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Unreliable Observations

Wen-Chiao Lin, Tae-Sic Yoo, and Humberto E. Garcia

Abstract—Algorithms for counting the occurrences of special
events in the framework of partially-observed discrete-event
dynamical systems (DEDS) were developed in previous work.
Their performances typically become better as the sensors
providing the observations become more costly or increase in
number. This paper addresses the problem of finding a sensor
configuration that achieves an optimal balance between cost and
the performance of the special event counting algorithm, while
satisfying given observability requirements and constraints.
Since this problem is generally computational hard in the
framework considered, a sensor optimization algorithm is
developed using two greedy heuristics, one myopic and the other
based on projected performances of candidate sensors. The two
heuristics are sequentially executed in order to find best sensor
configurations. The developed algorithm is then applied to a
sensor optimization problem for a multi-unit-operation system.
Results show that improved sensor configurations can be found
that may significantly reduce the sensor configuration cost but
still yield acceptable performance for counting the occurrences
of special events.

I. INTRODUCTION

This paper considers the monitoring architecture shown in
Fig. 1 for failure/fault analysis of discrete-event dynamical
systems (DEDS). In previous work, various algorithms for

Fig. 1. Monitoring architecture

implementing the diagnoser in Fig. 1 have been developed.
In particular, the work in [1] deals with detection of special
events assuming that a finite-state automaton describes the
DEDS, that sensors are reliable, and that failures/faults are
permanent. This work is extended in [2] for diagnosing
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behaviors of interest in discrete event systems. Later, sub-
sequent extensions and improvements of [1] address the
problem of the detection of special events accounting for
sensor unreliability and stochastic aspects in the DEDS [3]–
[6]. Counting of the occurrences of intermittent or non-
persistent faults that are repetitive in nature and can au-
tonomously reset is addressed in [7]–[14]. In particular, the
issue of detecting whether or not a resetting has occurred is
addressed in [7], and [8] addresses fault counting problems
and introduced several notions of diagnosability that capture
the various counting capabilities of special events. Counting
of the occurrences of special events assuming a deterministic
finite-state automaton with partial observations is addressed
in [9]. While [10], [11] present a deterministic counting strat-
egy for accommodating stochastic automata with unreliable
observations, [12]–[14] develop algorithms that fully utilize
the probabilistic aspects of stochastic automata.

The work mentioned above focuses on developing di-
agnoser algorithms for analyzing the behavior of DEDS
(e.g., detecting special event occurrences) given the sensor
configurations. The costs of the sensor configurations may
vary with the number of sensors deployed, their quality,
their impact on operation, and difficulty of installation for
example. In particular, sensor configurations that cost more
consist of more sensors and of sensors with better quality,
and, typically, they give rise to better diagnoser performance.
This paper considers the problem of finding optimal sensor
configurations that balance the cost of the configuration and
the performance of a given diagnoser, while satisfying cost
constraints and performance requirements. Without loss of
generality, the diagnosers considered in this paper are im-
plemented using stochastic counters (SCs) [12], [14], where
the monitored DEDS is modeled as a stochastic automaton,
with unreliable sensors under partial observations. Since the
monitored system is an automaton and the sensors are un-
reliable, the optimization problem considered here falls into
the category considered in [15]. Therefore, the optimization
problem is computationally hard, and a sensor optimization
algorithm based on heuristics is developed for solving it.
The developed algorithm utilizes two greedy heuristics, one
myopic and the other taking into account projected perfor-
mances of candidate sensors. The latter heuristic is similar
to the approach for optimal sensor selection developed in
[16] for heterogeneous sensor networks. However, it has
been accordingly modified to address the problem considered
here. The developed algorithm is here applied to a sensor
optimization problem on a multi-unit-operation system.

Other work on optimal senor selection for DEDS includes



[15], [17]–[20]. While [15] addresses computational issues
regarding sensor selection for DEDS modeled as finite au-
tomata, [17], [18] considers optimal sensor selection for
satisfying observability properties in Petri nets. Reference
[19] considers the optimization problem in the framework
of Fig. 1 assuming, unlike this paper, that sensors are
reliable. Finally, [20] addresses optimal sensor selections for
supervisory control.

