CONTENTS

DIRECTOR'S MONTHLY SUMMARY ... 1
ACCOMPLISHMENTS ... 2
LOFT TECHNICAL SUPPORT DIVISION ... 2
LOFT FACILITY DIVISION .. 6
LOFT MEASUREMENTS DIVISION ... 7
LOFT PROGRAM DIVISION ... 10
FOREIGN-FUNDED TASK SUMMARIES .. 11
 SUMMARY OF JAPANESE-FUNDED (JAERI) TASKS 11
 SUMMARY OF GERMAN-FUNDED (FRG) TASKS 13
 SUMMARY OF JAERI/FRG SHARED TASKS .. 14
 SUMMARY OF NETHERLANDS-FUNDED (ECN) TASKS 14
 SUMMARY OF AUSTRIAN-FUNDED (SGAE) TASKS 16
 SUMMARY OF SWITZERLAND IN-KIND (EIR) SUPPORT 16
FOREIGN COOPERATIVE SUPPORT TO LOFT 15
SUMMARY OF KERNFORSCHUNGSZENTRUM KARLSRUHE (KfK) 17

PERFORMANCE ANALYSIS .. 96

FIGURE

1. LOFT management summary schedule ... 18

TABLES

1. Foreign Funds Availability at End of July 1980 97
2. Foreign Funded Task Summary at End of July 1980 98
3. LOFT FY-80 Summary Budget Status Report Nuclear Regulatory Commission 100
DIRECTOR'S MONTHLY SUMMARY

During July, the LOFT test sequence underwent careful review which determined that changes would be appropriate. Evaluation of Tests L3-4 and L6-1 indicated they would not add significantly to the information base available from other experiments; therefore, these tests were cancelled. As shown in the Management Summary Schedule included in this report, the next test to be run is L3-5, scheduled for mid-September. Test L3-5 will be a small-break test in the cold leg side of the operating loop of the plant.

Work efforts during July concentrated on plant preparation for the mid-September test. Installation of a new small-break path from the cold leg to the blowdown suppression tank, together with the associated new instrumentation installations, were well underway and on schedule at month's end.

The Actual spending rate to date is in agreement with current budgets and authorized funding levels.
ACCOMPLISHMENTS

LOFT TECHNICAL SUPPORT DIVISION

1. A common mode failure analysis was performed to identify an acceptable rerouting of power cabling for the primary coolant pump.

2. A proposal was prepared to revise the Loss-of-Fluid-Test (LOFT) Technical Specifications to limit the items covered to those having immediate importance for safe operation of the facility. This proposal is consistent with the plan formulated by the Nuclear Regulatory Commission (NRC) to minimize the information presented in the Technical Specifications.

3. The changes to the LOFT Technical Specifications for conduct of the L6-1 test were transmitted to the Department of Energy - Idaho Operations Office (DOE-ID) for approval.

4. A LOFT Technical Support Division (LTSD) tracking system was established to follow LOFT's responses to the NRC Action Plan (NUREG 0660). This system will be under the cognizance of LOFT Configuration Document Control and Services (CDCS) and will include those items currently tracked by the Three Mile Island (TMI) Status Report.

5. A tracking plan for the NRC IE Bulletins, Circulars, and Information Notices has been established within LOFT CDCS.

6. A file was established for generic safety issues and the NRC list of unreviewed safety issues. These issues are being reviewed by LTSD for applicability to LOFT.

7. The safety analysis was completed for the L6-3 Experiment Safety Analysis (ESA), and documentation is in progress.
8. A feasibility assessment was made of the concept of using a source-detector in one of the tubes of the traversing in-core probe (TIP) to measure the reactor coolant level. Results of the assessment are now being evaluated.

9. A PDQ computer model study was completed to determine where recriticality will occur in a primary coolant system cooldown test with three control rods in the core. A study was begun to determine where recriticality will occur with two control rods in the core.

10. A simple "pocket calculator" technique for determining the estimated critical boron (ECB) was developed as a backup check for the data acquisition and visual display system (DAVDS) ECB program.

11. The transformer consultants have completed electrical and oil testing of the Test Area North (TAN) transformers. Preliminary results verified that the area transformers are in satisfactory condition. The consultants' final report is due in August.

At the same time, high- and low-voltage cables were tested to see if any damage had been caused by the overvoltage conditions that occurred in August 1979. All system cables tested satisfactorily.

12. The upgrade of the DAVDS power system has been completed. Three additional voltage-regulator monitors were installed.

13. The new stack monitor (Eberline Model SPING-2A) has arrived at LOFT. The SPING-2A is now being installed and will be used as a training tool to familiarize operators with its operation. Following operator training, the system will replace the present Victoreen unit.
14. Engineering design efforts were completed on the following experimental measurements cabling tasks to:

a. Provide cabling for new instrumented spool pieces,

b. Install outside the containment vessel the electrical cabling for the DE-CIS small-break gamma densitometer circuits, and
c. Install and check out mobile test assembly (MTA) circuits from JB-6 to low-level penetrations 3K, 3M, and 3O. The circuits are required for future installation of the A3 and F1 center fuel assemblies.

15. The MTA portion of the new three-channel pressurizer temperature measurement system has been installed.

16. Process instruments and cables for the blowdown suppression tank (BST) have been relocated in lower-temperature areas outside the BST containment.

17. The prototype pressurizer-level instrument has been installed. This channel will be identified as channel C when all channels have been installed.

18. The first draft of System Design Description (SDD) 1.4.10, "Facility Temperature Monitor" (FTM), was completed and was sent to the Specifications and Standards Section for editing and processing prior to approval and release.

19. The engineering design has been completed on a task to provide a four-thermocouple temperature monitoring system to monitor the temperature of the LOFT containment vessel.

20. The instrumentation-lead splicing was completed, and final lead termination was started on the A3 fuel module.
21. Fabrication and installation of the air-sweep-system header were completed.

22. The design of the irradiated-fuel storage equipment was completed.

23. Preparations continued toward the accelerated date of August 22 to fill the plant prior to the L3-5 test. Both the gamma densitometer and drag screen-turbine meter instrumented spool pieces were completed and submitted to the LOFT Test Support Facility (LTSF) for calibration.

