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Abstract

We examine four Richtmyer-Meshkov (RM) experiments on shock-generated turbulent 

mix and find them to be in good agreement with our earlier simple model in which the growth 

rate h of the mixing layer following a shock or reshock is constant and given by v2 A , 

independent of initial conditions 0h . Here A is the Atwood number )/()( ABAB   , BA,

are the densities of the two fluids, v is the jump in velocity induced by the shock or reshock, 

and  is the constant measured in Rayleigh-Taylor (RT) experiments: 07.005.0 bubble , 

bubblespike  )5.28.1(  for 0.17.0 A . In the extended model the growth rate begins to decay 

after a time *t , when *hh  , slowing down from vt20  Ahh  to th ~ behavior, with 

25.0bubble and 36.0spike for 7.0A . We ascribe this change-over to loss of memory of 

the direction of the shock or reshock, signaling transition from highly directional to isotropic 

turbulence. In the simplest extension of the model 0/* hh is independent of v and depends only 

on A . We find that 5.35.2/* 0 hh for 0.17.0 A .
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I. INTRODUCTION

Hydrodynamic instabilities between two fluids and in particular Rayleigh-Taylor1,2 (RT) 

and Richtmyer-Meshkov3,4 (RM) instabilities acquired new importance since the proposal5 to use 

inertial confinement fusion to achieve thermonuclear burn.6 In astrophysics they challenge our 

ability to explain certain phenomena such as supernova explosions.7 These hydrodynamic 

instabilities cause the two fluids to interpenetrate and mix. Experimental, numerical and

theoretical efforts continue to shed light on these complex, yet basic processes.8

The original works on RT1,2 and RM3,4 instabilities were naturally limited to the single-

scale linear regime. For RT, perturbations of amplitude  and wavelength  grow at the 

interface between two fluids of densities A and B under a constant acceleration 


g directed 

from A to B with BA   . For RM, perturbations grow if a shock passes from A to B or B to A. 

In the latter case the growth is preceded by a phase reversal. The linear regime for both 

instabilities is limited to   .

As the amplitude grows it enters the nonlinear regime   and slows down but 

continues to grow. There is a vast and growing literature on nonlinear evolution that we forgo 

except to mention that due to the difficulty of nonlinear equations several models have been 

developed, of which we cite only Layzer’s original work.9 Its descendants are too numerous to 

report and not quite germane to the subject at hand which is turbulent mix, a topic even more 

challenging: multi-wavelength initial perturbations, shocked or accelerated, evolving into 

turbulence. There are no expectations for an exact, first-principles description of turbulent mix 

anytime soon and therefore the development of models is even more requisite.
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In Sec. II we review briefly the experiments on RT and RM mix, with emphasis on the 

latter. In Sec. III we extend our earlier model for RM mix and apply it to recent experiments. 

Conclusions, future work, and suggestions for new experiments are presented in Sec. IV.

II. RT & RM EXPERIMENTS

We believe the first experiments on RT mix were those of Read10 guided and supported 

by the numerical simulations of Youngs.11 The mix is initiated by a multitude of wavelengths 

some having amplitudes in the linear ii   and others in the nonlinear ii   regime, a

combination that we call “random” for short. The resulting evolution, a very brief time after the 

start of the acceleration, was strikingly simple:

2Agth  ,        (1)

where h is the mixing width,  a constant, and A is the Atwood number )/()( ABAB   . 

In our notation h stands for bh or sh and  for the corresponding b or s , with bh ( sh ) 

referring to the mixing layer width on the bubble (spike) side, i.e., the penetration depth of the 

light (heavy) fluid into the other. The experiments10 were driven by rockets and hence are often 

referred to as “rocket-rig” experiments. Initial conditions )0(0  thh were not measured except 

to note that they were small and, as is clear from Eq. (1), they did not influence the growth of

)(th , a fact often referred to as “loss of memory of initial conditions.” Only bh was measured 

with 07.0b constant for a large range of Atwood numbers.