The rest of this paper is organized as follows. Section II
gives a brief review of the monitoring architecture shown
in Fig. 1 including the algorithm for SCs. The sensor opti-
mization problem is formulated in Section III, while a sensor
optimization algorithm to solve the problem is developed in
Section IV. In Section V, the developed algorithm is applied
to a multi-unit-operation system. Section VI concludes the
paper. We assume the reader is familiar with the terminology
typical of DEDS.

II. BRIEF REVIEW OF OBSERVATION PLATFORM

A. Monitored plant and observation model
The monitored plant in Fig. 1 is modeled as a stochastic

automaton,

SA = (X,Σ, a, π0), (1)

where X := {x1, x2, . . . , xnx
} is the finite state space,

Σ := {σ1, σ2, . . . , σnσ
} is the set of events, and π0 :=

{π0(xi) : xi ∈ X} is the initial probability distribution of the
system. The state transition probability function a is defined
as a : X × Σ × X → [0, 1], where, a(xi, σ, xj) denotes
the conditional probability that, given the system is in state
xi ∈ X , σ ∈ Σ occurs and transitions the system to state
xj ∈ X . Moreover, to insure that the system is live, we
assume ∀x ∈ X ,

nσ∑
i=1

nx∑
j=1

a(x, σi, xj) = 1, (2)

i.e., the occurrence of a new transition is certain from every
state. The interest is to detect and count the number of
occurrences of a special event f ∈ Σ, which may represent a
fault or an anomaly. As shown in Fig. 1, diagnosers are used
to accomplish this task using observations from unreliable
sensors. Assume that there is a given pool of available
sensors, {s1, s2, . . . , sp}, from which sensors are chosen for
observing the monitored DEDS. Let Δ := {y1, y2, . . . , yny

}
be the set of distinctive observation symbols generated from a
sensor configuration S ⊆ U . We denote the set of observation
symbols at the sensor outputs as

Δ∗ := Δ ∪ {ε}, (3)

where the symbol ε indicates that an event has been executed
but no observation is reported. The event output function
b : Σ×Δ∗ → [0, 1] satisfies the following: ∀σ ∈ Σ,

b(σ, ε) +

ny∑
i=1

b(σ, yi) = 1. (4)

The functional value b(σ, y) is the conditional probability
of having output y ∈ Δ∗ when the system executes event
σ ∈ Σ. For example, assume that the given monitored system
generates an event σ. Characterizing b(σ, ε), b(σ, σ), and
b(σ, δ) (with σ �= δ) equal to 0.1, 0.7, and 0.2 indicates
the probabilities of misdetection, correct classification, and
misclassification, respectively, for this sensor. The set of
observation symbols, Δ, and the function b both depend
on the sensor configuration, S. To further illustrate the
observation model, suppose that SA executes the following
event sequence: s = σ1σ2 . . . σn . . . ∈ Σ∗. Given s and
sensor configuration, S ⊆ U , there are many possible
sequences of output symbols for the unreliable observations
modeled by (3) and (4). A particular sequence of output
symbols can be denoted by o = o1o2 . . . on . . . ∈ (Δ∗)

∗,
where b(σi, oi) > 0 for i > 0. Finally, the sequence of
observations available to the diagnoser in Fig. 1 is denoted
by y = y1y2 . . . ym . . . ∈ Δ∗, where PΔ(o) = y and
PΔ : (Δ∗)

∗ → Δ∗ is a plain projection function that removes
ε symbol from o. Hence, y is the output sequence o with the
symbol ε eliminated. Note that yi denotes the ith symbol in
Δ, while yi denotes the ith observed symbol corresponding
to the sequence of generated events.

B. Stochastic counters
A diagnoser for the monitoring architecture in Fig. 1 is

designed based on the model of the DEDS (i.e., the stochastic
automaton in (1)), the sensor observation model (i.e., the
output function b in (4)) corresponding to the given sensor
configuration, and the special event, f , to be counted. As the
observations, yi, i = 1, 2, . . ., become sequentially available,
the SC estimates the number of times f has occurred. In
particular, when the mth observation becomes available, the
estimate is calculated based on the observations y1 through
ym and is denoted by c(m).