24. The revised piping modifications were completed for the power-operated relief valve and for reconfiguring the discharge line for normal operations.

25. Several incidental tasks pertinent to the secondary coolant system (SCS) and emergency core cooling system (ECCS) were completed. These tasks improved performance and corrected deficiencies in the two systems.

26. Results of radiological and chemical analyses have indicated that no degradation of the plant resulted from the L3-7 small-break test.

27. Results of laboratory efficiency tests of the filter trains of HV systems 8 and 9 showed the efficiency was within specifications.

28. Resin transfer modifications are continuing. The flush-water bypass is completed, and the concrete shielding casks have been received.

29. DOE-ID has approved eleven LOFT design descriptions (DDs); five DDs are currently being reviewed by DOE-ID.

30. The Operation and Maintenance Manual (OMM) was completed for the LOFT L3-4 low-energy nuclear-hardened densitometer.
LOFT FACILITY DIVISION

1. All L3-5 work items continued, including small-break piping, gamma densitometer, waste gas processing system (WGPS), and repacking and reworking of valves.

2. Inservice inspection (ISI) and surveillance testing required during this shutdown were begun.

3. Automated ultrasonic test (AUT) inspection of LOFT piping was started.

4. Quality Division (QD) has been visually inspecting all piping hangers.
1. The zircaloy thermocouple cable and documentation were completed at Central Facilities Area (CFA) and were shipped to the Fuel Engineering and Operations Branch for qualification of the Zr-Ti braze button.

2. The test program of the zircaloy-tubing-defects analysis is 95-percent complete. The program will determine the maximum depth, expressed as a percentage of wall thickness, that a defect may penetrate the thermocouple wall without disqualifying the thermocouple for use in the LOFT environment. Eddy-current testing has been performed, and thermocouple cable has been fabricated. The specimens have been mandrel-wrapped, laser-welded, and blowdown-autoclaved. No visible defects occurred. Metallography to identify any defect propagation has been performed. A LOFT Technical Report (LTR) presenting the findings of the testing is scheduled for completion by the second week of August.

3. Eighty-four good titanium-shielded thermocouples (for the F1 fuel bundle) received from Control Products and Semco were reworked and shipped to Exxon Nuclear Company. Forty-eight thermocouples are needed, leaving a surplus. Thirty-four dummy thermocouples were shipped to Exxon Nuclear Company; an additional ten are in fabrication and are scheduled to be shipped by the first week in August.

4. A feasibility study of the measurement of the steam generator's feedwater flow rate was completed. Use of the Controlotron 480 series clamp-on ultrasonic flow meter was recommended.

5. A cost estimate and preliminary schedule of the temperature measurement at the steam generator wall and steam dome were completed.

6. A three-inch drag screen for tests L3-5 and L3-6 was fabricated, tested, and calibrated, and the full-flow turbine for tests L3-5 and L3-6 was received from Flow Technology. The turbine and drag screen in the downstream spool piece have been installed for the L3-5 test.
7. The OMM for the LOFT liquid-level transducers was published and distributed by LOFT Controlled Document and Configuration Services (CDCS).

8. Quality Division (QD) at CFA has released the L3-5 modular drag-disc turbine transducers (MDTTs) which use an improved bearing design. The three MDTTs to be assembled into the rake for the L3-5 test were delivered to Test Area North (TAN) on July 25, 1980. The fourth MDTT is scheduled for qualification testing and is receiving final check-out. The test loop at Auxiliary Reactor Area (ARA) is being checked out with testing scheduled to begin at the end of July. Some preliminary low-temperature testing is scheduled to occur during the week of July 21.

9. The L6-5 Experiment Data Report (EDR) was completed ahead of schedule and was delivered to DOE, NRC, and the nuclear community.

10. The Data Integrity Review Committee (DIRC) completed its review of the data obtained from the L3-7 experiment.

11. The L3-7 EDR was delivered to the Information Division for publication.

12. The L3-1 and L3-2 critical-mass flow multiplier study derived from Wyle calibration data was completed, and the draft has been distributed for review.

13. The pump-coastdown code on the MOD COMP data acquisition system was completed and released. The purpose of this code is to verify the calibration of the drag discs and the turbine meters.

14. Preliminary RELAP5 calculations modeling the LTSF quench tests were obtained. Results are being analyzed to evaluate rod-quench characterization.
15. Evaluation of electric-heater-rod simulation of nuclear-rod response during loss-of-coolant-accident (LOCA) conditions continued, including a comparison of REBEKA and FLECHT tests which showed heater-rod design to be important.

Also as part of the evaluation, a summary and abstract were written of a paper entitled, "Status of Work to Evaluate the Ability of Electric Rods to Simulate Nuclear Rod Behavior During a Loss-of-Coolant Accident." The paper was prepared for NRC and will be presented at the Electric Rod Simulation Symposium to be held at Gatlinburg.

16. A letter report was issued which summarizes the objectives of large core-melt tests and which identifies major additional work required to define specific experiments.

17. The proposed instrumentation changes to the F1 fuel bundle were approved by NRC and EG&G management in order to incorporate the thermocouple-embedded fuel rod. The EG&G Fuel Project Section is proceeding with Exxon Nuclear Company in all instrument design changes to the F1 fuel bundle.

18. In recent meetings between NRC and EG&G management, an agreement was reached to pressurize the F1 fuel bundle to 350 psi rather than 700 psi; however, the A4 fuel bundle will be pressurized to 700 psi.
1. A draft of the Experiment Operating Specification (EOS) for tests L6-1, L6-2, and L6-3 was prepared and submitted for review. The tests are scheduled for late September and early October 1980.

2. The planning analysis for Test L3-4 was completed; the analysis recommended that the test be cancelled because no significant events were expected to occur. NRC approved the cancellation.

3. The Experimental Test Definition for Tests L3-5 and L3-5A was issued and provided a preliminary discussion of initial conditions and operating conditions for the tests.

4. A list of critical measurements for Test L3-5 was developed.

5. "Planning Task Force Report" (BURT-7-80) was completed July 31, 1980. The most important features of the report were the recommendations for LOFT Program objectives and directions.

