Photophysics and Photochemistry of Copper(I) Phosphine and Collidine Complexes: An Experimental/Theoretical Investigation

PDF Version Also Available for Download.

Description

Copper(I) complexes have been studied through both experimental and computational means in the presented work. Overall, the work focuses on photophysical and photochemical properties of copper(I) complexes. Photophysical and photochemical properties are found to be dependent on the geometries of the copper(I) complexes. One of the geometric properties that are important for both photochemical and photophysical properties is coordination number. Coordination numbers have been observed to be dependent on both ligand size and recrystallization conditions. The complexes geometric structure, as well as the electronic effects of the coordination ligands, is shown both computationally as well as experimentally to affect the ... continued below

Creation Information

Determan, John J. August 2011.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 739 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chairs

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Determan, John J.

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Copper(I) complexes have been studied through both experimental and computational means in the presented work. Overall, the work focuses on photophysical and photochemical properties of copper(I) complexes. Photophysical and photochemical properties are found to be dependent on the geometries of the copper(I) complexes. One of the geometric properties that are important for both photochemical and photophysical properties is coordination number. Coordination numbers have been observed to be dependent on both ligand size and recrystallization conditions. The complexes geometric structure, as well as the electronic effects of the coordination ligands, is shown both computationally as well as experimentally to affect the emission energies. Two-coordinate complexes are seen to have only weak emission at liquid nitrogen temperature (77 K), while at room temperature (298 K) the two-coordinate complexes are not observed to be luminescent. Three-coordinate complexes are observed to be luminescent at liquid nitrogen temperature as well as at room temperature. The three-coordinate complexes have a Y-shaped ground (S0) state that distorts towards a T-shape upon photoexcitation to the lowest lying phosphorescent state (T1). The geometric distortion is tunable by size of the coordinating ligand. Luminescence is controllable by limiting the amount of non-radiative emission. One manner by which non-radiative emission is controlled is the amount of geometric distortion that occurs as the complex undergoes photoexcitation. Bulky ligands allow for less distortion than smaller ligands, leading to higher emission energies (blue shifted energies) with higher quantum efficiency. Tuning emission and increasing quantum efficiencies can be used to create highly efficient, white emitting materials for use in white OLEDS.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 2011

Added to The UNT Digital Library

  • May 17, 2012, 9:47 p.m.

Description Last Updated

  • June 26, 2012, 11:04 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 739

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Determan, John J. Photophysics and Photochemistry of Copper(I) Phosphine and Collidine Complexes: An Experimental/Theoretical Investigation, dissertation, August 2011; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc84199/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .