Measurement of the Λ^0_b lifetime in the exclusive decay $\Lambda^0_b \to J/\psi \Lambda^0$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

1 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3 Universidade Federal do ABC, Santo André, Brazil
4 University of Science and Technology of China, Hefei, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7 Czech Technical University in Prague, Prague, Czech Republic
8 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9 Universidad San Francisco de Quito, Quito, Ecuador
10 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15 CEA, Ifue, SPP, Saclay, France
16 IPHC, Université Strasbourg, CNRS/IN2P3, Strasbourg, France
17 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21 Institut für Physik, Universität Mainz, Mainz, Germany
22 Ludwig-Maximilians-Universität München, München, Germany
23 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
24 Panjab University, Chandigarh, India
25 Delhi University, Delhi, India
26 Tata Institute of Fundamental Research, Mumbai, India
27 University College Dublin, Dublin, Ireland
28 Korea Detector Laboratory, Korea University, Seoul, Korea
29 CINVESTAV, Mexico City, Mexico
30 Nikhef, Science Park, Amsterdam, the Netherlands
31 Radboud University Nijmegen, Nijmegen, the Netherlands
32 Joint Institute for Nuclear Research, Dubna, Russia
33 Institute for Theoretical and Experimental Physics, Moscow, Russia
34 Moscow State University, Moscow, Russia
35 Institute for High Energy Physics, Protvino, Russia
36 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
37 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
38 Uppsala University, Uppsala, Sweden
39 Lancaster University, Lancaster LA1 4YB, United Kingdom
40 Imperial College London, London SW7 2AZ, United Kingdom
41 The University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Arizona, Tucson, Arizona 85721, USA
43 University of California Riverside, Riverside, California 92521, USA
44 Florida State University, Tallahassee, Florida 32306, USA
45 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46 University of Illinois at Chicago, Chicago, Illinois 60607, USA
47 Northern Illinois University, DeKalb, Illinois 60115, USA
48 Northwestern University, Evanston, Illinois 60208, USA
49 Indiana University, Bloomington, Indiana 47405, USA
50 Purdue University Calumet, Hammond, Indiana 46323, USA
51 University of Notre Dame, Notre Dame, Indiana 46556, USA
52 Iowa State University, Ames, Iowa 50011, USA
We measure the \(\Lambda^0_b \) lifetime in the fully reconstructed decay \(\Lambda^0_b \to J/\psi \Lambda^0 \) using 10.4 fb\(^{-1}\) of \(p\bar{p} \) collisions collected with the D0 detector at \(\sqrt{s} = 1.96 \) TeV. The lifetime of the topologically similar decay channel \(B^0 \to J/\psi \phi \) is also measured. We obtain \(\tau(\Lambda^0_b) = 1.303 \pm 0.075 \) (stat.) \(\pm 0.035 \) (syst.) ps and \(\tau(B^0) = 1.508 \pm 0.025 \) (stat.) \(\pm 0.043 \) (syst.) ps. Using these measurements, we determine the lifetime ratio of \(\tau(\Lambda^0_b)/\tau(B^0) = 0.864 \pm 0.052 \) (stat.) \(\pm 0.033 \) (syst.).

PACS numbers: 12.20.Mr, 13.25.Hw, 13.25.Eg, 14.40.Nd

Lifetime measurements of particles containing \(b \) quarks provide important tests of the significance of strong interactions between the constituent partons in the weak decay of \(b \) hadrons. These interactions produce measurable differences between \(b \) hadron lifetimes that the heavy quark expansion (HQE) \([1]\) predicts with good accuracy through the calculation of lifetime ratios. While the agreement of the ratios between experimental measurements and HQE is excellent for semileptonic \([7]\) channels, by the CDF Collaboration \([12]\), more measurements also in semileptonic decays \([9–11]\), and previous measurements also in semileptonic decays by the CDF Collaboration \([12]\). More measurements of the \(\Lambda^0_b \) lifetime and of the ratio \(\tau(\Lambda^0_b)/\tau(B^0) \) are required to resolve this discrepancy.

In this article we report a measurement of the \(\Lambda^0_b \) lifetime using the exclusive decay \(\Lambda^0_b \to J/\psi \Lambda^0 \). The \(B^0 \) lifetime is also measured in the topologically similar channel \(B^0 \to J/\psi K^0_S \). This provides a cross-check of the measurement procedure, and allows the lifetime ratio to be determined directly. The data used in this analysis were collected with the D0 detector during the complete Run II of the Tevatron Collider, from 2002 to 2011, and correspond to an integrated luminosity of 10.4 fb\(^{-1}\) of \(p\bar{p} \) collisions at a center of mass energy \(\sqrt{s} = 1.96 \) TeV.

A detailed description of the D0 detector can be found in Refs. \([13–16]\). Here, we describe briefly the most relevant detector components used in this analysis. The D0 central tracking system is composed of a silicon mi-
crostrip tracker (SMT) and a central scintillating fiber tracker (CFT) immersed in a 2 T solenoidal field. The SMT and the CFT are optimized for tracking and vertexing for the pseudorapidity region $|\eta| < 3.0$ and $|\eta| < 2.0$, respectively, where $\eta \equiv -\ln[\tan(\theta/2)]$ and θ is the polar angle with respect to the proton beam direction. Preshower detectors and electromagnetic and hadronic calorimeters surround the tracker. A muon spectrometer is located beyond the calorimeter, and consists of three layers of drift tubes and scintillation trigger counters covering $|\eta| < 2.0$. A 1.8 T toroidal iron magnet is located outside the innermost layer of the muon detector.

For all Monte Carlo (MC) simulations in this article, we use Pythia [17] to simulate the $p\bar{p}$ collisions, EVTGEN [18] for modeling the decay of particles containing b and c quarks, and GEANT [19] to model the detector response. Multiple $p\bar{p}$ interactions are modeled by overlaying hits from random bunch crossings onto the MC.

In order to reconstruct the Λ^0_b and B^0 candidates, we start by searching for $J/\psi \rightarrow \mu^+\mu^-$ candidates, which are collected by single muon and dimuon triggers. The triggers used do not rely on the displacement of tracks from the interaction point. At least one $p\bar{p}$ interaction vertex (PV) must be identified in each event. The interaction vertices are found by minimizing a χ^2 function that depends on all reconstructed tracks in the event and uses the transverse beam position averaged over multiple beam crossings. The resolution of the PV is $\approx 20 \mu$m in the plane perpendicular to the beam (transverse plane). Muon candidates are reconstructed from tracks formed by hits in the central tracking system and with transverse momentum (p_T) greater than 1 GeV/c. At least one muon candidate in the event must have hits in the inner layer, and in at least one outer layer of the muon detector. A second muon candidate, with opposite charge, must either be detected in the innermost layer of the muon system or have a calorimeter energy deposit consistent with that of a minimum-ionizing particle along the direction of hits extrapolated from the central tracking system. Each muon track is required to have at least 2 hits in the SMT and 2 hits in the CFT to ensure a high quality common vertex. The probability associated with the vertex fit must exceed 1%. The dimuon invariant mass is required to be in the range $2.80 - 3.35$ GeV/c2, consistent with the J/ψ mass.

Events with J/ψ candidates are reprocessed with a version of the track reconstruction algorithm that increases the efficiency for tracks with low p_T and high impact parameter [20]. We then search for $\Lambda^0 \rightarrow p\pi^-$ candidates reconstructed from pairs of oppositely charged tracks. The tracks must form a vertex with a probability associated with the vertex fit greater than 1%. The transverse impact parameter significance (the transverse impact parameter with respect to the PV divided by its uncertainty) for the two tracks forming Λ^0 candidates must exceed 2, and 4 for at least one of them. Each Λ^0 candidate is required to have a mass in the range $1.105 - 1.127$ GeV/c2. The track with the higher p_T is assigned the proton mass. MC simulations indicate that this is always the correct assumption, given the track p_T detection threshold of 120 MeV/c. To suppress contamination from decays of more massive baryons such as $\Sigma^0 \rightarrow \Lambda^0\gamma$ and $\Xi^0 \rightarrow \Lambda^0\pi^0$, the Λ^0 momentum vector must point within 1 degree back to the J/ψ vertex. The same selection criteria are applied in the selection of $K_S^0 \rightarrow \pi^+\pi^-$ candidates, except that the mass window is chosen in the range $0.470 - 0.525$ GeV/c2 and pion mass assignments are used. Track pairs simultaneously reconstructed as both Λ^0 and K_S^0, due to different mass assignments to the same tracks, are discarded from both samples. This requirement rejects 23% (6%) of the $\Lambda^0_b \rightarrow J/\psi\Lambda^0$ ($B^0 \rightarrow J/\psi K_S^0$) signal, as estimated from MC, without introducing biases in the lifetime measurement. The fraction of background rejected by this requirement is 58% (48%) as estimated from data. It is important to remove these backgrounds from the samples to avoid the introduction of biases in the lifetime measurements.

