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ABSTRACT 
High operations and maintenance costs for wind turbines 

reduce their overall cost effectiveness. One of the biggest 
drivers of maintenance cost is unscheduled maintenance due to 
unexpected failures. Continuous monitoring of wind turbine 
health using automated failure detection algorithms can 
improve turbine reliability and reduce maintenance costs by 
detecting failures before they reach a catastrophic stage and by 
eliminating unnecessary scheduled maintenance. A SCADA-
data based condition monitoring system uses data already 
collected at the wind turbine controller. It is a cost-effective 
way to monitor wind turbines for early warning of failures and 
performance issues. In this paper, we describe our exploration 
of existing wind turbine SCADA data for development of fault 
detection and diagnostic techniques for wind turbines. We used 
a number of measurements to develop anomaly detection 
algorithms and investigated classification techniques using 
clustering algorithms and principal components analysis for 
capturing fault signatures. Anomalous signatures due to a 
reported gearbox failure are identified from a set of original 
measurements including rotor speeds and produced power. 

INTRODUCTION 
Among the challenges, noted in the DOE-issued report 

‘20% Wind Energy by 2030’ [1], are improvement of wind 
turbine performance and reduction in operating and 
maintenance costs. After the capital costs of commissioning 
wind turbine generators, the biggest costs are operations, 
maintenance, and insurance [1-3]. Reducing maintenance and 
operating costs can considerably reduce the payback period and 
provide the impetus for investment and widespread acceptance 
of this clean energy source. 

Maintenance costs can be reduced through continuous, 
automated monitoring of wind turbines. Wind turbines often 
operate in severe, remote environments and require frequent 

scheduled maintenance. Unscheduled maintenance due to 
unexpected failures can be costly, not only for maintenance 
support but also for lost production time. In addition, as wind 
turbines age, parts fail, and power production performance 
degrades, maintenance costs increase as a percentage of 
production. Monitoring and data analysis enables condition-
based rather than time-interval-based maintenance and 
performance tune-ups. Experience from other industries shows 
that condition monitoring detects failures before they reach a 
catastrophic or secondary-damage stage, extends asset life, 
keeps assets working at initial capacity factors, enables better 
maintenance planning and logistics, and can reduce routine 
maintenance. 

Traditionally, condition monitoring systems for wind 
turbines have focused on the detection of failures in the main 
bearing, generator, and gearbox, some of the highest cost 
components on a wind turbine [4–6]. Two widely-used methods 
are vibration analysis and oil monitoring [4, 5, 7, 8]. These are 
standalone systems that require installation of sensors and 
hardware. A supervisory control and data acquisition (SCADA) 
-data based condition monitoring system uses data already 
being collected at the wind turbine controller and is a cost-
effective way to monitor for early warning of failures and 
performance issues. 

In this paper, we describe our exploration of existing wind 
turbine SCADA data for development of fault detection and 
diagnostic techniques. Our ultimate goal is to be able to use 
SCADA-recorded data to provide advance warning of failures 
or performance issues. For the work described here, we used 
data from the Controls Advanced Research Turbine 2 (CART2) 
at the National Wind Technology Center (NWTC) at the 
National Renewable Energy Laboratory (NREL). A number of 
measurements from the turbine are used to develop anomaly 
detection algorithms. Classification techniques such as 
clustering and principal components analysis were investigated 
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for capturing fault signatures. The developed algorithms were 
tested with data from a failed gearbox incident. The next two 
sections give a survey of failure modes and the current state of 
condition monitoring in wind turbines. We then describe the 
wind turbine and data used for this work, followed by a 
description of the detection algorithm approaches, results, 
discussion, and concluding remarks. 

