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ABSTRACT

A generalization of the nonlinear ¢ wmodel is con-
sidered. The field takes values in a compact manifold M
and the coupling is determined by a Riemannian metric on @M.
The model is renormalizable in 2 + « dimensions, the
renormalization group acting on the infinite dimensional
space of Riemannian metrics. Topological properties of the
B-function and solutions of the fixed point equation

R - g = = { o
13 o< gij vivj + vjvi, o« = %l or 0, are discussed
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Polyakov'l several years ago studied the renormalization of the
O(¥)-invariant nonlinear o model in 2 + € dimensions in the low
temperature regime dominated by small fluctuations around ordered
states. He found an infrared unstable fixed point at a temperature of
order <. The unstable renormalization group trajectory gives a model
critical system din its scaling limit or, equivalently, a Euclidean gquan-
tun field theorye2 In two dimensions the model is asymptotically free.

I describe her@B a more general model to which Polyakov’s approach
is appropriate: a field ¢(x) taking values in a compact wanifold M,

governed by the action
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where A is the short distance cutoff. The dimensionless coupling
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T gij is a3 Riemannian metric on . The standard non-linear e

Y

models have M a homogeneocus space and gij an invariant metric.
Correlation functions are generated by the partition function

z(h) = S§§:d¢(x) exp[-S($) + U(4)] where the a priori measure dp(x)

. . , 2+

is the metric volume element on M and H(g) = A th hx) (#(x)), h

being an external field, each h(x) a function on M. The k=fold

. , . . l
correlation function takes values in the unit measures on M

-1 3 )
Bh(xl) to %h(xk} z(h)/mso :

POxy) e p(x)> = 2(0) (2)

The double expansicn in T and < is constructed as a renormwal-

. . : 5
izable perturbation series. Only fields close to the constants play a
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role; Z(h) = gém Z{m,h) where Z{m,h) 1is the sum over small fluctua~-
tions around the counstant ¢(x) = wm. A choice of coordinates around
each point m in M gives a linear rvepresentation for the fluctua-
tions: the linear field ﬁi(x) is ¢(x) in coordinates around w.

The sum over fluctuatiouns bedcomes

Z{(m,h) = 533& expl=8(m,o) + H(m,o)]. (3a)
do = I ao(x) expl AP Cax log det J(m,o(x)) ] (3b)
2 - 1=l i J

S(m,o) gdx 3T By (o)) BP@ (%) %@g (x) (3c)
fi(m,o) = 5(1}{ hGx,m,o(x)). (3d)

where Eij(mgﬁ(x)) and h(x,m,o(x)) are the metric and external field
in coordinates around m and det J;(m9€(x)) is the Jacobian of the
coordinate map from o(x) to ¢(x). Propagators and vertices come

from expansion in powers of . Normal coordinates yield:

J§(m9@=(x)) = 5;? + %; 0ot (x) Riklj(m) + oo (4a)
~ _ 1 &k 1

glm,o(x)) = gij(m) ty o (x)o (%) Riklj(m> + e (41)
- ® kl kn

hix,m,o(x)) = 3 = & (x)«es0 (%) LRI hix) (m). (4c)
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To each constant w corresponds a perturbation series whose ver-
tices are in the most general form required by power counting, so is
prima facie renormalizable. But the existence of an underlying non-
linear theory means that the vertices for one constant m deterunine
those for all nearby m’ by translation of coordinates and shift of
origin. To renocrmalize the nonlinear theory the renormalized vertices
must be made to satisfy an equivalent renormalized invariance. That
this can be done is shown in Ref. 3.

Renorualized as dictated by power counting, at a scale set by s

- - D R
iy = M gy Ay g) (5a)

() = A2

Tz (e My, £ BN+ h(<,p) (5b)
where gij and hR(x) are the renormalized coupling and external
field, Zl is a linear operator on functions on M and hl serves to
remove quadratic divergences. In the following‘only renormalized quan-
tities are discussed; the R= superscripts are suppressed.

The partition function satisfies the renormalization group equation

)] - 3
( %}f—é— p(e) ‘gj’g’*‘ (Y(g) h(x)) gh(x) Y Z(h) = 0 . (6)

The B-function p(g) 1s a vector field on the space of metrics and
?(g) h(x) 1is a linear vector field on functious.
The order parameter §(x) dual to h(x) takes values in the non-

negative unit measures on M. The free energy
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™G = max [~ log Z(h) + p2+@ th (h(x),d(x))] (7)

n

satisfies the renormalization group equation
9. 3. * 3 . ,
Cp g+ P& 35 - 07 360 g5 ) M@ = 0 (8)
where ¥(g) = ~(2 + «) + Y(g).

6 . . , . .
To two loops, using dimensional regularization and renormalizing

by minimal subtraction,

=1 -1 1 2
= - @ + + = +
Py (T &) Tooggy PRy v T Rypga Ryran) T O (9a)
Y(T“lg) = - -;,Ji- T ov, + 0('.1?3)6 (9b)
Rij = Rkikj is the Ricci tensor and T has been replaced by 2m T.

The renormalization group has meaning only as it acts on the
equivalence classes of metric couplings and external fields under
reparametrizations (diffeomorphisms) of M. The partition function
Z(h) sees no change when both gij and h are subjected to the same
reparametrization, thus no normalization condition can distinguish among
members of the same equivalence class. The construction and renoruali-
zation of the perturbation series respect this covariance.

The diffeomorphism classes of metrics make up an infinite dimen=
sional manifold (singular at metrics with symmetry)97 over which the
external fields form a vector bundle. The renorwmalization group has its

fixed points where h(x) vanishes and p(g) is an infinitesmal



reparanetrization: pij(g) = vivj + Vjvi for v a vector field on M.