6. The report of the RETRAN analysis was completed and published. The analysis was performed by Energy Incorporated for LOFT Tests L6-1, L6-2, and L6-5.

7. A RELAP4 MOD7 sensitivity study was completed to investigate effects of steam bypass in LOFT.

8. A RELAP5 model for Test L3-5 was completed and initialized.

9. The report which documents the reference RELAP5 model of LOFT was completed and distributed.
FOREIGN-FUNDED TASK SUMMARIES

Foreign-funded and in-kind LOFT support projects are summarized in this section.

SUMMARY OF JAPANESE-FUNDED (JAERI) TASKS

1. Task 5F8C1 -- JAERI Management

 Program management continued to monitor all JAERI-funded projects. Restructuring of the Work Breakdown Structure (WBS) for JAERI tasks continued.

2. Task 5F8C4 -- Advanced DTT

 The budget and work associated with transient testing of the LOFT pressure-balanced drag turbine transducer (DTT) were redistributed to allow testing into fiscal year 1981. Priority conflicts necessitated the redistribution.

3. Task 5F8C5 -- PBF/LOFT Lead Rod Test

 This task was completed, and the final topical report was printed and released in July.

4. Task 5F8C6 -- Reevaluation of LOFT Experiments

 The final report for the task has been completed, and the transmittal letter was drafted but has not been signed.

5. Task 5F8C7 -- Miscellaneous Code Studies

 This task was inactive during July.
6. Task 5F8C8 -- LTSF Suppression Tank

The new suppression tank was successfully used to support LTSF tests to evaluate instrumentation for the L3-4 and L3-5 tests. The suppression tank system functioned well and provided good accuracy on mass-flow measurements.

7. Task 5F8CA -- PC-3 and Small-Break Densitometers

A. A successful fit-up of the PC-3 densitometer mock-up was made at LOFT. A prototype photomultiplier-tube preamplifier was designed for PC-3 application.

B. The following work was performed for the small-break densitometer and instruments:

(1) Fabricated, tested, and calibrated the three-inch drag screen for the L3-5 and L3-6 tests,

(2) Received the full-flow turbine for the L3-5 and L3-6 tests from Flow Technology,

(3) Installed the turbine and drag screen in the downstream spool piece,

(4) Fabricated 80 percent of the gamma densitometer lead shielding,

(5) Received the controller and display for the densitometer's cooling system,

(6) Completed the mechanism for the source shutter,

(7) Completed the connector panel for the densitometer system,
Began to rework the flanges on gamma densitometer spool piece for installation prior to the L3-5 and L3-6 tests.

8. Task 5F8CB -- Post-CHF Heat Transfer

A contract with Lehigh University is being written, and task support work has begun at Lehigh for the post-critical-heat-flux (CHF) heat transfer task. The LTSF test requirements and EOS are partially complete. The design of the test section is in the initial phase.

SUMMARY OF GERMAN-FUNDED (FRG) TASKS

1. Task 5F7C1 -- FRG Management

Program monitoring of FRG-funded tasks continued. Preparations began for the arrival of a new FRG technical delegate.

2. Task 5F7C4 -- Miscellaneous Tasks

A meeting with Dr. S. Bannerjee was held at the Idaho National Engineering Laboratory (INEL) to discuss the completion of tasks associated with the development of the rake for the LOFT emergency core cooling system (ECCS) and the results of tests performed.

3. Task 5F7C5 -- Steam Probe

A self-aspirating Westinghouse steam probe of the type used in the FLECHT-SEASET tests has been acquired. An attempt will be made to install this probe in the Post-CHF test for comparison with the Lehigh double aspirated probe.

4. Task 5F7CB -- LOFT State Vector Cost Estimate

Literature review continued during part of this month.
SUMMARY OF JAERI/FRG-SHARED TASKS

1. Task 5F9C2 — Two-Phase, Steady-State Tests

 All work on this task has been completed. Cost corrections are being made, and the task is expected to be completed within the budget.

2. Task 5F9C3 — TRAC Code Studies

 The final report has been typed, graphics work is nearly complete, and editing is in progress.

3. Task 5F9C4 — Two-Phase Loop Boiler Building

 Work bids were received, and a contractor was selected. Actual construction work will start about August 1.

SUMMARY OF NETHERLANDS-FUNDED (ECN) TASKS

1. Task 5FNC1 — ECN Management

 Program monitoring of ECN-funded tasks continued. A revised Work Breakdown Structure (WBS) used to follow and report ECN tasks was developed and submitted for Control Change Board (CCB) approval.

2. Task 5FNC3 — RPI Subcontract

 Assessment of the two-phase orifice model and code was continued at Rensselaer Polytechnic Institute (RPI).

3. Task 5FNC5 — INEL Support to RPI Subcontract

 Data from four WYLE transient tests were transmitted to RPI for use in assessment of the two-phase orifice model and computer code developed under Dr. R. Gay.
4. **Task 5FNC6 -- Analysis of PNA Techniques**

Work continued in the Monte Carlo evaluation of the tagging (activation) process of single-phase and two-phase flows using pulse neutron activation (PNA). Various analyses were performed using one, two, and four detectors located around a pipe filled half-and-half by volume with saturated liquid water and saturated steam. Most significantly, it was found that when one detector was located at the top of the pipe, the detector sensed that a neutron-activated steam velocity existed independently of the liquid velocity.

A milestone schedule has also been established with the final report scheduled for December 1980.

5. **Task 5FNC7 -- Critical-Flow Scaling Studies**

This task has been rescheduled to begin in August. No work has been performed on this task.

6. **Task 5FNCD -- Two-Phase Loop Platform Addition and Stairs**

Work is ahead of schedule. Site preparation was completed, and the fabrication of platform and stairs was started.

7. **Task 5FNCA -- WYLE Data Analysis**

The mass-flow calculations are progressing. The completion of calculations and some interpretation are expected in August.
SUMMARY OF AUSTRIAN-FUNDED (SGAE) TASKS

1. Task 5FACl -- SGAE Management

Followup on negotiated in-kind support tasks was provided. All optic window materials and LOFT chemistry conditions were hand-delivered to the Vienna staff, completing input from EG&G Idaho for one of the in-kind tasks.