FAILURE MODES IN WIND TURBINES 
A condition-based monitoring (CBM) system must be 

designed to provide maximum benefit for its cost. Since not 
every failure can be detected ahead of time nor prevented, it 
makes sense to target the failures that are most costly to repair. 
After reviewing publications [9–15] that provide survey data on 
wind turbine field failures, we summarized the failure rates of 
wind turbine subsystems. Our emphasis was on learning which 
subsystems were most costly to repair, not just the frequency of 
failures. While the cost of repair or replacement information is 
not available in the surveys, we could use downtime as an 
indirect indicator of cost and effort to repair. Downtime 
provides an additional measure of lost revenue due to failure. 
We determined the ranks of the subsystems by failure rate and 
downtime per turbine per year, by summarizing all surveys 
reviewed above. Fig. 1 is a graphical representation of the 
average failure rate and downtime. Note that in the surveys and 
Fig. 1, gearbox failures are separated from other drivetrain 
component failures. 

 
FIG. 1. LITERATURE REVIEW SUMMARY OF FAILURE RATE 

AND DOWNTIME/TURBINE/YEAR 
Some surveys present downtime as downtime/ 

turbine/year, others present it as downtime/failure. We present 
the information as downtime/turbine/year, because it captures 
frequency of failure as well as downtime per failure. We find 
that although large subsystems such as gearboxes fail 
infrequently, these failures result in the most downtime per 
turbine, per year. Anecdotal comments from wind farm owners 

and operators suggest that gearbox failures dominate the cause 
for concern. However, as seen in Fig. 1, other failures are not 
far behind. A monitoring system that provides detection 
coverage for multiple top failure modes will be valuable in a 
maintenance system. With this objective, we explore the use of 
SCADA data for fault detection and diagnostics. 

CONDITION MONITORING IN WIND TURBINES 
Most of the literature about condition monitoring of wind 

turbines focuses on gearboxes and other drivetrain components 
[16–18]. This is consistent with the conclusions from the survey 
of wind turbine failure modes, where the gearbox failures 
contribute to the most costly repairs. Vibration-based 
approaches and oil monitoring techniques are the most mature, 
having been applied to large rotating machinery in other 
domains. Some are being applied to wind turbines at a research 
or pilot scale [5]. One comprehensive study is being conducted 
at NREL, using both dynamometer and field turbines as testing 
platforms [5]. Other techniques that are being developed in a 
lab or pilot setting are acoustic emission sensors, wavelet 
analysis for vibration signatures, and electrical current and 
power signatures [5, 19]. In some cases, SCADA data, mainly 
temperature (bearing or generator winding), have been used 
along with vibration data for fault detection [6, 19]. Operating 
data also is used to normalize the vibration or temperature data 
[6, 20]. Zaher [2] presented a method to use SCADA data for 
anomaly detection based on neural network models of normal 
operating modes. Use of SCADA data for fault diagnostics and 
prognostics algorithms in wind turbines is not as mature as in 
other industries, such as process and aerospace, where the use 
of condition-based maintenance is more widespread. 

WIND TURBINE DIAGNOSTICS WITH SCADA DATA 
SCADA or operating data of equipment has been used in 

other industries for accurate and timely detection, diagnostics 
and prognostics of failures and performance problems [22–27]. 
For example, in turbine engine diagnostics, failures such as 
turbine degradation, compressor bleed band failure, fuel supply 
system faults, combustion liner burn-through, and in-range 
sensor faults can be automatically detected with appropriate 
diagnostic algorithms. SCADA data provides a rich source of 
continuous time observations, which can be exploited for 
overall turbine performance monitoring. With appropriate 
algorithms, performance monitoring can be matured into 
individual component fault isolation schemes. 

Performance is described in the context of the underlying 
process physics of the equipment—in this case, the wind 
turbine. The wind turbine converts wind kinetic energy into 
useful electrical energy. As turbine components deteriorate, the 
efficiency with which wind energy is converted to electrical 
energy decreases and the performance of the turbine decreases. 
Performance degradation can indicate problems such as blade 
aerodynamic degradation due to leading and trailing edge 
losses, dirt or ice buildup on blades, loss due to drivetrain 
misalignment, friction caused by bearing or gear faults, 
generator winding faults, or even pitch control system 
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degradation. The functional elements of performance 
monitoring are shown in Fig. 2. A performance parameter is 
first computed based on sensor measurements; this parameter 
could be raw sensor values, sensor values corrected for 
environmental conditions, residuals with respect to a wind 
turbine model, component efficiency or aerodynamic 
parameters. Anomaly detection uses one or more such para-
meters to test whether the wind turbine is behaving within 
normal bounds. If the root cause of the anomaly is further 
classified as a particular component failure, this provides 
diagnosis. Additional elements involve predictive trending and 
prognostics, wherein parameters or fault indicators are trended, 
and time to failure is projected. 