Several subsequent experiments, of which we mention only a couple, confirm the above 

picture. “Water channel”12 experiments reported 07.0 sb  . These were low- A

experiments and therefore it is expected that sb hh  . “LEM” (Linear Electric Motor) 
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experiments13 reported 05.0b and 33.033.0 ]/[)]1/()1[( AB
bbs AA   for 

8.0A . We know of no experiment reporting any large effect of initial conditions on the RT 

mixing rate and in fact efforts to reduce mixing by reducing 0h (smoother initial surfaces) have 

been largely unsuccessful, and the principle of “independence from initial conditions” appears 

well established. There are models predicting smaller  ’s for 0h below a threshold,14 but 

apparently this threshold is difficult to achieve experimentally.

Turning to RM, the first model proposed15

tAh v2   ,        (2)

thus maintaining the principle of “independence from initial conditions” and providing a 

complete prediction for the mixing width:  is the same constant as measured previously in RT 

experiments and v is the jump in the velocity of the interface induced by the shock. An initial-

mix-width 0h can appear as an additive constant in Eqs. (1) and (2) for consistency, but for now 

we take hh 0 .

The purpose of this study is to compare Eq. (2) and its extension (see next section) with 

four RM experiments. First came the experiments of Vetter and Sturtevant16 (VS) in a large 

shock tube. Next were the experiments of Erez et al17 (ESOELSB) in a smaller shock tube. The 

same shock tube was used in an extended set of experiments reported recently by Leinov et al18

(LMELBSS). These were all gas/gas experiments, in contrast to a  gas/liquid experiment in an 

even smaller shock tube reported recently by Shi et al19 (SZDJ). We shall discuss three of the 

experiments (VS, ESOELSB, and SZDJ) briefly, and examine the fourth one, LMELBSS, in 

some detail.
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All gas/gas experiments use air and SF6 as the two gases in a horizontal shock tube and 

rely on a membrane to separate the gases initially. In addition, VS used a pair of thin-wire-grids

and placed the membrane in 3 different locations: i) Before, i.e., upstream side, ii) Between, or 

iii) After, i.e., downstream side of the grids. Once such a composite interface was shocked each 

configuration gave a different evolution. Upon reshock, however, the growth rate was found to 

be practically the same in all three configurations and in good agreement, within 23%, with Eq. 

(2) (a reshock occurs when the initial shock, transmitted from air into SF6, reflects off the 

endwall and returns to reshock the air/SF6 interface). Thus what was a liability (membrane and 

wire meshes affecting initial growth) was turned into an asset because the reflected shock met 

different conditions yet produced essentially the same h , confirming the principle of 

“independence from initial conditions” mentioned above. VS measured only the total mixing 

width sbsbt hhhh    (this is true of ESOELSB and LMELBSS also), and 

v)(2  Ah sbsb  , where A refers to the postreshock Atwood number. VS assumed 

07.0 sb  and hence the coefficient 0.28 in Eq. (2) of Ref. 16. To vary v , experiments 

with different shock Mach numbers sM were performed using a long, 122 cm test section for the 

low- sM and a short, 61 cm test-section for the high- sM experiments. The change in length was 

needed to keep the reshocked mixing layer within their diagnostic window.16 Higher Mach 

numbers showed better agreement with Eq. (2).

ESOELSB experiments used a “thin” (0.5 m) or a “thick” (2.0 m) membrane to 

separate the gases initially. Again, the mixing width after the first shock depended on the type of

membrane used, but the growth after reshock appeared to be linear in time and, perhaps more 
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importantly, approximately independent of which membrane was used and how large was the 

mixing width just before reshock. No comparison with Eq. (2) was made.

The experiment reported by SZDJ19 is performed in a vertical, downward-firing shock 

tube needing no membrane between the air, in which the shock is generated, and the water. Mach 

numbers ranged from 1.2 to 1.7. After the passage of the shock the air/water mixing widths were 

found to increase linearly with time and in good agreement with Eq. (2). The authors report19

052.0b and 13.05.2  bs  . The high value of s is consistent with the higher value of

A : 1A for air/water compared with 7.0A for air/SF6. We do not analyze further the SZDJ 

experiments, but interpret their result as another possible confirmation of Eq. (2) – No other 

gas/liquid experiments of this type have been reported.