Let Nm(f) denote the random variable of the number of
times f has occurred up to the mth available observation and
{Y i}mi=1 = Y 1Y 2 . . . Y m denote the sequence of random
observations. The goal of the SCs developed in [12], [14]
is to calculate c(m) as a function of {Y i}mi=1 such that the
mean squared error,

E[(Nm(f)− c(m))2], (5)

is minimized. The conditional expectation,

c(m) = E[Nm(f)|{Y i}mi=1], (6)

is a solution to minimizing (5). The SCs utilize a recursive
algorithm to calculate (6). Specifically, the following infor-
mation states are considered:

• Prob(Xm|{Y i}mi=1): conditional probability of system
state just after the mth observation becomes available
given the observation history up to the mth available
observation;

• E[Nm(f)|Xm, {Y i}mi=1]: conditional mean of the
number of times f has occurred given the current
system state just after the mth observation becomes



available and given the observation history up to the
mth available observation;

• E[(Nm(f))2|Xm, {Y i}mi=1]: conditional second mo-
ment of the number of times f has occurred given
the current system state just after the mth observation
becomes available and given the observation history up
to the mth available observation;

As shown in [14], these information states can be calculated
recursively as the observations sequentially become avail-
able. In particular, c(m) in (6) can be calculated by,

c(m) = E[Nm(f)|{Y i}mi=1] =
nx∑
j=1

{E[Nm(f)|Xm = xj , {Y
i}mi=1 = {yi}mi=1]×

Prob(Xm = xj |{Y
i}mi=1 = {yi}mi=1)}, (7)

where {yi}mi=1 and xj denote the realizations of {Y i}mi=1

and Xm, respectively. Moreover, the conditional variance,

V ar[Nm(f)|{Y i}mi=1] =

{
nx∑
j=1

E[(Nm(f))2|Xm = xj , {Y
i}mi=1 = {yi}mi=1]×

Prob(Xm = xj |{Y
i}mi=1 = {yi}mi=1)}−

E[Nm(f)|{Y i}mi=1 = {yi}mi=1]
2, (8)

can also be calculated. The conditional variance in (8) is
the mean squared error between the true count and the
count estimated by the SC regarding the occurrence of the
given special event. It also represents the uncertainty of the
estimated special event count, and will be used to determine
the performance of the SC for a given S ⊆ U . Let V ar(n)
denote the variance calculated by (8) after the DEDS has
executed n events. Given S ⊆ U , the performance of the SC
is measured by the normalized variance,

β(S) = lim
n→∞

V ar(n)

n
, (9)

where β(S) depends on S and (for fixed S) is the same
for any realizations of the executed events and observations.
Based on simulations, the convergence of (9) holds for the
practical cases considered here and in previous work [12]–
[14]. Furthermore, in general, if S1 ⊆ S,

β(S1) ≥ β(S), (10)

i.e., a sensor configuration with more sensors gives rise to
less normalized variance. Note that when there are no sensors
(i.e., S = ∅), there is no way to estimate the number of
occurrences of f . In this case, we set β(S) = ∞. The value,
β(S), has the following physical interpretation when S �= ∅.
It was shown in [12] that Nm(f) given {Y i}mi=1 converges
to a normal distribution as the number of observations (and,
hence, event executions) become large. Suppose that, on
average, the system executes n100 events before f has been
executed for the 100th time, and let

γ100(S) = 2×
√
n100 × β(S). (11)

Assuming n100 large enough, γ100(S) is twice the standard
deviation after n100 event executions. Then, as f is executed
the 100th time, the estimated count c(m) should be within
100±γ100(S) with probability 0.95 (by assuming a 2σ rule).
The value γ100(S) is referred to as the uncertainty and is
used to compare performances of SCs in Section V.

Finally, if the true number of special event occurrences
is known (e.g., in off-line simulations), it is possible to
evaluate the performance of SCs by comparing this number
and the number estimated by the SC. However, unlike the
normalized variance, this comparison does not use the statis-
tic information on the system model and sensors and may
require large numbers of trials to obtain a good performance
measurement. Hence, the normalized variance is chosen here
as the performance measure. In addition, since there are no
known closed form expressions for the normalized variance,
its values are obtained via simulations.

C. Extensions to multiple special events
The description of the SCs above considers only one

special event, f . Extension in the sense of [1] to estimate
the occurrences of multiple events is straightforward. Let
the special events be labeled as fi, i = 1, 2, . . . , Ns,
where Ns is the number of special events. Given a specific
sensor configuration, S ⊆ U , the normalized variances and
uncertainties corresponding to fi, i = 1, 2, . . . , Ns, are given
by βi(S) and γi

100(S), respectively. Each formulation above
is then extended to consider multiple fi.