 
FIG. 2. SCADA DATA BASED MONITORING 

Anomaly detection can be performed with a series of 
techniques that range from simple threshold checks to complex 
statistical analyses. Here, we focus on anomaly and fault 
detection methods for analyzing sensor data from indivi-dual 
wind turbines. Sensor data used in algorithm development and 
the approaches are described in the next sections. 

DESCRIPTION OF CART TURBINE AND DATA 
The Controls Advanced Research Turbine 2 (CART2) is a 
modified Westinghouse

Fig 
3

 WWG-0600 machine rated at 600 
kW. It is located at the NWTC at NREL in Colorado and was 
installed to test new control schemes for power and load 
regulation. In its original configuration, the WWG-0600 uses a 
synchronous generator, fluid coupling, and hydraulic collective 
pitch actuation. To enable advanced control research for 
variable speed wind turbines, the CART2 has been retrofitted 
with an induction generator, rigid coupling, and individual 
electromechanical pitch actuators. The rotor runs upwind of the 
tower and consists of two blades and a teetering hub [27]. As a 
research turbine, it is outfitted with many more sensors (see 

) than would normally be installed on commercial turbines, 
including pressure transducers, torque transducers, strain 
gauges, thermometers, position encoders, accelerometers, 
anemometers, wind vanes, and power, current, and voltage 
meters. The output of each of these sensors is recorded at the 
control rate of 100 Hz. Eighty-eight measurements are stored in 
ten-minute blocks including: pitch angles, shaft torque, oil 
temperature and pressure, yaw positions, wind speeds and 
                                                           
Westinghouse® is a registered trademark of Westinghouse Electric 
Corporation. 

directions, ambient temperature, 12 vibrations, tower loads, 
generator power/current/voltage, and other control signals. 

 
FIG. 3. CART2 SENSOR LOCATIONS [33] 

NON-LINEAR PCA 
The sensor data contain information about the state of the 

system being observed as well as redundant information and 
noise. Principal component analysis (PCA) is often used to 
extract useful and non-redundant information from the sensor 
data. PCA is a linear data analysis method that can produce 
orthogonal principal directions along which the data exhibit the 
largest variances. Because it is limited to capturing linear 
relationships, an extension to the nonlinear domain may be con-
sidered. An auto-associative neural network (AANN) approach 
provides one of the ways of implementing nonlinear PCA. 

An AANN processes the input data through five sequential 
layers, one input layer, three hidden layers composed of a 
mapping layer, a bottleneck layer, and a de-mapping layer, and 
one output layer, as shown in Fig. 4, to produce an output that 
is identical to the input at the final layer [21]. This type of 
network learns an approximation of the identity mapping 
between the inputs and the outputs.  The network contains a 
bottleneck at its third layer that compresses the information, 
allowing the network to learn a correlation model for the input 
data. 



4 

 
FIG. 4. AANN WITH THREE HIDDEN LAYERS, PLUS INPUT 

AND OUTPUT LAYERS 
The network develops an internal representation of the 

data. As the data is mapped from one layer to another, linear or 
nonlinear transfer functions are used. The internal (compressed) 
representation obtained at the bottleneck layer through a 
nonlinear transfer function corresponds to nonlinear principal 
components of the input data [29]. The network is trained with 
data from normal operation. When presented with a set of new 
inputs, it can then produce a small set of principal components 
that can be trended or otherwise processed to detect changes in 
the underlying nonlinear dynamics of the system. 