Finally, we consider in some detail the recently published LMELBSS experiments18 that 

were conducted in the same shock tube as ESOELSB and used only one type (thin) membrane. 

Since evolution after first shock was known to depend on the membrane, the focus was again on 

the reshock. Three different methods were used to test Eq. (2).

The first method was the same one used in VS: Scan over Mach numbers. As the Mach 

number sM of the incident shock is increased, v increases while A changes much less. For 

example, from our one-dimensional (1D) CALE20 simulations (see below) we find that as sM

increases from 1.15 to 1.33 v more than doubles from 72 m/s to 149 m/s while the postreshock 

A increases only from 0.71 to 0.74.

Method 2 used in LMELBSS was a simple yet important variant of VS: Change the 

length of the test section but keep sM the same. Vetter and Sturtevant had changed both the 

length of their test section and sM simultaneously to accommodate their diagnostics; Leinov et 
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al. changed only the length to delay the arrival of the reshock at the same sM , thus producing a 

more evolved interface to be reshocked with essentially the same v – in short, to vary the 

initial conditions at reshock time and see if a more evolved interface underwent more or less 

growth upon reshock with the same v .

In this second method the length was varied from 80 mm to 235 mm stepping through 

intermediate values, resulting in ~56% change in h , the mixing width just before reshock. The 

postreshock growth, however, did not change much, less than about 12%, in agreement with Eq. 

(2) and ESOELSB who had induced an even more modest change by varying the membrane.

The third and most innovative method used by LMELBSS was to use what we call 

“shock absorbers” instead of a rigid end wall, keeping everything else the same. A foam with no 

covering (least reflective), or with a cardboard covering (intermediate), or with an aluminum 

covering (more reflective) was used and the results compared with the most reflective case (rigid 

wall). The same sM (1.20) and length (80 mm) was used throughout this scan. The first shock 

being the same in all cases, the shock absorbers reduce only the strength of the reflected shock,

reshockv decreases, and the interface is (slightly) more evolved (weaker reshocks arrive slightly 

later). The experimentally measured v ’s ranged from a low of 36.3 6.0 m/s using foam with 

no covering to a high of 96.4 5.0 m/s with the rigid wall. The mixing widths were again found 

to be well correlated with v .

Clever as this technique is, it is a passive one serving only to weaken the reshock. We 

would like to advocate an active technique where the end wall is replaced not by a shock 

absorber but by a second high pressure chamber that is burst at an appropriate time to increase

the reshock.
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The experimental total growth rates sbh  were compared18 with v)(2  Asb  using

712.0A . From the LEM experiments13 bbs AA  8.1)]1/()1[( 33.0  , hence 

39.028.05.6)(2  bsb  for 07.005.0 b . The data (last figure in LMELBSS) 

appears to favor the upper end, and scaling with v appears reasonable (Tables 1-3 in Ref. 18). 

For brevity in this paper we adopt the intermediate value 06.0b for which 

34.06.5)(2  bsb  for 712.0A .

Although the experiments focused on the reshock, it is instructive to observe the behavior 

of the mixing width before and after, as ample data is presented in LMELBSS. We mentioned 

that the growth immediately following the first shock is “corrupted” by the membrane; however, 

the subsequent evolution shows an essentially decaying h until the reshock arrives. In fact the 

scan through successively longer and longer test sections (method 2) is also a record of how 

)(th evolves with time after the first shock – See Table 1 in LMELBSS.

After reshock the newly acquired and large value of h appears to remain constant for 

some time before it also begins to decay, particularly in the long-test-section experiments. In the 

short sections a third wave, a rarefaction, is captured in the diagnostic but the data stop too short 

a time thereafter to draw any conclusions. We shall not consider the third signal in this paper.

III. EXTENDED MODEL AND AIR/SF6 EXPERIMENTS

We shall focus on the experiments of Leinov et al.18 to extend the model based on Eq. 