2. SGAE In-Kind Support to LOFT

No report related to the completed task of evaluating optical probe material has yet been received by LOFT; however, the report has been written and is being reviewed by SGAE management. New in-kind support tasks have been approved, and necessary preparations to begin the tasks are in progress, both at INEL and SGAE.

SUMMARY OF SWITZERLAND IN-KIND (EIR) SUPPORT

1. NEPTUN Reflood Test Program

EIR has successfully power-tested the newly designed heater rods using a smooth skewed cosine shape power profile. Fabrication of the required number of heater rods is in progress. Instrumentation of the test housing is in progress. November 1980 appears to be the earliest that initial system-checkout tests can begin. LOFT is expected to deliver the thermocouples to EIR in September 1980.

FOREIGN COOPERATIVE SUPPORT TO LOFT

Various participating foreign organizations provide cooperative support to the LOFT Program. This section summarizes those efforts.
SUMMARY OF KERNFORSCHUNGSZENTRUM KARLSRUHE (KFK)

1. LTSF 9-Rod Bundle TC Quench Test

The nine-rod bundle apparatus is ready for testing; however, testing has been postponed in order to incorporate some new internal cladding thermocouples in the REBEKA rod similar to those being installed in future LOFT fuel rods. The scope of work to install these thermocouples is presently being discussed with Exxon and Power Burst Facility (PBF) Test Train personnel. REBEKA and FEBA heater rods are being used in this test.

2. REBEKA Thermocouple Tests

Results of the first three tests have suggested that a modified test matrix be developed. The first set of new tests will probably use only heater rods having no ballooning and no external thermocouples. Test plans are being developed, but continued testing may start in October 1980.
Management Summary Schedule

<table>
<thead>
<tr>
<th>FY 80</th>
<th>FY 81</th>
<th>FY 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3-5</td>
<td></td>
<td>L3-6</td>
</tr>
<tr>
<td>L6-1</td>
<td></td>
<td>L6-3</td>
</tr>
<tr>
<td>L6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L6-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L5-1</td>
</tr>
<tr>
<td></td>
<td>Containment vessel leak test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Center fuel module changeout</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. LOFT management summary schedule.
LOFT Overall Funding

5xxxxx
The Nuclear Regulatory Commission (NRC) and foreign-funded budgets reflect the LOFT Q80-4-5 baseline approved in July 1980. Refer to the Director's Monthly Summary for comments.
Refer to the summary cost accounts for comments.
Refer to the summary cost accounts for comments.
LOFT 189a Summary

5NX--NRC 189a

5FXX--Foreign 189a
No significant variance.
EGG & IDAHO INC.
NRC 1894 A6053 - FUEL

TOTAL PROGRAM

<table>
<thead>
<tr>
<th>MONTH</th>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>375</td>
<td>200</td>
</tr>
<tr>
<td>NOV</td>
<td>403</td>
<td>838</td>
</tr>
<tr>
<td>DEC</td>
<td>1005</td>
<td>1082</td>
</tr>
<tr>
<td>JAN</td>
<td>1232</td>
<td>1235</td>
</tr>
<tr>
<td>FEB</td>
<td>1381</td>
<td>1473</td>
</tr>
<tr>
<td>MAR</td>
<td>1630</td>
<td>1774</td>
</tr>
<tr>
<td>APR</td>
<td>2019</td>
<td>1984</td>
</tr>
<tr>
<td>MAY</td>
<td>2205</td>
<td>2495</td>
</tr>
<tr>
<td>JUN</td>
<td>2451</td>
<td>2555</td>
</tr>
<tr>
<td>JUL</td>
<td>2687</td>
<td>2808</td>
</tr>
<tr>
<td>AUG</td>
<td>3330</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>3648</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL

<table>
<thead>
<tr>
<th>MONTH</th>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>221</td>
<td>82</td>
</tr>
<tr>
<td>NOV</td>
<td>410</td>
<td>603</td>
</tr>
<tr>
<td>DEC</td>
<td>681</td>
<td>135</td>
</tr>
<tr>
<td>JAN</td>
<td>715</td>
<td>843</td>
</tr>
<tr>
<td>FEB</td>
<td>885</td>
<td>919</td>
</tr>
<tr>
<td>MAR</td>
<td>1028</td>
<td>1067</td>
</tr>
<tr>
<td>APR</td>
<td>1318</td>
<td>1186</td>
</tr>
<tr>
<td>MAY</td>
<td>1408</td>
<td>1587</td>
</tr>
<tr>
<td>JUN</td>
<td>1503</td>
<td>1517</td>
</tr>
<tr>
<td>JUL</td>
<td>1837</td>
<td>1866</td>
</tr>
<tr>
<td>AUG</td>
<td>2102</td>
<td></td>
</tr>
<tr>
<td>SEP</td>
<td>2272</td>
<td></td>
</tr>
</tbody>
</table>

MANPOWER

<table>
<thead>
<tr>
<th>MONTH</th>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>NOV</td>
<td>24</td>
<td>33</td>
</tr>
<tr>
<td>DEC</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>JAN</td>
<td>71</td>
<td>77</td>
</tr>
<tr>
<td>FEB</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>MAR</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>APR</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>MAY</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>JUN</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>JUL</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>AUG</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>SEP</td>
<td>35</td>
<td>21</td>
</tr>
</tbody>
</table>

No significant variance.
Refer to summary cost accounts for comments. New summary cost account 5N3R (Data Analysis Branch) was established in July. Cost graph will be generated for August 1980.

YTD Budget--$878,700
YTD Actuals--$892,300
No significant variance. Indicated difference is largely in unaccrued costs. Cost reduction efforts to augment management reserve are being attempted.
No significant variance.
CCBs are in process to return $176,000 to management reserve which will be incorporated in the new Q80-5-0 baseline for LOFT.
No significant variance.
Refer to the summary costs account for comments.
No significant variance.
The budgets are being revised to reflect current performance.
Some work is ahead of schedule. A cost transfer is in process to remove $57,000 from this account. Corrective action is in progress to realign actual expenditures to authorized funding levels.
Budget realignment is in process to reduce the variance. Several tasks have been delayed due to personnel requirements.
Summary Cost Accounts

5Nxx--NRC Summary Cost Accounts

5Fxxx--Foreign Summary Cost Accounts
No significant variance.
This project consists of two tasks, CERO1 and CERO2. The analysis task (CERO1) is right on projections (within $1,000), and the other task (CERO2) is for procurement of TC for which we will be spending very heavy during the next month.
Actual spending rate (especially material dollars) will be within budget by the end of September 1980.
No significant variance.
No significant variance.
1. The program owes Sandia $40,000 for PNA generators that have not been costed. A CCB is in process to reflect the change in the expected date the generators will be costed.

