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1.0 Introduction

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide
vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstrom
exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains
(SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical
properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary
requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and
height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the
comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even
though BBHRP has been completed, AEROSOLBE results are very valuable for environmental,
atmospheric, and climate research.

After screening available aerosol optical depth (AOD) measurements for clouds and performing data
quality checks, the VAP provides a nearly continuous time-series of aerosol optical depth at 500 nm and
aerosol Angstrom exponent through a combination of simple interpolation and a predictive multivariate
regression. The associated extinction profile is selected from the Raman lidar (RL) seasonal climatology
of aerosol extinction profiles as a function of aerosol optical depth published in Turner et al. (2001).
Single scatter albedo (w,) and asymmetry parameter (g) profiles are derived by assuming that the dry
aerosol scattering properties measured by the aerosol observing system (AOS) at the surface are well-
mixed with height. The aerosol absorption is assumed to have no humidity dependence. The aerosol
optical properties are then modulated according to the vertical relative humidity (RH) profile using the
surface measured f(RH) relationship as derived from aipfitrhlogren data.

This application is currently implemented for the Southern Great Plains only.

2.0 Input Data

The algorithm currently utilizes measurements from these datastreams:
1. Normal incidence multifilter radiometer (NIMFR), using the nimfraod 1 mich datastream
2. Multifilter rotating shadowband radiometer (MFRSR), using the mfrsraod 1 mich datastream

3. Surface aerosol properties from the aerosol observing system (AOS), using the aiplogren and
aipfitrhlogren datastreams

4. Relative humidity from radiosonde (mergesondel mace datastream)

5. Surface humidity from surface meteorological instrumentation (MET) data (met datastream).

The input variables are given in Appendix A.
3.0 Algorithms and Methodology

The most important optical property of aerosols for radiative transfer applications is the AOD. Therefore,
significant effort is made in AEROSOLBE to obtain good estimates of AOD. The AEROSOLBE time
resolution is set to 10 minutes, so data from each input source are averaged to achieve this temporal
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resolution. The AEROSOLBE algorithm currently incorporates two direct measurements of AOD: the
nimfraod1mich datastream from the NIMFR and the mfrsraod1mich datastream from the MFRSR, with
the NIMFR taken in preference over the MFRSR due to lack of necessary cosine correction for the
NIMFR (Harrison and Michalsky 1994). If the above two sources are unavailable for a given sample, then
the data are interpolated over short gaps. For longer gaps the AOD is predicted using a multivariate
regression that includes the surface RH, surface total scattering, and the average RH in the boundary
layer. The coefficients of the regression are optimized over a monthly data set to minimize residuals when
direct measurements are available.

AEROSOLBE reports time/height profiles of aerosol extinction at 500 nm estimated via a seasonal
climatology of RL extinction profiles as a function of column optical depth. AEROSOLBE provides best-
estimate time/height profiles of intensive properties of single-scattering albedo (SSA), backscatter
fraction (bsf), and asymmetry parameter (g) for the red, green, and blue wavelengths estimated from
surface measurements (from the Aerosol Intensive Properties [AIP] VAP) and the vertical profile of
relative humidity (from the Merged Sounding [MERGESONDE] VAP), along with the assumption that
the dry aerosol properties are vertically well-mixed. The well-mixed assumption allows the humidity
dependence measured at the surface to be applied to the vertical column, yielding estimates for the
ambient aerosol scattering that reflect the vertical structure in the humidity field, while the ratios involved
in computing the intensive properties (SSA, bsf, g) mitigate scale-height effects on the extensive aerosol
profiles.

After the best-estimate of the AOD at 500 nm is determined, a lookup table is used to determine the
aerosol extinction profile based upon the climatology developed from two years of RL observations
(Turner et al. 2001). This lookup table is organized as a function of season and AOD.

AEROSOLBE also provides estimates of the single scatter albedo (®() and asymmetry parameter (g) as a
function of height. These values are derived from the surface-based in situ measurements made by the
AOS as follows. First, the boundary layer is assumed to be well-mixed such that the dry aerosol optical
properties are constant with altitude (or at least constant in relative proportion). Next, relative humidity
profiles are drawn from the MERGESONDE VAP, which provides estimates of the relative humidity for
all times and heights above the SGP Central Facility. The surface level relative humidity from
MERGESONDE is replaced with the surface RH obtained from MET data. Next, the aerosol optical
properties of total scattering and hemispheric backscattering are computed for the vertical column by
adjusting the dry properties according to the vertical profile of relative humidity. The two-parameter fit
provided as part of the AOS (aosfrh) data stream f{RH) = a(1-u)”, where u is the relative humidity
interpolated from the radiosonde observation as a fraction, is used to rehumidify the dry aerosol scattering
properties. Note that no humidity correction is applied to the aerosol absorption coefficient observed by
the AOS. The aerosol optical properties of scattering and absorption as well as the related intensive
properties of single-scattering albedo and asymmetry parameter are each reported at the wavelengths
adopted in the AIP VAP. Specifically, the nominal red, green, and blue measurements from the
nephelometer and the 3-wavelength particle soot absorption photometer (PSAP), initially taken at
different wavelengths, are adjusted via Angstrom exponent relationships to common wavelengths of