III. PROBLEM FORMULATION

Consider the monitoring architecture discussed in Section
II and that there are Ns special events. For a sensor config-
uration, S ⊆ U , its sensor configuration cost is

ct(S) =
∑
s∈S

ct(s), (12)

where ct(S) and ct(s) denote the costs of the configuration S

and a particular sensor s ∈ S, respectively. Note that ct(s)
is a compound measure for sensor s that includes metrics
such as monetary cost, vulnerability, and intrusiveness of
operation. Typically, ct(S1) ≥ ct(S2) implies βi(S1) ≤
βi(S2), for i = 1, 2, . . . , Ns, i.e., more expensive sensor
configurations often provide better monitoring performance.
The sensor optimization problem here is to find a sensor
configuration that achieves an optimal balance between cost
of the configuration and performance of the SC, while
satisfying constraints on the sensor configuration cost and
SC performance. For this purpose, the following loss index
is considered:

I(S) =

Ns∑
i=1

ci · β
i(S) + c · ct(S) (13)

for S ⊆ U , where c ≥ 0 and ci ≥ 0, i = 1, 2, . . . , Ns,
are weighting factors that indicate the importance of each
term in I(S). Note that optimization measures are given by
βi(S) and ct(S), while the optimization criterion is given



by (13). The sensor optimization problem is formulated into
the following minimization problem for I(S): Find

S∗ := argmin{I(S) : S ⊆ U}, (14)

subject to

βi(S) ≤ βi∗, for i = 1, 2, . . . , Ns and ct(S) ≤ ct∗, (15)

where
• ct∗ is the maximum cost desired for S;
• βi∗ indicates the maximum normalized variance tol-

erable for the diagnoser in estimating the number of
occurrences of special event fi.

As mentioned in Section I, the sensor optimization prob-
lem considered here is computationally hard, and a heuristic
search algorithm is used instead for solving it.

IV. SOLUTION TO SENSOR OPTIMIZATION PROBLEM

A. Motivation
A greedy algorithm is used first to solve the sensor

optimization problem formulated in (14). In particular, this
algorithm first sets the current sensor configuration, Scur, to
∅. Then, sensors are added to Scur in a step-by-step manner.
The selection of the sensors in each step is based on the
following criterion: Find

s∗ = arg min
s∈(U\Scur)

{
Ns∑
i=1

ci·β
i(Scur ∪ {s})+

c · ct(Scur ∪ {s})}, (16)

subject to

ct(Scur ∪ {s}) ≤ ct∗. (17)

The sensor, s∗, is the newly selected sensor to be added
to Scur. Note that (16) is solved by searching through
s ∈ U \ Scur. Furthermore, (17) means that sensors costing
more than ct∗ are not considered. This criterion is based on
the instantaneous performance improvement of the candidate
sensor and is myopic. Stopping criteria for this greedy
algorithm are based on considering whether the constraints
in (15) are satisfied and on whether further reduction of the
loss in (13) can be achieved in the current step. The greedy
algorithm described above does not often perform well. To
illustrate, consider the two simplified situations:

(a) ci = 0, for i = 1, 2, . . . , Ns in (13);
(b) c = 0 in (13).

For (a), the optimization problem in (14) reduces to finding
the least costly sensor configuration that satisfies (15). The
algorithm proceeds by adding the cheapest sensor available in
U \Scur in each step. If the algorithm finds a solution, it will
stop when the performance requirement in (15) is satisfied
for the first time. Since cheap sensors typically provide poor
performance, in most cases, the resulting sensor configura-
tion satisfies (15) by using many cheap sensors. However, it
may be possible to find a less costly sensor configuration that
satisfies (15) by relying on few expensive sensors (but with
good performances). A converse observation can be made

for (b), where the optimization problem reduces to finding
the sensor configuration that minimizes the weighted sum
of variances, while satisfying (15). It is often possible to
find a sensor configuration satisfying (15) with a smaller
weighted sum of variances than the one calculated from the
configuration found by the greedy algorithm. In both (a) and
(b), the greedy algorithm needs to be improved. In case (a),
the algorithm needs to realize that always picking the least
costly sensor (usually with poor performance) may end up
with an expensive sensor configuration. A similar argument
can be made for (b). In general, performance of the above
greedy algorithm can be improved if we modify the sensor
selection criterion to take into account the projected values
of the loss index (obtained by adding fictitious sensors with
the same statistical performances and costs as the candidate
sensor so as to avoid the situations described in (a) and
(b)) and how far we are from satisfying or violating the
constraints in (15). Hence, the proposed heuristic search
algorithm for solving (14) also utilizes a sensor selection
criterion that minimizes the projected optimal values of the
loss index.