To map the changes seen in the principal components into 
anomaly detection and fault isolation indicators, the Q statistic 
and Hotelling T2 statistics are computed. The Q statistic is a 
measure of the amount of variation not captured by the linear or 
nonlinear PCA model while the T2 statistic is a measure of the 
variation in the model. 

CLUSTERING TECHNIQUES— SELF-ORGANIZING 
FEATURE MAPS 

Clustering algorithms are methods for dividing a set of n 
observations into g groups, called clusters, so that members of 
the same group are more alike than members of different 
groups. When class labels of observations are available, 
supervised learning techniques are used to learn the 
observations; otherwise, unsupervised learning is appropriate. 
In unsupervised learning, no target outputs are available, so the 
free parameters, such as weights and biases in a neural network, 
are modified only in response to network inputs. They 
categorize the input patterns into a number of classes. 

A self-organizing feature map (SOFM) is a type of 
unsupervised clustering algorithm that forms neurons located 
on a regular grid, usually in one or two dimensions [30]. The 
cluster representatives that are the neurons in the layer of a 
SOFM are initially assigned at random, in some suitable 
distribution according to a topology function, that dictates the 
structure of the map. SOFM can detect regularities and 
correlations in its input and adapt its future responses to that 
input by learning to classify input vectors. Based on the 
competitive learning process, the neurons become selectively 
tuned to input patterns so that neurons physically near each 
other in the neuron layer respond to similar input vectors. Since 
the health condition (normality or failure) for each data point is 
not available in the field, SOFMs are particularly suited to find 
patterns in the data, without target class labels. Fig. 5 illustrates 

the training and operating steps in using the SOFM technique 
[31]. 

 
FIG. 5. FAULT DIAGNOSIS USING SOFM 

DEVELOPMENT APPROACH 
In our work, wind turbine data is segmented according to 

the wind turbine operating regime (Fig. 6). Different control 
schemes govern different regimes [32]. In order to differentiate 
real fault signatures from similar operational signatures, data is 
partitioned and signatures are compared from the same 
operating regimes. Our focus is on data from operating Region 
2 in Fig. 6. 

Data preprocessing also includes modification of the 
sampling rate. The original CART2 data was collected at the 
sampling rate of 100 Hz, as CART2 is used mainly to test 
control schemes. Although such high frequency data contains 
richer information enabling superior fault detection, we down-
sampled the original data set to 1 Hz. Down-sampling may be 
used because the fault signatures are still observable from the 
lower sampled data. Also, a main objective of this work is to 
use SCADA data for CBM purposes, and the sampling 
frequency of SCADA data is much slower, typically one sample 
per minute. 

 
FIG. 6. WIND TURBINE OPERATION REGION  

A gearbox-related failure was reported for CART2. We 
obtained the data measured around the time of failure along 
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with data sets collected before and after the failure. The data 
sets were analyzed to explore patterns in the data. Trends in 
individual measurements, different combinations of individual 
measurements, and their relationships to other measurements 
were analyzed. Fig. 7 and Fig. 8 show results of some of this 
analysis. In both figures, the circles represent faulty data and 
the Xes represents normal, baseline data. Fig. 7 (Fault 
Indications A) shows the variations in the ratio of high-speed 
shaft (HSS) torque to HSS speed versus the power level. This 
figure shows a clear distinction between the fault and the 
baseline, especially at relatively lower power levels (< 400 
kW). 

 
FIG. 7. OBSERVED FAULT INDICATIONS A 

 
FIG. 8. OBSERVED FAULT INDICATIONS B 

The variation of the ratio of HSS speed to LSS speed 
versus power level is shown in Fig. 8 (Fault Indications B). In 
this case, the distinction between the fault and the baseline can 
still be observed, although the indication is not as strong as in 
Fig. 8—the variation of the speed ratio from fault data is much 
larger across every power level and overlaps with the variation 
from the baseline data. 