660 nm, 550 nm, and 467 nm.
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3.1 Flowcharts
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Figure 1. Flowchart describing the AEROSOLBE VAP.
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Figure 2.  Flowchart describing the process of calculating the best-estimate aerosol optical depth at
355 nm.
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Figure 3. Flowchart describing the process of calculating best-estimate aerosol optical depth at
500 nm.
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Figure 4. Flowchart describing the process of calculating the best estimate Angstrém exponent.

3.2 Quicklooks

Quicklook plots of monthly time series are generated for column AOD, vertical profiles up to 4 km of
aerosol extinction, SSA, and g, and for the corresponding RH profile. The optical properties are shown for
the nominal green wavelength of 500 nm.
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Figure 5. Example quicklook plots of monthly time series for acrosol extinction and aerosol
optical depth.
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Figure 6. Example quicklook plots of monthly time series for RH profile, SSA, and
asymmetry parameter.

3.3 Quality Control Flags

Each datastream goes through a series of quality checks. The quality checks performed for the input
datastream are explained below:

1. The nimfraodImich and mfrsraod1mich datastreams are checked for anomalies by performing the
following tolerance test, which establishes a rolling window of 90 samples before and after the
sample of interest is established.

a. Calculate the mean and standard deviation of the samples in the window.

i.  If the standard deviation of the window is greater than .05 and the difference between the
absolute value of the sample of interest and the mean value of the window is greater than
.05, then the sample of interest is flagged as bad data and replaced with missing value of
-9999.0. But after running through a series of data and analyzing the data on October 2004,
the test was changed to the following:

ii.  If the standard deviation of the window is greater than .05, the sample of interest is flagged
as bad data and replaced with missing value of -9999.0.

b. The rolling window is then moved up by one sample.

2. Once the data have passed the tolerance test, the nimfraodlimch or mfrsraod1mich data stream is
screened for clouds. If the Angstrom exponent is less than the cloudy threshold of 0.5 or greater than
4.0, then the aerosol optical depths for all the filters are replaced with missing values of -9999.0.
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The dry Angstrom exponent from the aiplogren is screened for bad data as well. If the dry Angstrom
exponent for total scattering, back scattering, and absorption coefficients is not within a range of
0 and 3, then these values are replaced with missing values of -9999.0.

The mergesondelmace profile is discarded if it does not reach a minimum height of 7 km. The
relative humidity from SONDE data is set to a minimum value of 50% if the humidity is less than
ZEero.

The relative humidity from MET data is set to 99% if the humidity value is above 99.0.

The two-parameter fit provided in the aipfitrhlogren data stream is used to compute f(RH) and thus
“rehumidify” the scattering coefficients to ambient conditions. This function has the form f{RH) =
a(I-RH) ™, where RH is given as a fraction between 0 and land a and b are in the netCDF file as
parameters 1 and 2 respectively. The fields for red, blue, and green total and back scatter coefficients
from the aipfrh datastream (i.e., parameters 1 and 2) are also checked for quality. The maximum RH
range for red, blue, and green is checked to make sure that it is greater than 70%, and the minimum
RH range for red, blue, and green is checked to make sure that it is less than 50%. Then, the red, blue,
and green total scattering parameters a and b are checked to make sure that they fall within the range
of 0.2 and 1.4, respectively. If the parameters are out of range, they are set to -9999. Finally, the fit
parameters are checked to ensure that they are within certain limits, and if not, they are set to
prescribed values. See Table 1 below.

Table 1. The wavelengths and the associated parameters.

Wavelength Parameter 1 (a) Parameter 2 (b)
Green 0.8043 0.4436
Blue 0.8345 0.3920
Red 0.7619 0.4878
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Interpolation

This VAP uses linear regression to interpolate data when data are missing for a certain period of time.
The period of time for which the data are interpolated varies by data quantity. The table below gives the
gap within which data are interpolated if the values are missing. If any gap is greater than the interval
shown, then the values are not interpolated.

Table 2. Gap within which data are interpolated if values are missing.