The Λ^0_b candidates are reconstructed by performing a kinematic fit that constrains the dimuon invariant mass to the world-average J/ψ mass [4], and the Λ^0 and two muon tracks to a common vertex, where the Λ^0 has been extrapolated from its decay vertex according to the reconstructed Λ^0 momentum vector. The invariant mass of the Λ^0_b candidate is required to be within the range $5.15 - 6.05$ GeV/c2. The PV is recalculated excluding the Λ^0_b final decay products. The final selection requirements are obtained by maximizing $S = S/\sqrt{S + B}$, where S (B) is the number of signal (background) candidates in the data sample: the decay length of the Λ^0 (measured from the Λ^0_b vertex) and its significance are required to be greater than 0.3 cm and 3.5, respectively; the p_T of the J/ψ, Λ^0, and Λ^0 daughter tracks are required to be greater than 4.5, 1.8 and 0.3 GeV/c, respectively; and the isolation of the Λ^0_b [21] is required to be greater than 0.35. After this optimization, if more than one candidate is found in the event, which happens in less than 0.3% of the selected events, the candidate with the best Λ^0_b decay vertex fit probability is chosen. We have verified that this selection is unbiased by varying the selection values chosen by the optimization as described in more detail later. The same selection criteria are applied to $B^0 \rightarrow J/\psi K_S^0$ decays, except that the B^0 mass window is chosen in the range $4.9 - 5.7$ GeV/c2.

The samples of Λ^0_b and B^0 candidates have two primary background contributions: combinatorial background and partially reconstructed b hadron decays. The combinatorial background can be divided in two categories: prompt background, which accounts for $\approx 70\%$ of the total background, primarily due to direct production of J/ψ mesons; and non-prompt background, mainly produced by random combinations of a J/ψ meson from
a b hadron and a Λ^0 (K^0_S) candidate in the event. Contamination from partially reconstructed b hadrons come from b baryons (B mesons) decaying to a J/ψ meson, a Λ^0 baryon (K^0_S meson), and additional decay products that are not reconstructed.

We define the transverse proper decay length as $\lambda = cML_{xy}/p_T$, where M is the mass of the b hadron taken from the PDG [4], and L_{xy} is the vector pointing from the PV to the b hadron decay vertex projected on the b hadron transverse momentum (\vec{p}_T) direction. Due to the fact that signal and partially reconstructed b hadron decays have similar λ distributions that are particularly hard to disentangle in the lifetime fit, we remove partially reconstructed b hadrons by rejecting events with Λ^0_b (B^0) invariant mass below 5.42 (5.20) GeV/c^2 from the Λ^0_b (B^0) sample, as shown in Fig. 1. This figure shows the Λ^0_b and B^0 invariant mass distributions with results of unbinned maximum likelihood fits superimposed, excluding events in zones contaminated by partially reconstructed b hadrons. The signal peak is modeled by a Gaussian function. The combinatorial background is parametrized by an exponentially decaying function, while partially reconstructed b hadrons are derived from MC. It can be seen from Fig. 1 that partially reconstructed b hadrons contribute minimally to the signal mass region.