Based on these observations, fault detection and isolation 
algorithms are developed using PCA and SOFM. The alarms 
are generated based on three indicators: two indicators from 
PCA based on Q-stat and T2, and one indicator from the SOFM 
based on the clusters. During the training stage, two training 
sets were prepared. One set was composed of power, HSS 
torque, and HSS speed, and the other set was composed of 
power, HSS torque, HSS speed, and LSS speed. The first set 
captures the fault indication observed from Fig. 7, and the 
second set captures the fault indications observed from Fig. 7 
and Fig. 8. 

The data set used to train the AANN was prepared to 
ensure that it represented the widest possible operation range 
within the Region 2, defined earlier. In fact, the training/testing 
data set consists of data collected from operations over a period 
of two years. The training/test data set for the AANN is 
composed of baseline data only. AANN training is done with 
varying numbers of nodes at the bottleneck, mapping, and de-
mapping layers. The number of nodes at the bottleneck layer is 
always smaller than the number of nodes at the mapping and 
input layers. Having trained the model based on the two sets 
described above, we found that the AANN trained with the first 
set performed better, and resulted in fewer false alarms with 
more successful detection. We believe this occurs because the 
wider spread of the speed ratio, from the fault data shown in 
Fig. 7, makes the fault and normal data less separable. The 
better performance of the model trained with the first data set 
also is observed when training the SOFM. 

The only difference between the training set used for 
SOFM and the training set used for AANN is that the SOFM 
training set must include the fault data. Thus, the SOFM 
training data set is an augmentation of the AANN training set, 
with the addition of the fault data. The SOFM training involves 
varying the number of nodes. 

RESULTS AND DISCUSSION 
Fig. 9 shows the Q-stat and T2 values obtained from the 

AANN using the training data set, which represents the 
baseline. The horizontal line represents the threshold indicating 
anomalies when the Q-stat or T2 of a sample rises above the 
limit. Based on the variability seen in the training set, the 
thresholds are set at the six sigma level for Q-stat and the three 
sigma level for T2, respectively. 
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FIG. 9. NON-LINEAR PCA OUTPUT FROM TRAINING SET 

The result from another test data set that was not part of the 
training data is shown in Fig. 10. This data set covers all 
seasons and includes no reported incidents. 

 
FIG. 10. NON-LINEAR PCA OUTPUT FROM TEST DATA 

(NOT USED IN TRAINING PROCESS) 
A portion of the data samples cross the threshold of Q-stat. 

This portion corresponds to the unknown anomalies. Even 
though no confirmed incidents occurred in that time frame, this 
indicates samples that do not fit the non-linear PCA model 
developed from the training data set. With the current threshold 
set at the six sigma level from the training set, there will be 
triggers for any other anomalies that are not covered by the 
training set. A specific event we want to detect is a gearbox 
failure incident that occurred in CART2. The Q-stat values 
from the samples (Fig. 11) obtained during the incident show 
very large values compared to those from the training or other 
test data set (Fig. 9 and Fig. 10). These large values enable us to 
set the threshold at a much higher level so that the alarm is 
triggered only for the target failure and less sensitive to other 
unknown anomalies. 

The result from the data collected on the day when the 
gearbox failure occurred is shown in Fig. 11. Both Q-stat and 

T2 display large values. The samples of Q-stat or T2 values 
exceeding the threshold indicate that they are not representative 
of the data used to develop the AANN, which corresponds to 
the baseline condition. 

 
FIG. 11. NON-LINEAR PCA OUTPUT FROM FAILURE CASE 

Results from the data collected before the failure are 
shown in Fig. 12 and Fig. 13. 