2. Due to changed fuel instrumentation requirements, material dollars originally scheduled this month were delayed. These will be costed this year. A CCB is in process to reflect the changed configuration and new plan.

3. Delays in zircaloy thermocouple qualification and production effort occurred this month. A CCB is in process to reflect the updated plan. This work will be costed this year.

4. Changed requirements for secondary side instrumentation resulted in delay in originally planned work. A CCB is in process to update the work plan.

5. A CCB returning $40,000 from Branch Support to Management Reserve is in progress. (This will be part of an overall CCB for the LOFT Measurement Applications Branch.)

6. Computer usage will increase drastically in the following weeks thus increasing actuals significantly.
No significant variance.
5TM100100 will underrun at year-end approximately $100,000 - $130,000, depending upon demands placed by NRC-Washington. These funds are to carry this program into FY-81 until additional funding is provided.
No significant variance.
No significant variance.
No significant variance.
A CCB is in progress to correct the underrun.
A CCB is in progress to correct the underrun.
No significant variance. Analysis efforts will increase during the remainder of FY-80. Thus, the spending rate will increase to budgeted values.
No significant variance.
Budget and performance continue on schedule. No under- or overrun is projected at this time. Approximately $40,000 is committed on outstanding requirements to date.
CCF 2392 transferring $30,000 to management reserve has been submitted.
A CCF is in process returning approximately $66,000 to management reserve.
EG&G Idaho Inc.

Common Supt - Plans & Budgets

<table>
<thead>
<tr>
<th>Month</th>
<th>Actual</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>Nov</td>
<td>126</td>
<td>138</td>
</tr>
<tr>
<td>Dec</td>
<td>197</td>
<td>224</td>
</tr>
<tr>
<td>Jan</td>
<td>262</td>
<td>255</td>
</tr>
<tr>
<td>Feb</td>
<td>323</td>
<td>366</td>
</tr>
<tr>
<td>Mar</td>
<td>404</td>
<td>460</td>
</tr>
<tr>
<td>Apr</td>
<td>475</td>
<td>540</td>
</tr>
<tr>
<td>May</td>
<td>555</td>
<td>621</td>
</tr>
<tr>
<td>Jun</td>
<td>660</td>
<td>718</td>
</tr>
<tr>
<td>Jul</td>
<td>779</td>
<td>795</td>
</tr>
<tr>
<td>Aug</td>
<td>896</td>
<td>973</td>
</tr>
<tr>
<td>Sep</td>
<td>973</td>
<td>973</td>
</tr>
</tbody>
</table>

Material

<table>
<thead>
<tr>
<th>Month</th>
<th>Actual</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>73</td>
<td>102</td>
</tr>
<tr>
<td>Nov</td>
<td>14</td>
<td>119</td>
</tr>
<tr>
<td>Dec</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Jan</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Feb</td>
<td>40</td>
<td>49</td>
</tr>
<tr>
<td>Mar</td>
<td>41</td>
<td>61</td>
</tr>
<tr>
<td>Apr</td>
<td>71</td>
<td>90</td>
</tr>
<tr>
<td>May</td>
<td>93</td>
<td>107</td>
</tr>
<tr>
<td>Jun</td>
<td>151</td>
<td>120</td>
</tr>
<tr>
<td>Jul</td>
<td>136</td>
<td>138</td>
</tr>
<tr>
<td>Aug</td>
<td>151</td>
<td>151</td>
</tr>
</tbody>
</table>

Manpower

<table>
<thead>
<tr>
<th>Month</th>
<th>Actual</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Nov</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Dec</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Jan</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Feb</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Mar</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Apr</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>May</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Jun</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Jul</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Aug</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Sep</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

No significant variance.
Funding has been reviewed and adjustments made to ensure year-end totals will be within funding limitations. Approximately $80,000 returned to management reserve.
No significant variance. Excessive power bill allocation for TAN has been corrected in July 1980.
No significant variance.
No significant variance.
No significant variance.
Corrective action initiated in June should result in fiscal year-end totals matching budget.
No significant variance. Above account now rolls to 5FAC2 (per CCB #80-199).
No significant variance.
Because of higher priority work assignments, effort has been applied to this project. It is expected that the variance will be removed by year-end.
No significant variance.
The data are at RPI for analysis. No costs have been accrued.
The data portion of this project is completed. When the report has been returned, the review process should remove the variance.
The complete contract has been accrued by accounting in one lump sum. RPI will complete their studies in September 1980.
The project has been rescheduled to start August 1. A CCF has been turned in to respread the budget.
The work originally planned was delayed. The variance is expected to decrease in the remaining portion of the year.
Work completed ahead of schedule.
No significant variance.
Work completed ahead of schedule. Budget realignment in process.
Work on this task is currently planned to continue into FY-81. Budget realignment is necessary.
Work completed ahead of schedule. A CCB is in process to cover overrun.
This task is being rebudgeted.
A $57,000 cost transfer is in process to reduce the variance.
No significant variance.
No significant variance.
A CCB has been written to realign the budget and reduce the variance.
Personnel requirements have delayed this task. It is expected that the variance will decrease in the remaining portion of the year.
The budget is being respread to remove the variance.
Budget realignment is in process.
No significant variance. Task is complete.
This task has been delayed due to higher priority work assignments.
No significant variance.
EG&G IDAHO INC.
SHARED TASKS - STEADY STATE TEST