(2). This is necessary if one wishes to account for the experiments from 0t when the first 

shock strikes the air/SF6 interface and not just after reshock for which Eq. (2) appears to be 

adequate.16,18,19 Keeping in mind that the first shock may be “corrupted” by the presence of the 
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membrane we shall, nevertheless, apply the model starting from 0t as was done in SZDJ. One 

would be clearly justified in introducing a multiplier in Eq. (2) to account for the membrane 

effect, but we shall forgo such an approach and use Eq. (2) as is. Instead, we believe it is 

important to capture the subsequent decay of the growth rate from its constant value v2 A to 

essentially zero. Thus the model we propose is to use Eq. (2) until a time, call it *t , when the 

mixing width changes from Eq. (2) to



 







 *)(

*
*1* tt

h
hhh


,        (3)

where *)(* thh  and *)(* thh   , ensuring continuity of h and h . Equation (3) is the solution of 

the so-called drag equation,

hhhhc
dt

hd
d /)/11(/ 22

2

2
  .        (4)

For *tt  it has the form t predicted by bubble-merger models21,22 and has been often used to 

describe h after the acceleration g has been turned off (see, e.g., Ref. 13 and references 

therein). Solutions to the more general buoyancy-drag equation can be found in Ref. 23. From 

LEM experiments13 we take 25.0b and 21.0)]1/()1[( AAbs  , which gives 36.0s

for 712.0A . We should caution the reader that all the “constants” used in this paper 

( b , s , b , and s ) have some experimental uncertainties associated with them.10,12,13

If the decay, Eq. (3), follows RT growth then */2*)(/*2*/* 2 ttAgAgthh   . If it 

follows RM growth then */1*v2/v2*/* ttAAhh   , and Eq. (3) becomes










  )1*/(21* tthh , following RT ,    (5a)    
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








  )1*/(11* tthh , following RM.   (5b)

Clearly, one needs only one parameter, either the time *t or the mixing width *h when decay 

begins, because given one the other is determined via v2*/*  Ath  for RM. We continue to 

take 00 h and discuss a finite 0h , which must be added to Eqs. (1) and (2),  in Sec. IV.

In this model it is difficult to maintain the principle that “RM remembers its initial 

conditions” as is often claimed. If th v~ independent of initial conditions how can its 

subsequent evolution depend on it? A possible answer may be “If *t depends on 0h .” At present 

there is no theoretical, numerical or experimental data to judge the validity of such a connection 

between *t and 0h , which we will make in Sec. IV.

The two-regime methodology advocated in this model is similar to Fermi’s model for the 

evolution of a single-scale RT perturbation )(t as quoted by Layzer.9 Details can be found in 

Ref. 24 where a similar, but slightly different approach to nonlinear RT and RM instabilities was 

proposed. Let us only point out that in the case of the single-scale RT or RM problem *t is 

indeed determined by 0 , the initial amplitude. In Fermi’s case continuity of  was the link 

between *t and 0 (see Ref. 24). Here, however, *t cannot be determined in this fashion 

because Eq. (3) satisfies continuity of h and h for any *t .

A principle that may help identify *t will be mentioned at the end. Here we treat it as a 

free variable and find that the experiments already constitute a nontrivial test of the model. The 

question is: Can one, with a single parameter *t , match the experimental mixing widths in the 

successively longer and longer test sections?
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To model the experiments of Leinov et al.18 we have used the following input 

parameters: 1.5/
6

airSF  , 09.1
6
SF , 40.1air . Given the Mach number sM of the 

incoming shock, the Rankine-Hugoniot relations determine the postshock Atwood number and 

the velocity 1v of the air/SF6 interface. This is also v for the first shock. For the reshock, we 

need the length L of the SF6 test section and the nature of the endwall. The shock that is 

transmitted into the SF6 reflects fully from a rigid wall (the SF6 comes to rest next to the wall), 

but only partially if a shock absorber is present. In all cases, however, the reflected shock meets 

the interface, still moving at velocity 1v , and reshocks it so it now moves at velocity 2v , and has 

a slightly different ockafter reshA . The reshock time is proportional to L , and 12 vvv  for the 

reshock. We found it useful to run 1D CALE problems for several experiments and check the 

results against standard Rankine-Hugoniot solutions.25 We adopt the units of LMELBSS: 

millimeters for distance, milliseconds for time, and meter/second for velocity. Unlike 

LMELBSS, who took 0t to coincide with the reshock, we take 0t to be the time the first 

shock strikes the interface.