Field Interval

Best estimate Angstrdm exponent 3 days

Best estimate aerosol optical depth at 355nm 3 hours

Best estimate aerosol optical depth at 500nm 3 hours
before using regression analysis

Best estimate aerosol optical depth at 500nm 8 hours
after using regression analysis

All dry coefficients from aip1ogren 3 hours

f(RH) correction coefficients 3 days

All humidified total scattering and back scatter | 3 hours
coefficients across time and height

Angstrom exponent using humidified Red and 3 days
Blue total scattering coefficient

Single scatter albedo 3 hours

Asymmetry factor 3 hours

4.0 Output Data

sgpaerosolbelturnFF.c1.YYYYMMDD.hhmmss where:

aerosolbe = VAP class

1turn = identifies that this is Turner’s version 1 of aerosol best estimate

FF = facility (e.g., C1)

YYYYMMDD = year, month, and day

hhmmss = hour, minute, second

Currently, AEROSOLBE is executed only for the SGP Central Facility.

10
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5.0 Analysis

Data from 2000 were processed with AEROSOLBE as part of the ongoing BBHRP effort (Mlawer et al.
2004). A time-height cross section of aerosol extinction for March 2000 is provided in Figure 7. Figure 8
is a plot of the mean extinction profiles as drawn from the RL climatology as a function of season and
AQOD. The extinction profile for this VAP is picked from the climatology based on the AOD, bin, and
season. Figure 9 shows the hygroscopic growth function f(RH) for the red, green, and blue total scattering
(top) and backscattering (bottom) coefficients from the AOS, using the median parameters from Feb
2000—Feb 2001 in the two-parameter correction equation. An example of the vertical profiles of

RH, g, and g for the month of August 2000 derived by AEROSOLBE is shown in Figure 10. The
monthly distributions of observed minus predicted AOD as observed by the v1.0 effective height and
v1.1 regression fit for 2000 are illustrated in Figure 11.
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Aerasol Extinction [krn™"] for 20000301

a0

12 3 4 5 & 7 B 9 1011 12 13 14 156 16 17 18 19 20 21 27 33 74 25 76 27 28 2% 30 31 32

Day [UTC)

ABE Aerasal Optical Depth for 20000301

1.0F B
o8 =
Y —
T 04 —
0.2 WWW
0.0k "
102 3 4 5 & 7 B 9 1011 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 28 30 31 32

Flot Dota Version: Moy 9 16:0H:23 Day [UTCJ
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Figure 7. Time-height cross section of the aerosol extinction, together with the AOD, for March 2000
derived by AEROSOLBE.
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Figure 8. Mean aerosol extinction profiles as a function of season and AOD as observed by the RL in
1999-2000 (Turner et al. 2001).

tMediarn fF{RH] far total scat coefs
5

a

a0 [=2e] Eael f=ie] j=le] 100
Relative Humidity [5Z]

Median f{RH) for backscat coefs

3

S =2a] TO 59 a0 100
Relative Humidity [E]

Figure 9. f(RH) corrections for the red, green, and blue total scattering (top) and backscattering
(bottom) coefficients from the AOS, using the median parameters from February 2000 to
February 2001 in the two-parameter correction equation.
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Figure 10. An example of the vertical profiles of RH, ®,, and g for the month of March 2000 derived by
AEROSOLBE.

Table 3. Quarterly Boundary layer height threshold based on Figure 11.

Month Boundary-layer height
December/January/February 1.0
March/April/May 1.7
June/July/August 20
September/October/November 1.5

13
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Figure 11. Monthly distributions of observed minus predicted AOD as observed by the v1.0 effective
height and v1.1 regression fit for 2000.
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Table 4. Input Platform and the associated fields.

Input Datastreams Key Input Fields

nimfraod1mich, mfrsraod1mich
aerosol_optical_depth_filter1
qc_aerosol_optical_depth_filter1
aerosol_optical_depth_filter2
qc_aerosol_optical_depth_filter2
aerosol_optical_depth_filter3
qc_aerosol_optical_depth_filter3
aerosol_optical_depth_filter4
gc_aerosol_optical_depth_filter4
aerosol_optical_depth_filter5
gc_aerosol_optical_depth_filter5
angstrom_exponent
qc_angstrom_exponent

aiplogren
Bs_angstrom_exponent_ BR Dry 1um
Bs_G_Dry 1um_Neph3W_1
Bbs G _Dry 1um_Neph3W_1