B. Projected optimal loss index sensor selection criterion

The sensor selection criterion based on minimizing the
projected optimal values of the loss index is formulated
here. To this end, the projected loss index and the projected
optimal loss index are described first. Let Scur stand for the
current chosen sensor configuration, and consider a candidate
sensor, s ∈ U \ Scur. Let Scur ∪ {s1:k}, k ≥ 1, represent a
fictitious sensor configuration, Scur∪s∪s∪. . .∪s, where the
sensor, s, is added k times to the current sensor configuration.
This fictitious configuration represents the situation, where
k sensors with the same statistical performances and costs
as s are added to Scur. The idea is to minimize the chance
of getting stuck at a local minimum by projecting the value
of the loss index assuming sensors with the same statistical
performances and costs as the candidate sensor are added.
Furthermore, let Scur ∪ {s1:0} denote Scur. The projected
cost of Scur ∪ {s1:k} is given by

ct(Scur ∪ {s1:k}) =
∑

s′∈Scur

ct(s′) + k · ct(s). (18)

The projected performance of the diagnoser for Scur∪{s1:k}
is denoted by βi(Scur ∪ {s1:k}) for fi, i = 1, 2, . . . , Ns.
There is no known closed form expression for calculating
the projected performance, and, hence, the heuristic formula,

βi(Scur ∪ {s1:k}) =

(
βi(Scur ∪ {s})

βi(Scur)

)k

βi(Scur), (19)

is used. Since, by (10), βi(scur ∪ {s}) ≤ βi(Scur), (19)
indicates that, as more sensor s are used, the projected per-
formance of the diagnoser does not degrade and may improve
exponentially. The projected loss index for Scur ∪ {s1:k} is



given by

I(Scur ∪ {s1:k}) =
Ns∑
i=1

ci · β
i(Scur ∪ {s1:k})+

c · ct(Scur ∪ {s1:k}). (20)

To calculate the projected optimal loss index for each
candidate sensor, s ∈ (U \ Scur), let

ku(s) = argmax
k≥0

{ct(Scur ∪ {s1:k}) ≤ ct∗}, (21)

i.e., ku(s) is the maximum number of s that can be added
to Scur without the cost of Scur ∪{s1:k} exceeding ct∗. The
value ku(s) can be found by searching through k ≥ 0 using
(18). Likewise, let

kl(s) = argmin
k≥0

{
∧Ns

i=1β
i(Scur ∪ {s1:k}) ≤ βi∗

}
, (22)

i.e., kl(s) is the least number of s that should be added for
the performance of Scur ∪ {s1:k} to meet all specified β∗

i .
The value kl(s) can be found by searching through k ≥ 0
using (19). If kl(s) ≤ ku(s), define

k∗(s) = arg min
k∈[kl(s),ku(s)]

{
Ns∑
i=1

ci · β
i(Scur ∪ {s1:k})+

c · ct(Scur ∪ {s1:k})}, (23)

i.e., k∗(s) ∈ [kl(s), ku(s)] minimizes the projected loss index
in (20) given Scur and s. The value k∗(s) can be found by
searching through kl(s) ≤ k ≤ ku(s) using (12) and (19).
The projected optimal loss index given Scur and s is then

I(Scur ∪ {s1:k∗(s)}) =
Ns∑
i=1

ci · β
i(Scur ∪ {s1:k∗(s)})+

c · ct(Scur ∪ {s1:k∗(s)}). (24)

If kl(s) > ku(s), k∗(s) and I(Scur ∪ {s1:k∗(s)}) are not
defined. Note that the constraints in (15) are used explicitly
by (21) and (22). Finally, the projected optimal loss index
sensor selection criterion is formulated as

s∗ = argmin{
Ns∑
i=1

ci · β
i(Scur ∪ {s1:k∗(s)})+

c · ct(Scur ∪ {s1:k∗(s)}) :

s ∈ U \ Scur and k∗(s) defined}. (25)

The sensor s∗ is the newly selected sensor to be added to
Scur and can be found by searching through s ∈ U \ Scur

using (12), (19), and (23).
Finally, note that for case (a) in Subsection IV-A, k∗(s),

if defined, reduces to kl(s) in (23) and (25). In this manner,
always picking the cheapest sensors with similar poor perfor-
mances and ending up with an expensive sensor configuration
can be avoided. A similar argument can be made for case
(b), where k∗(s) reduces to ku(s).