The coefficients p and Y are natural functions of the metric:
when gij is transformed by a reparametrization of M, Pij(g) and
Y(g) wundergo the same transformation. In particular, if g 1is unaf-
fected then so are f and Y. Thus the renormalization group
preserves internal symmetry.

Since a homogeneous space has the same geometry at every point, the
couplings of any standard model comprise a finite dimensional submani-
fold of the metrics at one point in M. Group theoretic formulas for
renormnalization group coefficients are given in Ref. 3.

Global topological information on the p=function for small T is
available when M has dimension two and also when M 1is homogeneous.
In both cases the fB-function is a gradient through two loops.

The fixed points correspond to solutions of
R = = = + s
. X g, vivj + V.V, & t1 or O (10)

Writing the coupling in the form T"l (gij + kij), T aund kij small,

and keeping only terms of topological significance:

€ T = TZ o = F1
B(T) = <« «T -1 when o« =0, R 40 (11a)
« T R =

ijkl

P(k)ij = %’T Llﬁ(k)ij A, = - v, + 1% order (11b)

p



Y=o (2 4+ <) +»%—TA}, Dy = = vy, a"ZVi?ie (1lc)

The only meaningful kijw directions are those transverse to the

reparametrizations and to the T~ direction. /f\_ 1is an elliptic

p

operator with positive leading part, so the number of unstable or margi-

nal k= directions is always finite. The flat metrics (R, = 0)

ijkl
have trivial perturbation theories; in the following they are excluded
from the case o = 0.

When o¢ = 1 or 0 there is a nontrivial fixed point for < > 0 at

. , . . .

T= <% or T= < , infrared unstable in at least the T- direction.
When o dis =1 there is a fixed point for < < 0 at T = - <,
infrared stable in the T= direction. 1In all three cases there are also
trivial fixed points at T = 0. No other kind of fixed point at nonde=-
generate coupling is possible because when the two loop term in the

B-functioun vanishes, i.e. = v,w, + vjwig then

Rikln Rjkln i
Gam Ripry Rigrn = 0 50 Rijin = 0
In two dimensions the trivial and nontrivial fixed points merge at
'T = 0, asymptotically free in the small when o = 1,0 and in the
large when o = =1 . When o« = 0 Q(T) vanishes to second order in
T, so the approach to freedow is extraordinarily slow.

All known solutions of (10) are actually Einstein metrics (Vi = 0).
For o¢ = 1 there is available only one example which is not locally
homogeneousog Among the homogeneous spaces those admitting just one
invariant metric are necessarily Einstein,g but others with less sym=-

10
metry are known. Some have instability in k- directions, so provide

model wmulticyritical pointsoS The only known Ricci-flat spaces {(x = 0)
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, 11 . .
are the Kahler manifolds of Yau. Einstein metrics with o = -1 are
known in two varieties: the locally symmetric spaces of noncompact type
. : 11
and the Kahler metrics of Yau.

For €« >0, o =0 or l, the long distance physics is qualita-
tively familiar. Below the critical temperature long distance behavior
is governed by the trivial fixed point at T = 0, so there is a degen~-
erate set of pure equilibrium states, labelled by the points in M. At
T = 0 the free energy [(§) is minimized by the point measures
§ﬂ(x) = 6m° As T idncreases, the set of minima is still M, but the
minimizing order parameters have diffused outward; to lowest order

# 1 .
Eﬂ = exp (s \y) (6), s == 1log (1 =T/T ). At T =T the degeneracy

M Y m 2 ¢ c
of equilibria disappears, the §"l having converged to the unique meas-
*

ure annihilated by Y . To lowest order the anomalous dimensions of
§(x) are determined by the eigenvalues of ﬁ%ﬁ Long distance proper=
ties for T > Ic are not accessible to perturbation theory, but the
system presumably remains disordered.

. ; i .

A solution of (10) with Vv~ not a gradient would show some novel
features: approaching the critical surface, the order parameter would
drift as it diffused (because of the term @zvlvi in ‘Qy) and the
anonalous dimensions could be complex.

, , . ' 4 .

The o = =1 fixed points are analogous to ¢  fixed points near
four dimensious, the < expansion probing dimensions below two. The
scaling limit in two dimensions is trivial, so it would seem more
interesting to attempt an interpretation of the T = 0 fixed points as
the long distance termini of trajectories originating on a critical sur=

face at nonzero T. Infrared asymptotic freedom implies a correlation
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function <p(x)p(0)> decaying as (log lxl)ﬁﬁy for large |x|. But
high temperature series for lattice versions of the nonlinear models
always show finite correlation lengths, so there must be an intervening
phase transition. The locally syametric o = =1 spaces all have nou-
trivial, nonabelian fundamental groups, allowing topologically stable
vortex—-like field configurations. Phase transitions due to dissociation
of multivortex bound systems might be expectedelz Other of the o = ~1
manifolds, being simply connected, call for different mechanisnms.

Construction of a nonstandard model requires the bare a priori
neasure dp(x) which avoids nonspontaneous long range ordering. For
asymptotically small T it can be calculated from the renormalization
group equatilon for the bare external field. It depends on the method of
short distance regularization and differs from the wetric volume element
whenever hl in (5b) is nonzero. The difference is of order T, so in
two dimensions the critical a priori measure is exactly the metric
volume element. But an infinite number of releyant couplings (the
external filelds) must be fixed in order to bring the a priori measure to
its critical value. In this sense the nonstandard models are unnatural.
The standard models have enough internal symmetry to determine the a
priori measure uniquely, so for them these issues do not arise.
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