Recent evidence has indicated that the impact of a comet or asteroid may have been responsible for mass extinction at the ends of both the Cretaceous and the Eocene. Quantitative analysis by Raup and Sepkoski showed that mass extinctions occur with a 26-Myr period, similar to the period seen in qualitative pelagic records by Fischer and Arthur. To account for the possibility of periodic comet showers, Davis et al. proposed that such showers could be triggered by an unseen solar companion star as it passes through perihelion on a moderately eccentric orbit. To test a prediction implicit in this model ...
continued below
Publisher Info:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
Place of Publication:
Berkeley, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
Recent evidence has indicated that the impact of a comet or asteroid may have been responsible for mass extinction at the ends of both the Cretaceous and the Eocene. Quantitative analysis by Raup and Sepkoski showed that mass extinctions occur with a 26-Myr period, similar to the period seen in qualitative pelagic records by Fischer and Arthur. To account for the possibility of periodic comet showers, Davis et al. proposed that such showers could be triggered by an unseen solar companion star as it passes through perihelion on a moderately eccentric orbit. To test a prediction implicit in this model we examined records of large impact craters on the Earth. We report here that most of the craters occur in a 28.4-Myr cycle. Within measurement errors, this period and its phase are the same as those found in the fossil mass extinctions. The probability that such agreement is accidental is 1 in 10.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Alvarez, W. & Muller, R.A.EVIDENCE IN CRATER AGES FOR PERIODIC IMPACTS ON THE EARTH,
article,
January 1, 1984;
Berkeley, California.
(digital.library.unt.edu/ark:/67531/metadc842040/:
accessed April 20, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.