C. Proposed sensor optimization algorithm
Given the weighting factors, c, ci, i = 1, 2, . . . , Ns, and

performance requirements, ct∗, βi∗, i = 1, 2, . . . , Ns, the
proposed sensor optimization algorithm is as follows:
S1: Set current sensor configuration Scur = ∅.
S2: Choose s∗ according to the myopic criterion in (16)

and set P , which stores the previous projected loss,
to ∞. If no s∗ can be chosen, terminate stating that
constraints on the sensor cost is too stringent.

S3: Update Scur ← Scur ∪ {s∗}. If Scur = U , terminate
(in this case, there is only one sensor in U and the
optimization problem is not well formulated).

S4: Choose s∗ according to the projected optimal loss
index sensor selection criterion in (25). If no s∗ can
be chosen, terminate stating that constraints on sensor
cost and diagnoser performance are too stringent.

S5: Check if the following holds:
• Stopping criterion 1 (No improvement in pro-

jected optimal loss index):

I(Scur ∪ {s1:k∗(s∗)}) > P. (26)

• Stopping criterion 2 (Constraints are satisfied for
current configuration):

βi(Scur) ≤ βi∗ for i = 1, 2, . . . , Ns. (27)

If both stopping criteria hold, terminate algorithm with
optimal sensor configuration given by Scur.

S6: Set P = I(Scur ∪ {s1:k∗(s∗)}) and update Scur ←
Scur ∪ s∗. If Scur = U , terminate stating that the al-
gorithm exhausted all selections of the sensors without
finding a solution. Otherwise, goto step S4.

Note that the first sensor chosen in S2 is based on
the myopic sensor selection criterion, while the remaining
sensors chosen are based on the projected optimal loss index
sensor selection criterion. The reason for this arrangement
is that, since βi(∅) = ∞, for i = 1, 2, . . . , Ns, we cannot
compute the projected performance via (19) in order to
select the first sensor. While other selection criteria may
be used for S2, the current algorithm works well for most
practical/empirical cases considered.

V. APPLICATION

A. Multi-unit-operation monitored system
The proposed sensor optimization algorithm is applied to

a multi-unit-operation system shown in Fig. 2, which has
been derived from an actual facility application. The unit
operations UOi of the system are labeled by numbers 1
through 6. The input ports are squares marked by I1, I2,
and I3, while the output ports are marked by O1, O2, O3,
and O4. The symbols Fi, i = 1, 2, . . . , 13, stand for material
flow, which may be a discrete item (e.g., container) or fluid
(e.g., solution). The hexagons indicate sensors.

The operations of the system are described below. Input
material, F1, enters the monitored plant via I1 and is
transferred to UO1. The outputs of UO1, F2 and F3, are
then transferred to UO2 and UO4, respectively. Batches of



Fig. 2. A multi-unit-operation system

F3 are stored and processed at UO4, which are eventually
outputted via F5 through O2 after receiving F4 at UO4.
Likewise, at UO2, measurements are taken to characterize
input material, and the output, F6, is transferred to UO3

where it interacts with F7 entering via I3. While UO3 always
outputs F8 to O1, it outputs either F9 to UO5 or F10 to
UO6. Material in UO5 can either be transferred out of the
monitored plant via O3 (i.e., F11) or transferred to UO6 (i.e.,
F12). Materials transferred to UO6 are eventually removed
from the monitored plant via O4 (i.e., F13).

B. Possible sensors for monitored system
A number of sensors may be deployed to monitor the

multi-unit-operation system described above. They are cat-
egorized in Table I along with their possible observations.

