibrate
the simple polar model against MD of an aqueous solution using optimization techniques. Further
work would develop more realistic solvent models, which requires substantial development in the
Tramonto package. We also see the potential for a more innovative using of DFT which would
incorporate time-dependence and stochasticity. These would enable this efficient method to model
the charging and discharging processes, as well as possibly long-time diffusion dynamics which
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are important to accurately model surface chemistry.

The final area investigated in this project was to how to obtain continuum transport coefficients
from atomistic simulations. Much like the DFT work, established continuum transport models,
e.g., viscosity and conductivity, can be solved very efficiently computationally. These properties
often differ greatly between nanofluidic systems and their well characterized macroscale counter-
parts. MD allows nanosystems to be modeled, however extracting continuum properties is non-
trivial. We developed an inhomogeneous Green-Kubo method capable of identifying spatially-
varying transport coefficients perpendicular to a wall. In addition, Bayesian inference techniques
were developed which can infer from MD calculations the coefficients of a prescribed functional
form. At present, the Green-Kubo method is limited by long-range electrical interactions while
the inference approach cannot identify constitutive laws different from the assumed form. Further
efforts to resolve both issues would be of great use, although even in their present state, both can
accurately estimate inhomogeneous transport laws which can be solved with orders of magnitude
less effort than a full atomistic description.

We close with a final suggestion for future work: tight integration between the density and
transport models identified by this project. To enable next-generation device design, both must be
incorporated in an engineering analsyis code. Sandia has a logical package in SIERRA/Aria. DFT
models would be appropriate for boundary conditions for microscale flows and as a substitute for
the density equation for nanoscale flows. Aria already has the capability to simulate the necessary
transport equations, and incorporating extracted constitutive laws is straightforward. However, a
density update equation is that bridges the DFT and transport processes is necessary. Such a tool
would enable engineers to analyze and optimize future electrical energy storage systems to meet
the country’s needs in the 21st century.
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