Bs B Dry 1um_Neph3W_1
Bbs B Dry 1um_Neph3W_1

Bs_R Dry 1um_Neph3W_1
Bbs_ R Dry 1um_Neph3W_1
Ba_G_Dry 1um_PSAP1W_1
Ba_G_Dry_1um_PSAP3W_1
Ba_R_Dry_1um_PSAP3W_1

Ba_B _Dry 1um_PSAP3W _1

bsf R_Dry 1um

bsf G_Dry 1um

bsf B Dry 1um

RH_NephVol_Dry

Aipfitrh1ogren
fRH_Bs G _1um_2p
fRH_Bs B _1um_2p
fRH_Bs_R_1um_2p
fRH_Bbs_G_1um_2p
fRH_Bbs B _1um_2p
fRH_Bbs R _1um_2p
H_NephVol_Wet_max
RH_NephVol_Wet_min

mergesonde1mace
rh_scaled
height

met(or smos) Rh_mean

Al
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Table 5. Output variables for the monthly files.

Output Fields Long Name Units

best estimate aerosol optical depth at 500 nm | unitless
be aod 500

best estimate aerosol optical depth at 355 nm | unitless
be aod 355

best estimate Angstrdm exponent unitless
be angst exp

height above ground level km
height

aerosol extinction profile at 500 nm 1/km
extinction_profile

aerosol single scattering albedo profile at 700 | unitless
single scattering albedo red nm

aerosol single scattering albedo profile at S00 | unitless
single scattering albedo gree | nm
n

aerosol single scattering albedo profile at 450 | unitless
single scattering albedo blue | nm

aerosol asymmetry parameter profile at 700 unitless
asymmetry parameter red nm

aerosol asymmetry parameter profile at 550 unitless
asymmetry parameter green nm

aerosol asymmetry parameter profile at 450 unitless
asymmetry parameter blue nm

aerosol total scatter coefficient at 700 nm for | 1/km
scat_coeff red 1 pm size cut

aerosol total scatter coefficient at 550 nm for | 1/km
scat_coeff green 1 pum size cut

aerosol total scatter coefficient at 450 nm for | 1/km
scat_coeff blue 1 pm size cut

aerosol back scatter coefficient at 700 nm for | 1/km
backscatter_red 1 pm size cut

aerosol back scatter coefficient at 550 nm for | 1/km
backscatter_green 1 pm size cut

aerosol back scatter coefficient at 450 nm for | 1/km
backscatter_blue 1 pm size cut

aerosol absorption coefficient at 700 nm for 1 | 1/km
absorp_coef mean_red pm size cut

aerosol absorption coefficient at 550 nm for 1 | 1/km
absorp coef mean green pm size cut

aerosol absorption coefficient at 450 nm for 1 | 1/km

absorp_coef mean_blue

pm size cut

B.1
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Table 5 (contd.)

Output Fields Long Name Units

relative humidity profile %
rh

mean aerosol optical depth at 415 nm unitless
mean_aod_nimfr_filterl

standard deviation of aerosol optical depth at | unitless
sdev_aod nimfr_filterl 415 nm

mean aerosol optical depth at 500 nm unitless
mean_aod_nimfr_filter2

standard deviation of aerosol optical depth at | unitless
sdev_aod nimfr filter2 500 nm

mean aerosol optical depth at 615 nm unitless
mean_aod nimfr filter3

standard deviation of aerosol optical depth at | unitless
sdev_aod nimfr filter3 615 nm

mean aerosol optical depth at 673 nm unitless
mean_aod nimfr filter4

standard deviation of aerosol optical depth at | unitless
sdev_aod nimfr filter4 673 nm

mean aerosol optical depth at 870 nm unitless
mean_aod nimfr filter5

standard deviation of aerosol optical depth at | unitless
sdev_aod nimfr filter5 870 nm

mean Angstrom exponent from NIMFR unitless
mean_angst exponent nimfr observations

Interpolated Angstrom exponent from NIMFR | unitless
interpolated _angst exponent n | gbservations
imfr

mean aerosol optical depth at 415 nm unitless
mean_aod mfrsr filterl

standard deviation of aerosol optical depth at | unitless
sdev_aod mfrsr filterl 415 nm

mean aerosol optical depth at 500 nm unitless
mean_aod mfrsr filter2

standard deviation of aerosol optical depth at | unitless
sdev_aod mfrsr_filter2 500 nm

mean aerosol optical depth at 615 nm unitless
mean_aod_mfrsr_filter3

standard deviation of aerosol optical depth at | unitless
sdev_aod mfrsr filter3 615 nm

mean aerosol optical depth at 673 nm unitless

mean_aod_mfrsr_filter4
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Table 5 (contd.)