An example with 20.1sM , 80L mm will clarify. We find 1.69v1  m/s, 

700.A kafter shoc  . For a rigid endwall we find 8.24v2  m/s, 720.A ockafter resh  , hence 93.9v 

m/s for the reshock, which arrives at 720.t  ms. Taking 10.t*  ms, the evolution of the total 

mixing width sbh  is plotted in Fig. 1 as a function of time. We have used Eq. (2) for *tt  and 

switched to Eq. (5b) for *tt  . In the same figure we show the evolution for the longest, 

235L mm experiment. Note that while L was increased almost 3-fold and hence reshock 

occurred 3 times later (~2.15 ms), the mixing width h before reshock has increased from ~4.2 

mm to ~6.2 mm only. The postreshock growth rate h is the same, 9.22~v)(2  Aαα sb m/s in 
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both cases. Experimentally (Table 1 in Ref. 18) the growth rate ranged between 121.8 and 

124.3 m/s for L between 80 and 235 mm and there was no correlation between h and h .18

The nontrivial test for t* hinted at earlier is the evolution of sbh  between t* and 

reshock time. For a fixed sM , as the length L of the test section is increased in steps from 80 

mm to 235 mm one must, for consistency, use the same t* for the first shock, as we did in Fig. 

1. This period of evolution is similar to Fig. 7 of LMELBSS, its horizontal axis now interpreted 

as time. In short, Eq. (3) appears to agree well with Fig. 7 of LMELBSS after converting its x-

axis (mm) to time (ms).

In Fig. 1 we also show sbh  for the stronger, 331.M s  shock, done only in the short 

( 80L mm) test section with a rigid endwall. We find 6108v1 . m/s and 720.A kafter shoc  , 

therefore the growth rate after the first shock is ~108.6/69.1 or about 1.57 times larger than the 

201.M s  case. The ratio goes up to 1.64 after including Atwood number effects appearing in 

Eq. (2) and in s . We have not changed t* (0.1 ms, though it is likely to depend on sM - see 

below), and again used Eqs. (3) or (5b) from t* until reshock which now occurs at 0.57 ms.

After reshock 0.40v2  m/s and 74.0ockafter reshA , therefore the postreshock growth is 

~148.6/93.9 or about 1.58 times larger than the weaker, 1.20sM case. Including A -effects, 

that ratio goes up to 1.65. Clearly, v is the major player controlling h .

To compare our postreshock growth rates with experiment (Table 2 in Ref. 18), we find 

38sbh m/s for 149v  m/s, compared with 36.34 sbh m/s for 106.145v  m/s 

experimentally. We should add that the agreement is somewhat poorer (see below) for the 

weaker shocks.
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As mentioned earlier we terminate our calculation when a third signal hits the interface in 

the short-section experiments. In the long ( 235L mm) section, however, one observes a decay

~0.4 ms after reshock. We capture this phase by using Eq. (3) a second time starting at 55.2t

ms in Fig. 1.

We now turn to the experiments with shock absorbers, all done at 201.M s  in the short, 

80 mm-long test section, and therefore all having 1.69v1  m/s, 700.A kafter shoc  . The effect of a 

shock absorber is to reduce reshockv . Those are listed in Table 3 of Ref. 18. From this table we 

conclude that, in increasing rigidity, 68.32v2  , 67.23  , and 69.3  m/s for the 

elastomeric foam (EF), elastomeric foam & cardboard (EF&C), and elastomeric foam & 

aluminum plate (EF&AP) endwalls, respectively, compared with 8.24 m/s for the fully rigid 

wall. Although the v ’s listed in Table 3 of Ref. 18 are (almost) sufficient to construct the 

corresponding growth rates from Eq. (2) (“almost” because one also needs the Atwood 

numbers), we found it useful again to model each absorber as a third fluid, call it C, placed 

behind the 80 mm-long SF6 and whose density C is chosen to produce the required strength in 

the reflected shock, a method we had advocated recently.26
C having a much weaker effect on 

the reflected shock we kept it at 1.09 while varying only C . There is a one-to-one 

correspondence between C and the strength of the reflected shock, and this is a well-posed and 

simple exercise matching C to the required 2v . We found that by choosing  3/
6C SF , 5, 

and 40, one closely matches the 'v2 s listed for the three shock absorbers EF, EF&C, and 