TOTAL PROGRAM

<table>
<thead>
<tr>
<th></th>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>242</td>
<td>0</td>
</tr>
<tr>
<td>NOV</td>
<td>317</td>
<td>13</td>
</tr>
<tr>
<td>DEC</td>
<td>330</td>
<td>15</td>
</tr>
<tr>
<td>JAN</td>
<td>330</td>
<td>397</td>
</tr>
<tr>
<td>FEB</td>
<td>330</td>
<td>325</td>
</tr>
<tr>
<td>MAR</td>
<td>330</td>
<td>324</td>
</tr>
<tr>
<td>APR</td>
<td>330</td>
<td>348</td>
</tr>
<tr>
<td>MAY</td>
<td>330</td>
<td>316</td>
</tr>
<tr>
<td>JUL</td>
<td>330</td>
<td>316</td>
</tr>
<tr>
<td>AUG</td>
<td>330</td>
<td>328</td>
</tr>
</tbody>
</table>

MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>231</td>
<td>0</td>
</tr>
<tr>
<td>NOV</td>
<td>294</td>
<td>13</td>
</tr>
<tr>
<td>DEC</td>
<td>308</td>
<td>15</td>
</tr>
<tr>
<td>JAN</td>
<td>308</td>
<td>397</td>
</tr>
<tr>
<td>FEB</td>
<td>308</td>
<td>325</td>
</tr>
<tr>
<td>MAR</td>
<td>308</td>
<td>324</td>
</tr>
<tr>
<td>APR</td>
<td>308</td>
<td>348</td>
</tr>
<tr>
<td>MAY</td>
<td>308</td>
<td>316</td>
</tr>
<tr>
<td>JUL</td>
<td>308</td>
<td>316</td>
</tr>
<tr>
<td>AUG</td>
<td>308</td>
<td>328</td>
</tr>
</tbody>
</table>

MANPOWER

<table>
<thead>
<tr>
<th></th>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>NOV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JAN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>APR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAY</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>JUL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AUG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SEP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

No significant variance.
No significant variance.
No significant variance.
1. A CCB returning $40,000 to management reserve is in progress. (This will be part of an overall CCB for the Measurements Applications Branch.)

2. Computer usage has been low, but will increase significantly in the next few weeks, bringing variance within a tolerable level.

3. Recent travel charges to this account are not reflected in the baseline or cost graphs.
No significant variance.
No significant variance.
EGI G IDAHO INC
EXP MEAS - MEAS SYSTEM B

<table>
<thead>
<tr>
<th>NUMBER 5N3AMBO00</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TOTAL PROGRAM</th>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>100</td>
<td>173</td>
</tr>
<tr>
<td>NOV</td>
<td>175</td>
<td>212</td>
</tr>
<tr>
<td>DEC</td>
<td>312</td>
<td>314</td>
</tr>
<tr>
<td>JAN</td>
<td>446</td>
<td>446</td>
</tr>
<tr>
<td>FEB</td>
<td>620</td>
<td>618</td>
</tr>
<tr>
<td>MAR</td>
<td>834</td>
<td>808</td>
</tr>
<tr>
<td>APR</td>
<td>896</td>
<td>892</td>
</tr>
<tr>
<td>MAY</td>
<td>582</td>
<td>580</td>
</tr>
<tr>
<td>JUN</td>
<td>1044</td>
<td>1034</td>
</tr>
<tr>
<td>JUL</td>
<td>1085</td>
<td>1080</td>
</tr>
<tr>
<td>AUG</td>
<td>1111</td>
<td>1102</td>
</tr>
<tr>
<td>SEP</td>
<td>1254</td>
<td>1269</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>23</td>
</tr>
<tr>
<td>NOV</td>
<td>47</td>
</tr>
<tr>
<td>DEC</td>
<td>118</td>
</tr>
<tr>
<td>JAN</td>
<td>175</td>
</tr>
<tr>
<td>FEB</td>
<td>375</td>
</tr>
<tr>
<td>MAR</td>
<td>402</td>
</tr>
<tr>
<td>APR</td>
<td>429</td>
</tr>
<tr>
<td>MAY</td>
<td>407</td>
</tr>
<tr>
<td>JUN</td>
<td>407</td>
</tr>
<tr>
<td>JUL</td>
<td>407</td>
</tr>
<tr>
<td>AUG</td>
<td>407</td>
</tr>
<tr>
<td>SEP</td>
<td>407</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANPOWER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BUDGET</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT</td>
<td>19</td>
</tr>
<tr>
<td>NOV</td>
<td>11</td>
</tr>
<tr>
<td>DEC</td>
<td>16</td>
</tr>
<tr>
<td>JAN</td>
<td>12</td>
</tr>
<tr>
<td>FEB</td>
<td>16</td>
</tr>
<tr>
<td>MAR</td>
<td>16</td>
</tr>
<tr>
<td>APR</td>
<td>14</td>
</tr>
<tr>
<td>MAY</td>
<td>13</td>
</tr>
<tr>
<td>JUN</td>
<td>10</td>
</tr>
<tr>
<td>JUL</td>
<td>7</td>
</tr>
<tr>
<td>AUG</td>
<td>4</td>
</tr>
<tr>
<td>SEP</td>
<td>4</td>
</tr>
</tbody>
</table>

1. The program owes Sandia $40,000 for PNA generators that have not been costed. A CCF is in process to reflect the change in the expected date the generators will be costed.

2. Due to changed fuel instrumentation requirements, material dollars originally scheduled this month were delayed. These will be costed this year. A CCF is in process to reflect the changed configuration and new plan.

3. Delays in ZIRC TC qualification and production effort occurred this month. A CCB is in process to reflect the updated plan. This work will be costed this year.

4. Changed requirements for secondary side instrumentation resulted in a delay in originally planned work. A CCB is in process to update the work plan.

* An overall CCB which includes the above items has been submitted, rebaselining this program.
No significant variance.
PERFORMANCE ANALYSIS

The LOFT Performance Measurement System provides timely, valid project status information that combines cost and schedule performance data for trend analysis. The Budgeted Cost of Work Scheduled (BCWS) forms a Performance Measurement Baseline for subsequent comparisons with the Budgeted Cost of Work Performed (BCWP). The BCWP also is compared with the Actual Cost of Work Performed (ACWP).