 
FIG. 12. NON-LINEAR PCA OUTPUT 40 DAYS BEFORE THE 

FAILURE 
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FIG. 13. NON-LINEAR PCA OUTPUT 17 DAYS BEFORE THE 

FAILURE 
The data obtained 40 days before the failure is shown in 

Fig. 12, and Fig. 13 is the data obtained 17 days before the 
failure. A few samples cross the thresholds but the indication is 
not strong or persistent, as shown in Fig. 11. These days were 
chosen because they were closest to the failure and had data 
that was available to us. The log book indicates that the failure 
was suspected 14 days before it occurred. Unfortunately, data 
for the days leading up to the failure were not available. 
Additional analysis on the consistency of the alarms and lead 
time for early failure detection can be done only when 
additional data leading up to a failure becomes available. 
Tuning thresholds early to maximize accurate detection and to 
minimize false positives also can be done with additional data. 

The result from the SOFM training is shown in Fig. 14. 

 
FIG. 14. SOFM OUTPUT FROM TRAINING SET 

As mentioned above, the SOFM training set includes not 
only sufficient baseline data but also the fault data. The baseline 
data are shown as xes and include the data from the samples to 
around 3500. The data marked with os and corresponding to the 

samples after 3500 are the fault data. The y-axis represents the 
cluster number. A clustering system of 28 clusters is obtained 
after the training; the y-axis shows the cluster number from 1 to 
28. Notice that no baseline samples correspond to clusters 17, 
18, and 21 and only the samples from the fault data correspond 
to these clusters. This indicates that clusters 17, 18, and 21 are 
formed based on the fault data only; thus, they represent the 
fault condition. Some clusters are not observed in the baseline 
data samples because baseline data samples are obtained from 
various operating conditions. The remaining clusters 
correspond to the baseline data and represent the normal 
condition. Depending on the separation between the fault 
baseline data, the fault or baseline conditions can be 
represented by multiple clusters. 

Based on this information, the cluster numbers are mapped 
into the normal and fault conditions. The faulty data set as 
shown in Fig. 15. 

 
FIG. 15. SOFM OUTPUT FROM FAULT CASE AFTER 

MAPPING THE CLUSTERS INTO CONDITIONS 
The samples shown in Fig. 15 correspond to the last 3.5 

minutes of the data marked in Fig. 14. This illustrates how an 
alarm based on this diagnostic technique might function in 
practice. Although SOFM can isolate faults, it is trained in only 
one failure mode, as that is the only failure history available. If 
other failure modes are observable from the same set of 
parameters, a SOFM can demonstrate its isolation capability by 
forming other clusters that correspond to new failure modes. In 
that case, two different alarms indicating two different failure 
modes will be generated. Fig. 16 shows the result from the data 
closest to the failure day among the data available. As noted 
earlier, no fault is indicated yet. The comparison of alarms 
triggered by three different indicators is shown in Fig. 17—two 
indicators from AANN based on Q-stat and T2 and one 
indicator from SOFM based on the clusters. The alarms are 
consistent, i.e. when T2 triggers the other two also trigger. 
Compared to T2, earlier detection is possible from Q-stat and 
SOFM. The three indicators seem to complement each other 
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well. For the brief periods, when one of the indicators does not 
trigger, the others provide a fault detection signal consistent 
with the indications in the neighboring time points. This finding 
shows that the three indicators presented in this research form a 
good set to include in a fusion scheme for increased robustness 
across indicators and along the time axis during a failure 
progression. 

 
FIG. 16. SOFM OUTPUT BEFORE THE FAILURE AFTER 

MAPPING THE CLUSTERS INTO CONDITIONS 

 
 

FIG. 17 COMPARISON OF ALARMS FROM THREE 
INDICATORS 

SUMMARY 
In this work, we presented an approach for fault detection 

using available SCADA-data from wind turbines. Systematic 
analysis of data indicated clear distinctions between fault and 
no-fault conditions in relationships among several parameters. 
These distinctions in relationships were exploited in the 
development of automated fault diagnostics algorithms. Two 
approaches, PCA and SOFM, were used in the algorithms. Both 

approaches are successful in producing persistent indicators 
that are well-distinguished from those generated based on no-
fault data. Future work in maturing the approaches involves 
testing and tuning the algorithms, using additional data from 
the same and other wind turbines, and developing a fusion 
scheme for increased robustness and early fault detection. 
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