TABLE I
POSSIBLE SENSORS FOR CONSIDERED MONITORED SYSTEM

Sensors Discrete event observations (Σ)
s13, s21 low normal
s15, s23 low normal high
s14, s22 low normal high
s12, s16 low normal high
s42, s51
s31, s32
s33, s34 low normal high
s35
s52, s6 transfer no transfer
s41 transfer no transfer
s25 normal abnormal

C. Anomaly patterns of operations
Any form for anomaly patterns can be detected and

counted by the proposed DEDS diagnosers [9]. In particular,
two anomaly patterns of operations are here considered
representing operations that may cause undesirable material
to exit improperly. The monitoring challenge is that these
patterns (described below assuming perfect sensors) are
defined in terms of events separated apart in time and space.
Anomaly pattern A1:
A normal or high property value is provided by s12 and a low
property indication is provided by s15 and a high property

indication is provided by s16 and then there is an abnormal
event generated by s25 (which compares measurements taken
by s11 and s24). If after three (3) or more instances of these
anomalies have been observed, a high property indication is
provided by s42 is received but no observation was received
from s41, an alarm is triggered.
Anomaly pattern A2:
A low property indication is provided by s31 and a low or
normal property indication is provided by s33 and a high
property indication is provided by s34. If after three (3) or
more instances of these anomalies have been observed, a
high property indication is provided by s51 is received, an
alarm is triggered.

D. Modeling of monitored system
In the interest of space, the procedure for modeling the

multi-unit-operation system as a DEDS is omitted but out-
lined here. Each unit operation is first modeled as an automa-
ton. With a slight abuse of notations, let UOi, i = 1, 2, . . . , 6
indicate the automata corresponding to the unit operations
in Fig. 2. Let TVij denote the true value for the sensor sij ,
i.e., TVij would be the reading of sij if the sensor were
perfect. To simplify the automata, events are constructed by
aggregating these true values. For example, the automaton,
UO1, is shown in Fig. 3. For this automaton to make a state

Fig. 3. Automaton for Unit Operation 1

transition from Idle to Working (or from Working to Idle),
TV13 (or TV21) must be “normal”, while the other true values
can assume the discrete values corresponding to those in
Table I. The other unit operations are modeled similarly.

The technique introduced in [9] is employed for detect-
ing the anomaly patterns. For each anomaly pattern to be
detected, an automaton is constructed, where a fictitious
unobservable event is executed if the anomaly pattern of
operations occur. Let AP1 and AP2 denote the automata for
anomaly patterns A1 and A2, respectively, and f1 and f2
be their respective fictitious unobservable events. The global
system model is constructed by composing all unit operation
models, AP1, and AP2:

UO1‖UO2‖UO3‖UO4‖UO5‖UO6‖AP1‖AP2, (28)

where ‖ is the parallel composition described in [21]1. The
state transition probabilities of the global model is chosen
suitable for the simulation study below. In practice, the
transition probabilities may be obtained based on past ob-
servations. The goal of the diagnoser in Fig. 1 is to estimate
the number of occurrences of f1 and f2, which correspond to
the occurrences of anomaly patterns A1 and A2, respectively.
Notice that only the operations of UOi, i = 1, 2, 4, are

1Note that the addition of AP1 and AP2 in (28) does not change the
behavior described by UO1 through UO6. The only effect is that f1 and
f2 are executed if and only if A1 and A2 occur, respectively.



relevant to A1. Similarly, only UOi, i = 3, 5, 6, are relevant
to A2. Hence, the diagnoser for detecting and counting the
two anomaly patterns can be constructed modularly as shown
in Fig. 4, where D1 is constructed from UOi, i = 1, 2, 4,
and AP1, and estimates the number of occurrences of f1.
Likewise, D2 is constructed from UOi, i = 3, 5, 6, and AP2,
and estimates occurrences of f2.