<table>
<thead>
<tr>
<th></th>
<th>BCWS</th>
<th></th>
<th>BCWP*</th>
<th></th>
<th>ACWP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Month</td>
<td>Year-To-Date</td>
<td>Month</td>
<td>Year-To-Date</td>
<td>Month</td>
</tr>
<tr>
<td>5N2D000</td>
<td>426</td>
<td>2618</td>
<td>234</td>
<td>2514</td>
<td></td>
</tr>
<tr>
<td>5N4K000</td>
<td>120</td>
<td>1451</td>
<td>125</td>
<td>1187</td>
<td></td>
</tr>
<tr>
<td>5N4P000</td>
<td>81</td>
<td>812</td>
<td>81</td>
<td>677</td>
<td></td>
</tr>
</tbody>
</table>

For 5N2D000, refer to the comment on the summary cost account chart.

For 5N4K000, refer to the comment on the summary cost account chart.

For 5N4P000, refer to the comment on the summary cost account chart.

a. In the process of rebaselining; figures are not yet available.
<table>
<thead>
<tr>
<th>Participant</th>
<th>Actual Reserve</th>
<th>Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAERI</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>FRG</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>ECN</td>
<td>84</td>
<td>27</td>
</tr>
<tr>
<td>SGAE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>172</td>
<td>111</td>
</tr>
<tr>
<td>Project Description</td>
<td>Total Proposal Est. Inc. Contingency ($K)</td>
<td>Total Spending Auth. by CCB ($K)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>JAERI TASKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5F8C1 JAERI Management</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>5F8C2 Completed Tasks</td>
<td>820</td>
<td>820</td>
</tr>
<tr>
<td>5F8C4 Advanced DTT</td>
<td>154</td>
<td>154</td>
</tr>
<tr>
<td>5F8C5 PBF/LOFT Lead Rod</td>
<td>1881</td>
<td>1881</td>
</tr>
<tr>
<td>5F8C6 Reevaluation of LOFT L1 Exper.</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>5F8C7 Misc. Code Studies</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5F8C8 LTSF Suppression Catch Tank</td>
<td>43</td>
<td>41</td>
</tr>
<tr>
<td>5F8C92 Shared Two-Phase Steady-State Loop</td>
<td>782</td>
<td>782</td>
</tr>
<tr>
<td>5F8C93 Shared-TRAC Code Studies</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>5F8C94 Two-Phase Loop Boiler Building</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>FRG TASKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5F7C1 FRG Management</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>5F7C2 Completed Tasks</td>
<td>2570</td>
<td>2570</td>
</tr>
<tr>
<td>5F7C4 Miscellaneous Tasks</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>5F7C5 Steam Probe</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5F7C7 Ultrasonic Density Detectors</td>
<td>81</td>
<td>74</td>
</tr>
<tr>
<td>5F7C8 LOFT State Vector</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5F7CA Small Break Inst.</td>
<td>206</td>
<td>206</td>
</tr>
<tr>
<td>5F7C92 Shared Two-Phase Steady-State Loop</td>
<td>1012</td>
<td>1012</td>
</tr>
<tr>
<td>5F7C93 TRAC Code Studies</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>5F7C94 Two-Phase Loop Boiler Building</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Project Description</td>
<td>Total Proposal Est. Inc. Contingency ($K)</td>
<td>Total Spending Auth. by CCB ($K)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>ECN TASKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5FNC1 ECN Management</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5FNC2 Completed Tasks</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>5FNC3 RPI Subcontract</td>
<td>117</td>
<td>114</td>
</tr>
<tr>
<td>5FNC5 INEL Support</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5FNC6 PNA Techniques</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>5FNC7 Critical Flow Studies</td>
<td>53</td>
<td>48</td>
</tr>
<tr>
<td>5FNC8 Two-Phase Loop Platform</td>
<td>59</td>
<td>47</td>
</tr>
<tr>
<td>5FNCA Wyle Data Analysis</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>SGAE TASKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5FAC1 SGAE Management</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>5FAC2 Completed Tasks</td>
<td>123</td>
<td>123</td>
</tr>
</tbody>
</table>

a. $57,000 cost transfer reduction in process.
BUDGET STATUS REPORT

TABLE 3. LOFT FY-80 SUMMARY STATUS REPORT

NUCLEAR REGULATORY COMMISSION

(In Thousands of Dollars)

<table>
<thead>
<tr>
<th>WBS#</th>
<th>I-89</th>
<th>Q80-4-3</th>
<th>Approved</th>
<th>Current PMB</th>
<th>Current BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5N1XX</td>
<td>A6048</td>
<td>4,030</td>
<td>0</td>
<td>4,030</td>
<td>4,030</td>
</tr>
<tr>
<td>5N2XX</td>
<td>A6053</td>
<td>3,648</td>
<td>0</td>
<td>3,648</td>
<td>3,648</td>
</tr>
<tr>
<td>5N3XX</td>
<td>A6043</td>
<td>5,020</td>
<td>40</td>
<td>5,060</td>
<td>5,060</td>
</tr>
<tr>
<td>5N4XX</td>
<td>A6107</td>
<td>10,899</td>
<td>451</td>
<td>11,350</td>
<td>11,350</td>
</tr>
<tr>
<td>5N5XX</td>
<td>A6122</td>
<td>4,046</td>
<td>0</td>
<td>4,046</td>
<td>4,046</td>
</tr>
<tr>
<td>5N6XX</td>
<td>A6110</td>
<td>3,786</td>
<td>0</td>
<td>3,786</td>
<td>3,786</td>
</tr>
<tr>
<td>5N7XX</td>
<td>A6054</td>
<td>7,595</td>
<td>0</td>
<td>7,595</td>
<td>7,595</td>
</tr>
<tr>
<td>5N8XX</td>
<td>A6137</td>
<td>971</td>
<td>0</td>
<td>971</td>
<td>971</td>
</tr>
<tr>
<td>5NX**</td>
<td>A6308</td>
<td>39,995</td>
<td>491</td>
<td>40,486</td>
<td>40,486</td>
</tr>
</tbody>
</table>

