Sensor Configuration Selection for Discrete-Event Systems under Unreliable Observations

PDF Version Also Available for Download.

Description

Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other ... continued below

Creation Information

Lin, Wen-Chiao; Yoo, Tae-Sic & Garcia, Humberto E. August 1, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other based on projected performances of candidate sensors. The two heuristics are sequentially executed in order to find best sensor configurations. The developed algorithm is then applied to a sensor optimization problem for a multiunit- operation system. Results show that improved sensor configurations can be found that may significantly reduce the sensor configuration cost but still yield acceptable performance for counting the occurrences of special events.

Source

  • 6th IEEE Conference on Automation Science and Engineering (CASE 2010),Toronto, Canada,08/21/2010,06/24/2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-10-19141
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 1033876
  • Archival Resource Key: ark:/67531/metadc842029

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • June 17, 2016, 10:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lin, Wen-Chiao; Yoo, Tae-Sic & Garcia, Humberto E. Sensor Configuration Selection for Discrete-Event Systems under Unreliable Observations, article, August 1, 2010; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc842029/: accessed July 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.