In order to extract the lifetimes, we perform separate unbinned maximum likelihood fits for Λ^0_b and B^0 candidates. The likelihood function (\mathcal{L}) depends on the probability of reconstructing each candidate event j in the sample with the mass m_j, the proper decay length λ_j and proper decay length uncertainty σ^λ_j:

$$\mathcal{L} = \prod_j [f_s \mathcal{F}_s(m_j, \lambda_j, \sigma^\lambda_j) + (1-f_s) \mathcal{F}_b(m_j, \lambda_j, \sigma^\lambda_j)], \quad (1)$$

where f_s is the fraction of signal events, and \mathcal{F}_s (\mathcal{F}_b) is the product of the probability distribution functions that model each of the three observables being considered for signal (background) events. The background is further divided into prompt and non-prompt components. For the signal, the mass distribution is modeled by a Gaussian function; the λ distribution is parametrized by an exponential decay, $e^{-\lambda/m}/\tau$, convoluted with a Gaussian function $R = e^{-\lambda^2/2(\sigma^\lambda)^2}/\sqrt{2\pi}\sigma^\lambda$ that models the detector resolution; the σ^λ distribution is obtained from MC simulation and parametrized by a superposition of Gaussian functions. Here τ is the lifetime of the b hadron, and the event-by-event uncertainty σ^λ_j is scaled by a global factor s to take into account a possible underestimation of the uncertainty. For the background, the mass distribution of the prompt (non-prompt) component is modeled by a constant (exponential) function as observed in data when the requirement $\lambda > 100 \mu$m is imposed; the prompt component of the λ distribution is parametrized by the resolution function, and the non-prompt component by the superposition of two exponential decays for $\lambda < 0$ and two exponential decays for $\lambda > 0$, as observed from events in the high-mass sideband of the b hadron peak (above 5.80 and 5.45 GeV/c^2 for Λ^0_b and B^0, respectively). Finally, the background σ^λ distribution is modeled by two exponential functions convoluted with a Gaussian function as determined empirically from the high-mass sideband region. In total, there are 19 parameters in each likelihood fit: lifetime, mean and width of the signal mass, signal fraction, prompt background fraction, one non-prompt background mass parameter, 7 non-prompt background λ parameters, 5 background σ^λ parameters, and one resolution scale factor.

The maximum likelihood fits to the data yield $c\tau(\Lambda^0_b) = 390.7 \pm 22.4 \mu$m and $c\tau(B^0) = 452.2 \pm 7.6 \mu$m.

![FIG. 1](attachment:image.png) (color online) Invariant mass distributions for (a) $\Lambda^0_b \to J/\psi \Lambda^0$ and (b) $B^0 \to J/\psi K^0_S$ candidates, with fit results superimposed. Events in mass regions contaminated with partially reconstructed b hadrons (hatched region) are excluded from the maximum likelihood function used to determine the Λ^0_b and B^0 lifetimes.
The numbers of signal events, derived from s, are 755 ± 49 (Λ^0_b) and 5671 ± 126 (B^0). Figure 2 shows the λ distributions for the Λ^0_b and the B^0 candidates. Fit results are superimposed.

We investigate possible sources of systematic uncertainties on the measured lifetimes related to the models used to describe the mass, λ, and σ^λ distributions. For the mass we consider a double Gaussian to model the signal peak instead of the nominal single Gaussian, an exponential function for the prompt background in place of a constant function, and a second order polynomial for the non-prompt background. The alternative mass models are combined in a single maximum likelihood fit to take into account correlations between the effects of the different models, and the difference with respect to the result of the nominal fit is quoted as the systematic uncertainty on the mass model. For λ we study the following variations: the introduction of a second Gaussian function along with a second scale factor to model the resolution, the exponential functions in the non-prompt background replaced by exponentials convoluted with the resolution function, one non-prompt negative exponential instead of two, and one long positive exponential together with a double-Gaussian resolution as a substitute for two non-prompt exponentials and one Gaussian resolution. All λ model changes are combined in a fit, and the difference between the results of this fit and the nominal fit is quoted as the systematic uncertainty due to λ parametrization. For σ^λ we use two different approaches: we use the distribution extracted from data by background subtraction, parameterized similarly to the nominal background σ^λ model, instead of the MC model, and we use σ^λ distributions from MC samples generated with different Λ^0_b (B^0) lifetimes. The largest variation in the lifetime (with respect to the nominal measurement) between these two alternative approaches is quoted as the systematic uncertainty due to σ^λ parametrization.