EF&AP, respectively, compared with 
6

/C SF for the rigid wall. The corresponding 

postreshock Atwood numbers ockafter reshA are 0.709, 0.711, and 0.716, compared with 0.720 for 

the rigid case, again a minor change.
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Fig. 2(a) displays the interface velocities as functions of time for the four cases [rigid 

endwall included for comparison]. Note that the weaker reshocks EF and EF&C cannot reverse 

the direction of motion, i.e., leave 0v2  (curves labeled A and B), while EF&AP (curve C)

almost brings the interface to rest, meaning 2v ~0. The diagnostic advantages of 0v2  are 

obvious: The turbulent mixing zone is at rest and grows wider with time. In addition,

shockreshock
vv  and therefore

shockreshock
hh   , the only difference being essentially the sign of 

A and the mix width h and its rate of change h just before reshock being different from those 

of the shock. In our last section we discuss a model which implies that onset of decay would 

occur later, i.e., shockreshock tt **  , because
shockreshock

hh 00  .

The total mixing widths corresponding to the above four cases are plotted in Fig 2(b) 

ordered, naturally, by their v ’s. The calculated growth rates are 8.5, 10.8, 17.6, and 22.9 m/s, 

compared with the experimental values 8.05.10  , 0.13.14  , 0.17.19  , and 0.11.23  m/s,

respectively. As indicated by the last figure of LMELBSS, the model tends to underestimate the 

growth rates following weak reshocks, being ~24% below experiment for the worst (EF&C) 

case, but otherwise is in good agreement with experiments.

IV. ANALYSIS, CONCLUDING REMARKS, AND FUTURE WORK

We have seen that this simple growth and decay model captures well the experimental 

behavior of h(t) under a variety of conditions. Growth following a shock or reshock is given by 

Eq. (2) and the subsequent decay, after a time t* , by Eq. (3). The two regimes are joined 

smoothly, as they must be, by continuity of h and h . A more complete model would no doubt 

assure continuity of h also; we hope to pursue such a model in the future. If future work, be it 
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experimental, numerical or theoretical, reveals that the decay obeys a law different from Eq. (3) 

then one can always graft it to Eq. (2) in this Fermi-like approach.

After shock and reshock the interface sees a third wave, a rarefaction in the form of 

acceleration, followed by another period of coasting, a pattern that repeats and gets weaker with 

time (assuming no new signal coming from the opposite, i.e., driver-section of the shock tube). 

This third wave is actually an unstable RT acceleration with air “pushing” SF6 and hence Eq. (1) 

applies. The acceleration is inversely proportional to the length L of the test section and varies 

between ~ 510 m/s2 ( 235L mm) and ~ 5103 m/s2 ( 80L mm). Needless to say, the more 

complete model would handle shocks, reshocks, accelerations and the in-between coasting 

periods in one swoop. A possible candidate was the model of Srebrero et al,27 but apparently it 

does not correctly reproduce h after reshock - see Fig. 8 in LMELBSS. 3D numerical 

simulations, on the other hand, agree well with the experiments.18

Compressibility effects are also neglected in our model, especially upon reshock where it 

appears most prominently: An instantaneous reduction in )(th upon reshock. Strictly speaking, 

one must construct the density profile in the mix region going from pure air to pure SF6 over a 

distance of h and calculate how that profile steepens upon reshock and yields h , the 

compressed mixing width immediately after reshock. Clearly, it is this h that must be added to 

Eq. (2) after reshock. Of course 1/  hh for weak (re)shocks .

A more serious issue, in our opinion, is what to do about h , the growth rate immediately 

before reshock. In the experiments so far reshock has occurred after decay and, as mentioned 

earlier, h decays almost to zero before being revived by the reshock, hence this is not an urgent 

issue:   hAh  v2 . The question becomes important, at least conceptually, for the opposite 
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case: What if a strong shock is followed by a weak reshock? Surely the growth rate does not 

immediately drop to zero and h must then be taken into account.