Fig. 4. Modularly constructed diagnoser

E. Sensor reliability and cost assumptions
The costs and characteristics of the available sensors for

selections are indicated in Table II, with the probability of
misclassification for each particular sensor being equally
distributed among all possible misclassifications. For in-

TABLE II
SENSOR RELIABILITY

Sensors Cost Prob. of Prob. of Prob. of
mis- correct mis-

detection classification classification
s13, s21 3 0.03 0.94 0.03
s15, s23 1 0.02 0.94 0.04
s14, s22 3 0.02 0.94 0.04
s12, s16 7 0.02 0.94 0.04
s42, s51
s31, s32
s33, s34 11 0.02 0.94 0.04
s35,
s52, s6 4 0.03 0.97 0
s41 5 0 1 0
s11, s24,
and s25 11 0.03 0.94 0.03
combined

stance, consider s14 and suppose that the property that it
is measuring is high at a given instance. The probability that
this sensor does not give a reading is 0.02 and the probability
that it reads “high”, “normal”, and “low” are 0.94, 0.02,
and 0.02, respectively. Finally, from the descriptions of the
sensors above, s11 and s24 are deployed if and only if s25
is deployed. Hence, these three sensors together are treated
as one and their combined cost and characteristic are shown
in the last row of the table.

F. Simulation results
The sensor configuration shown in Fig. 2 is the full sensor

configuration for the multi-unit-operation system. Here, the
algorithm proposed in Section IV is used to find an optimal

sensor configuration for the system. The parameters used for
running the algorithm are c = 1, c1 = 4000, c2 = 6000,
ct∗ = 90, β1∗ = 0.0027, and β2∗ = 0.0035. After numerous
simulations, the systems executes, on average, 6837 and
5305 events for f1 (anomaly pattern A1) and f2 (anomaly
pattern A2) to occur 100 times, respectively. Hence, by (11),
β1∗ = 0.0027 and β2∗ = 0.0035 correspond to γ1∗

100 = 8.59
and γ2∗

100 = 8.62, respectively. Note that, typically, β1(S)
and β2(S) are much smaller than the costs in Table II, and,
hence, c1 and c2 have to be much larger than c for all
terms in the loss index (13) to be comparable. An optimal
sensor configuration found by the algorithm consists of the
following sensors:

s15, s16, s41, s31, s34, s51, s52. (29)

Fig. 5 shows the sensor configuration in (29), where sensors
selected (and not used) are crossed out. Note that sensors

Fig. 5. Computed optimal sensor configuration

s15, s16, and s41 are used for counting occurrences of f1,
while s31, s34, s51, and s52 are used for f2. Fig. 6 plots
the true and estimated (for both full and optimal sensor
configurations) numbers of occurrences of f1 against the
number of event executions, while Fig. 7 plots those for
f2. In both figures, estimates from the full and optimal
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Fig. 6. Estimated vs true count of f1 as function of executed events

sensor configurations are almost on top of each other. Note
that in the particular simulation trial here, the SC tends to
undercount the special event occurrences. Table III compares
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Fig. 7. Estimated vs true count of f2 as function of executed events

the cost and performance between the full and optimal
sensor configurations. From Figs. 6 and 7 and Table III,

TABLE III
COMPARISON BETWEEN FULL AND OPTIMAL SENSOR CONFIGS.

Full sensor config. Optimal sensor config.
Cost 121 46
β1(S) 0.000636 0.0022
γ1

100
(S) 4.17 7.76

β2(S) 0.0016 0.0021
γ2

100
(S) 5.83 6.68

the sensor configuration in (29) achieves cost savings of
121−46

121 ≈ 61.98%, while errors in estimating occurrences of
f1 and f2 are still reasonably small. The proposed approach
for sensor configuration optimization scales well in practice.
For example, for the actual facility considered here consisting
of 9504 states, the algorithm takes about 12 hours to compute
off-line an optimal solution in a 64bit computer with Intel
Xeon CPU E5520 running at 2.27 GHz.

VI. CONCLUSIONS

This paper considered the monitoring architecture in Fig.
1, where the monitored plant is modeled as a stochastic
automaton, the sensors are unreliable, and an SC serves
as the diagnoser. Since the the special event counting
ability of an SC generally becomes better as the cost of
the sensor configuration increases, a sensor optimization
algorithm was developed to find a sensor configuration that
optimally balances cost and the performance the SC, while
satisfying given observability requirements. This algorithm
adopts two greedy heuristics, one myopic and one based on
projected performance of candidate sensors. These heuristics
are sequentially executed in order to find optimal sensor
configurations. The developed optimization algorithm can be
used to compute optimal sensor configuration, although these
solutions are not necessarily the optimal one. The developed
algorithm was applied to a sensor optimization problem for a
multi-unit-operation system. The results showed that optimal
sensor configurations can be found that may significantly
reduce the sensor configuration cost but still yield acceptable
performance for counting occurrences of anomaly patterns.
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