Residual effects due to contamination from partially reconstructed b hadrons in the samples are investigated by changing the requirement on the invariant mass of the Λ^0_b and B^0 candidates which are included in the likelihood fits: the threshold is moved to lower (higher) invariant masses by 40 (20) MeV/c^2, where 40 MeV/c^2 is the resolution on the invariant mass of the reconstructed signal. The largest variation in the lifetime is quoted as the systematic uncertainty due to possible contamination from partially reconstructed b hadrons. In the lifetime fit the contamination from the fully reconstructed decay $B^0 \rightarrow J/\psi K^0_S$ is assumed to have little impact on the final result. To test this assumption the $B^0 \rightarrow J/\psi K^0_S$ contribution is included in the non-prompt component. The lifetime shift is found to be negligible. The systematic uncertainty due to the alignment of the SMT detector was estimated in a previous study [6] by reconstructing the B^0 sample with the positions of the SMT sensors shifted outwards radially by the alignment uncertainty and then fitting for the lifetime. The systematic uncertainties are summarized in Table I.

<table>
<thead>
<tr>
<th>Source</th>
<th>Λ^0_b (\mu m)</th>
<th>B^0 (\mu m)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass model</td>
<td>2.2</td>
<td>6.4</td>
<td>0.008</td>
</tr>
<tr>
<td>Proper decay length model</td>
<td>7.8</td>
<td>3.7</td>
<td>0.024</td>
</tr>
<tr>
<td>Proper decay length uncertainty</td>
<td>2.5</td>
<td>8.9</td>
<td>0.020</td>
</tr>
<tr>
<td>Partially reconstructed b hadrons</td>
<td>2.7</td>
<td>1.3</td>
<td>0.008</td>
</tr>
<tr>
<td>$B^0 \rightarrow J/\psi K^0_S$</td>
<td>–</td>
<td>0.4</td>
<td>0.001</td>
</tr>
<tr>
<td>Alignment</td>
<td>5.4</td>
<td>5.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Total</td>
<td>10.4</td>
<td>12.9</td>
<td>0.033</td>
</tr>
</tbody>
</table>

In summary, using the full data sample collected by the D0 experiment, we measure the lifetime of the Λ^0_b baryon in the $J/\psi \Lambda^0$ final state to be

$$\tau(\Lambda^0_b) = 1.303 \pm 0.075 \text{ (stat.)} \pm 0.035 \text{ (syst.)} \text{ ps},$$

consistent with the world-average, 1.425 \pm 0.032 \text{ ps} [4]. The method to measure the Λ^0_b lifetime is also used for $B^0 \rightarrow J/\psi K^0_S$ decays, for which we obtain

$$\tau(B^0) = 1.508 \pm 0.025 \text{ (stat.)} \pm 0.043 \text{ (syst.)} \text{ ps},$$

in good agreement with the world average, 1.519 \pm 0.007 \text{ ps} [4].
Using these measurements we calculate the ratio of lifetimes,

\[
\frac{\tau(Λ^0)}{\tau(B^0)} = 0.864 \pm 0.052 \text{ (stat.)} \pm 0.033 \text{ (syst.)},
\]

where the systematic uncertainty is determined from the differences between the lifetime ratio obtained for each systematic variation and the ratio of the nominal measurements, and combining these differences in quadrature, as shown in Table I. Our result, 0.86 \pm 0.06, is in good agreement with the HQE prediction of 0.88 \pm 0.05 [5] and compatible with the current world-average, 1.00 \pm 0.06 [4], but differs with the latest measurement of the CDF Collaboration, 1.02 \pm 0.03 [3], at the 2.2 standard deviations level. Our measurements supersede the previous D0 results of \(\tau(Λ^0), \tau(B^0)\) and \(\tau(Λ^0)/\tau(B^0)\) [6].

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[21] Isolation is defined as \(p(b)/[p(b) + \sum_{<\Delta R} p]\), where \(p(b)\) is the momentum of the \(b\) hadron and the sum, excluding the decay products of the \(b\) hadron, is over the momentum of all particles from the PV within the larger \(\Delta R(\mu^\pm, b\) hadron) cone in pseudorapidity-azimuthal angle space, defined as \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}\).