Output Fields Long Name Units

standard deviation of aerosol optical depth at | unitless
sdev_aod mfrsr_filter4 673 nm

mean aerosol optical depth at 870 nm unitless
mean_aod mfrsr_filterS

standard deviation of aerosol optical depth at | unitless
sdev_aod mfrsr_filterS 870 nm

mean Angstrom exponent from MFRSR unitless
mean_angst_exponent_mfrsr observations

interpolated Angstrom exponent from unitless
interpolated_angst_exponent_ | MFRSR observations
mftsr

mean aerosol optical depth from Raman lidar | unitless
mean_aod _rl at 355 nm

height above ground level from Raman Lidar | km
height rl

Relative humidity profile from Raman Lidar %
rh 1l

Angstrom exponent derived from Raman lidar | unitless
angst_exponent_rl and MFRSR at 870 nm observations

Angstrom exponent derived from MFRSR at | unitless
angst_exponent mfrsr filter2 | 450 nm observations

Angstrom exponent derived from MFRSR at | unitless
angst_exponent mfrsr filter2 | 450 nm observations

filled Angstrom exponent derived from unitless
angst_exponent_rl_filled Raman lidar and MFRSR at 870 nm

observations

Angstrom exponent computed from unitless
angstrom_exponent_AOS humidified submicron total scattering

coefficients at 450 nm and 700 nm for 1 pm

size cut

humidified total scatter coefficient at 500 nm | 1/km

humidified backscatter coefficient at 500 nm 1/km

humidified total scatter coefficient at 450 nm | 1/km
BluTscat_humidified for 1 um size cut

humidified backscatter coefficient at 450 nm 1/km
BluBscat_humidified for 1 um size cut

humidified total scatter coefficient at 700 nm | 1/km

RedTscat_humidified

for 1 um size cut

B3
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Table 5 (contd.)

Output Fields Long Name Units

humidified backscatter coefficient at 700 nm | 1/km
RedBscat_humidified for 1 pm size cut

Mean of relative humidity from sonde from unitless
rth_mean_surf boundary surface to boundary level

Predicted Aerosol Optical Depth using linear | unitless
predicted aod regression

boundary layer mixing height km
boundary layer

Relative humidity profile from microwave %
rh_mwrp radiometer profiler

Mean aerosol optical depth derived from unitless
mean_aod_aos extinction profile at NSA

Scaled Aerosol extinction profile at 500 nm 1/km
extinction_profile scaled

Aerosol extinction profile at 500 nm 1/km
extinction_profile aos

Aerosol extinction profile at 500 nm or 1/km
extinction_profile_clim Climatological Aerosol extinction profile at

500 nm

Relative humidity profile from sonde %
rh_sonde

Solar zenith angle degree
solar_zenith angle

Coefficients for 2 parameter fit of Bs R _lum | unitless
fRH Bs R lum 2p hygroscopic growth as a function of RH

Coefficients for 2 parameter fit of Bs G_lum | unitless
fRH Bs_G_lum 2p hygroscopic growth as a function of RH

Coefficients for 2 parameter fit of Bs B lum | unitless
fRH Bs B lum 2p hygroscopic growth as a function of RH

Coefficients for 2 parameter fit of unitless
fRH_Bbs_R_Ium_2p Bbs R lum hygroscopic growth as a function

of RH

Coefficients for 2 parameter fit of unitless
fRH_Bbs_G_lum_2p Bbs_G_1um hygroscopic growth as a function

of RH

Coefficients for 2 parameter fit of unitless
fRH_Bbs_B_lum_2p Bbs_ B lum hygroscopic growth as a function

of RH

Relative humidity inside dry nephelometer %

RH NephVol Dry

B4




C Flynn, D Turner, A Koontz, D Chand, and C Sivaraman, July 2012, DOE/SC-ARM/TR-115

Table 5 (contd.)

Output Fields Long Name Units

Computed ratio of Bs R _1um at rh% and unitless
ratio Bs R _lum RH NephVol Dry

Computed ratio of Bs_G_lum at th% and unitless
ratio Bs G lum RH_NephVol Dry

Computed ratio of Bs B_1um at rh% and unitless
ratio Bs B lum RH_NephVol Dry

Computed ratio of Bbs_ R _1um at th% and unitless
ratio Bbs R 1lum RH NephVol Dry

Computed ratio of Bbs_G_1um at rh% and unitless
ratio Bbs G lum RH NephVol Dry

Computed ratio of Bbs_ B _1um at rth% and unitless
ratio Bbs B lum RH NephVol Dry

flag indicating source of best-estimate AOD unitless
aod source flag at 500 nm

flags describing source of RH unitless

rh_source
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