The question under consideration, whether h should be added to or subtracted 

from v2 A , must be answered by that elusive complete model for turbulent mix. It is quite 

possible that this weakness of our model where we ignore h , justified on the basis that

  hh  , is responsible for the poor performance noted earlier when the shocks or reshocks are 

weak. Referring to Fig. 2, it is clear that cases A and B are most susceptible to this issue and they 

indeed compare poorly with experiment.

Finally, we discuss *t . It is straightforward to determine *t experimentally or 

phenomenologically as we have done: Fit a shock- or reshock-induced mixing width using Eq. 

(2) followed by Eq. (3) at *tt  . Note that *t is the only “free parameter” at our disposal 

because b , s , b , and s are all predetermined by RT experiments.

As far as we know all turbulence models attempting to describe RT or RM mix have at 

least one, and often more than one, free parameter. Examples can be found in Refs. 27 and 28. In 

particular KL or k models where  kK turbulent kinetic energy, L turbulent-mixing-

length-scale [not to be confused with test-section-length!], and  dissipation require an initial 

nonzero value 0L or 0 because, with 000  kK , naturally no turbulence and no mix develops 

if 0L or 00  also – one needs a “seed” that can be amplified by a shock or acceleration. In 

contrast, we take 00 h and a small 0h , if desired (see below), does not affect our results. In this 

sense our growth, Eq. (2), is “universal” depending on A and v only. But to calculate the 

subsequent decay, if any, one must decide on *t , i.e., when decay sets in. It is needed 
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particularly in long test-section experiments where h has time to decay after reshock, as shown 

in Fig. 1 for 235L mm.

Needless to say we do not believe that our values for *t   (~0.1 ms for the first shock, 

~0.4 ms for the reshock) are universal; Instead, we expect *t to depend on shock strength v

and 0h . This follows from a simple dimensional argument: If all that is available is the jump 

speed v (one may also use sound speeds sc , but they don’t help), then no time or length scale 

can be constructed. In fact this argument is sufficient to pin down the form vt~ h for RM just 

as it does for RT: 2gt~h . To inject a time scale *t or length scale *h one needs an initial 

length scale, denoted by 0h for short, because all other length scales are either zero (e.g., shock 

width) or infinite (e.g., the width of the test section). Therefore,


v

* 0




ht        (6)

or, since *v2* 0 tAhh   ,

A
h
h

21*
0

 ,              (7)

where  is a non-dimensional “constant”, possibly a function of A and/or sM and thus cannot 

be determined by dimensional arguments.

Assuming  to be a weak function of A , sM , etc., Eq. (6) implies the following: (1) 

Stronger shocks with their larger v begin to decay earlier, and (2) Interfaces with larger 0h

begin to decay later which is consistent (but certainly no proof) with our using *t ~0.1 ms for the 

first shock and ~0.4 ms for the reshock. Clearly, an experimental scan over sM , as done in VS 
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and LMELBSS, would settle the issue, but of course one must somehow eliminate the effect of 

the membrane and use a long shock tube.

Equation (7) states that decay begins after the mixing width has grown to A21 times 

its initial value. Let us concentrate on the reshock in the long (235 mm) shock tube experiment 

displayed in Fig. 1: The reshock induces h to grow from 6.2 mm to 15.3 mm before it begins to 

decay, 0.4 ms after reshock. Therefore 2.60 h mm, 3.15*h mm, and 4.0*t ms. From Eq. 

(6), using 6.93v  m/s, we obtain 6/*v 0  ht and, from Eq. (7), we obtain 

5.272.0*6*34.0121/* 0  Ahh  .

An extremely powerful assumption, not justified by any data simply because this issue 

has not been attacked previously, is to take  to be a constant. If this is true, then all the A-

dependence is explicitly indicated in Eq. (7), remembering that sb   and while b

appears to be constant s depends on A . We have seen that A changes little under shock or 

reshock in the LMELBSS experiments, and therefore 2.5/* 0 hh for all v when 7.0~A . For 

other experiments one needs only their Atwood number to evaluate Eq. (7). Armed with this 

result we can return to the first shocks in Fig. 1, starting with 20.1sM . As mentioned, we took 

1.0*t ms which implies 6.1*h mm; consequently, 64.02.5/6.1)0(0  thh mm. 