Supplementary programs

NRC discretionary reserves 5,314

NRC management reserves 50

Total NRC funding (FY-80) 45,990
<table>
<thead>
<tr>
<th>Funds</th>
<th>Current FIN Plan No. 9</th>
<th>Current Budget File (Q80-5-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOFT Foreign Funds</td>
<td>2,867</td>
<td>2,576</td>
</tr>
<tr>
<td>LOFT Lead Rod Tests</td>
<td>170</td>
<td>192</td>
</tr>
<tr>
<td>Total</td>
<td>3,037</td>
<td>2,768</td>
</tr>
<tr>
<td>NRC Operating Funds</td>
<td>45,990</td>
<td>40,676</td>
</tr>
<tr>
<td>Electric Heat Rod Evaluation</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>Computer Code Support</td>
<td></td>
<td>233</td>
</tr>
<tr>
<td>TC-2 Tests</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>LTSF</td>
<td></td>
<td>2,496</td>
</tr>
<tr>
<td>PWR/BWR Task Group</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>Standard Problem Analysis</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Advanced Instrumentation</td>
<td></td>
<td>973</td>
</tr>
<tr>
<td>TC-3 Tests</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>45,990</td>
<td>45,990</td>
</tr>
<tr>
<td>Total LOFT Funding(^a)</td>
<td>49,027</td>
<td>48,758</td>
</tr>
</tbody>
</table>

\(^a\) Excludes C.E., GSO, and overhead.
TABLE 5. LOFT FY-80 SUMMARY BUDGET STATUS REPORT OF LOFT FOREIGN FUNDS
(In Thousands of Dollars)

<table>
<thead>
<tr>
<th>LOFT WBS</th>
<th>189 #</th>
<th>Q80-4-4</th>
<th>Approved CL.I CCBs</th>
<th>Current PBM # Q80-5-0</th>
<th>Current FY-80 Budget</th>
<th>Total Authorized Spending Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>5FAXX</td>
<td>A6273</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>145</td>
</tr>
<tr>
<td>5FNXX</td>
<td>A6271</td>
<td>150</td>
<td>0</td>
<td>150</td>
<td>150</td>
<td>365</td>
</tr>
<tr>
<td>5F7XX</td>
<td>A6104</td>
<td>993</td>
<td>0</td>
<td>993</td>
<td>993</td>
<td>4211</td>
</tr>
<tr>
<td>5F8XX</td>
<td>A6111</td>
<td>1145</td>
<td>0</td>
<td>1,145</td>
<td>1,337</td>
<td>4,856(^a)</td>
</tr>
<tr>
<td>5F9XX</td>
<td>A61045</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5FXXX</td>
<td>2,291</td>
<td>12</td>
<td>2,303</td>
<td>2,495</td>
<td>9,577</td>
<td></td>
</tr>
</tbody>
</table>

Foreign contingency reserves: 111 111
Foreign management reserves: 172 172
Total FY-80 LOFT foreign funds: 2,778 9,860
Foreign funds spent through FY-79: 5,860
Foreign funds budgeted in FY-81: 222 0
Total foreign funds received to date: 9,860 9,860

\(a\). Includes LOFT Lead Rod.
TABLE 6. LOFT CAPITAL EQUIPMENT STATUS REPORT THROUGH JULY

<table>
<thead>
<tr>
<th>Schedule 189a</th>
<th>TITLE</th>
<th>Prior Year Uncosted</th>
<th>Current Year Funds</th>
<th>Total Available to cost</th>
<th>Current Year Costs</th>
<th>Outstanding Commitments</th>
<th>Balance Less Costs & Comm.</th>
<th>Estimate to Complete</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4CA101</td>
<td>Integral System Design & Fab.</td>
<td>111,731</td>
<td>(10,000)</td>
<td>101,731</td>
<td>33,553</td>
<td>-0-</td>
<td>68,178</td>
<td>64,605</td>
<td>3,573</td>
</tr>
<tr>
<td>4CA102</td>
<td>LOFT Operations</td>
<td>194,419</td>
<td>(68,000)</td>
<td>126,419</td>
<td>115,545</td>
<td>-0-</td>
<td>10,874</td>
<td>9,520</td>
<td>1,344</td>
</tr>
<tr>
<td>4CA103</td>
<td>UT & Requalification Program</td>
<td>140,034</td>
<td>78,000</td>
<td>218,034</td>
<td>165,587</td>
<td>-0-</td>
<td>52,447</td>
<td>54,013</td>
<td>(1,566)</td>
</tr>
<tr>
<td>TOTAL DOE</td>
<td></td>
<td>446,184</td>
<td>-0-</td>
<td>446,184</td>
<td>314,685</td>
<td>-0-</td>
<td>131,499</td>
<td>128,148</td>
<td>3,351</td>
</tr>
<tr>
<td>A-6061</td>
<td>Experimental Measurements*</td>
<td>788,769</td>
<td>783,000</td>
<td>1,577,769</td>
<td>992,267</td>
<td>189,353</td>
<td>399,149</td>
<td>583,183</td>
<td>2,319</td>
</tr>
<tr>
<td>A-6048</td>
<td>Integral System Design & Fab.</td>
<td>689,139</td>
<td>1,422,000</td>
<td>2,111,139</td>
<td>718,194</td>
<td>260,793</td>
<td>1,032,152</td>
<td>1,393,535</td>
<td>(590)</td>
</tr>
<tr>
<td>A-6088</td>
<td>LOFT Operations</td>
<td>18,091</td>
<td>89,000</td>
<td>107,091</td>
<td>46,009</td>
<td>13,739</td>
<td>47,343</td>
<td>60,363</td>
<td>719</td>
</tr>
<tr>
<td>TOTAL NRC</td>
<td></td>
<td>1,495,999</td>
<td>2,300,000</td>
<td>3,795,999</td>
<td>1,756,470</td>
<td>563,885</td>
<td>1,479,644</td>
<td>2,037,081</td>
<td>2,448</td>
</tr>
<tr>
<td>TOTAL LOFT</td>
<td></td>
<td>1,942,183</td>
<td>2,300,000</td>
<td>4,242,183</td>
<td>2,071,155</td>
<td>563,885</td>
<td>1,610,143</td>
<td>2,165,229</td>
<td>5,799</td>
</tr>
</tbody>
</table>

* Includes A-6065, A-6066, and A-6089