Adding this small value to the curves in Fig. 1 or Fig. 2(b) will not affect any conclusion.

Similarly for the 33.1sM shock: For consistency, we take 64.00 h mm (same 

interface, stronger shock) and 06.0*t ms ( 1.0 69.1/108.6) instead of the 0.1 ms assumed in 

Fig. 1. With this finite 0h but shorter *t one finds that sbh  grows only to ~5.4 mm (instead of 

6.4 mm) before reshock and to 16.1 mm (instead of 17.1 mm) at the end of the run. Clearly, the 1 
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mm difference is too small to differentiate experimentally. New experiments focusing on the 

relationship between 0h (initial conditions) and *t (onset of decay) are needed to determine if 

depends on A , sM , etc., or is truly a constant 6 .

For a constant  Eq. (7) reaches its maximum when 1A . If bs A  5.2)1(  , as in 

Ref. 19, then 42.07)(22  bsb  , hence 5.35.2121)/*( max0  hh . There is 

clearly much to be done to explore the idea of a *t or *h which, as far as we know, has not 

been previously considered for turbulent mix.

We close by proposing a possible understanding of *t in response to the natural 

question: What triggers the decay? Eq. (2) is growth linear in time, th ~ . A well-known 

alternative, based on conservation of energy and a simple dimensional argument due to 

Barenblatt29 gives 3/2~ th as the evolution of a turbulent layer initially very thin. In discussing 

that result we proposed30 that the nonisotropic nature of a shock allows one to sidestep 

Barenblatt’s iron-clad argument. We believe it is the loss of this anisotropy, i.e. return to 

isotropic turbulence, that is signaled by *t – sometime after the passage of the shock the mixing 

layer “forgets” the direction of the shock and begins to evolve more or less isotropically. In 

contrast to the commonly held view that “RM turbulence remembers its initial conditions,” we 

claim that “RM forgets the direction of the shock.” When this happens, the evolution passes from 

a linear t to a t behavior signifying essentially the decay of isotropic, homogeneous turbulence.

Compare with RT turbulence: There is no loss of memory of the direction of the 

acceleration and therefore Eq. (1) holds and there is no second regime as long as .constg  . 

Again, it is thought that RT turbulence is well at hand because it is independent of initial 

conditions while RM mixing is “difficult” because it remembers the initial conditions. We agree 
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that RM is difficult but for the opposite reason: It forgets the direction of the shock and 

transitions to decaying, isotropic, homogeneous turbulence, hence a second regime. If this 

hypothesis is correct then mix models must be radically modified because they contain no 

mechanism for losing memory of a direction. We hope experiments will be carried out with a 

view towards verifying or falsifying such a hypothesis.
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Figure Captions:

Fig. 1. The total mixing width spikebubble hh  in mm versus time in ms for three experiments 

patterned after the air/SF6 experiments of LMELBSS.18 The experiments are labeled by the Mach 

number sM of the incoming shock and the length L of the SF6 test section. We have taken 

00 h , 1.0*t ms for the first shock, and 4.0*t ms for the reshock in the 235 mm test 

section. Variations on 0h and *t are discussed in the text. Rigid endwall.

Fig. 2. (a) Air/SF6 interface velocity in m/s and (b) Total mixing width in mm as functions of 

time in ms for 4 experiments patterned after LMELBSS18 who used 4 different endwalls with or 

without a shock absorber: (A) Elastomeric foam with no cover (most absorptive); (B) 

Elastomeric foam covered with cardboard (intermediate); (C) Elastomeric foam covered with an 

aluminum plate (less absorptive); and (D) Fully rigid (no absorption). The shock absorbers which 

reduce the reshock are modeled as fluids 3, 5, and 40 times heavier than SF6 for curves A, B, and 

C, respectively. All have incoming sM =1.20 and L=80 mm.
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Fig. 1
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Fig. 2




