Contribution to Fusion Materials Semiannual Report

PDF Version Also Available for Download.

Description

The objectives of this work are the following: (1) The application of micro and mesoscale modeling techniques to study dislocation properties in ferritic and W-based materials; and (2) The development of computational models and tools to study damage accumulation in >1 dpa (fusion-like) conditions, both for Fe and W-based alloys. The high-temperature strength of structural ferritic alloys (ferritic/martensitic steels, ODS steels, bcc refractory alloys) hinges on the thermal stability of second phase particles and their interactions with dislocations. Irradiation damage can modify the structure and stability of both the particles and dislocations, particularly by the introduction of gas atoms, point ... continued below

Physical Description

PDF-file: 10 pages; size: 1.3 Mbytes

Creation Information

Marian, J & Meier, W February 24, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The objectives of this work are the following: (1) The application of micro and mesoscale modeling techniques to study dislocation properties in ferritic and W-based materials; and (2) The development of computational models and tools to study damage accumulation in >1 dpa (fusion-like) conditions, both for Fe and W-based alloys. The high-temperature strength of structural ferritic alloys (ferritic/martensitic steels, ODS steels, bcc refractory alloys) hinges on the thermal stability of second phase particles and their interactions with dislocations. Irradiation damage can modify the structure and stability of both the particles and dislocations, particularly by the introduction of gas atoms, point defects and point defect clusters. The three aspects of materials strength that we are studying are: (a) Computation of dislocation mobility functions (stress-velocity relations) as a function of temperature and dislocation character. This will be done via molecular dynamics (MD) simulations of single dislocation motion under applied shear stress. This is a fundamental input to dislocation dynamics (DD) simulations and also provides fundamental insights into the high-temperature plastic behavior of ferritic materials. (b) Simulations of dislocation-obstacle interactions using MD and DD. This subtask includes simulating the effect on dislocation glide of precipitates (e.g., {alpha}' Cr precipitates), ODS particles, and irradiation induced defect clusters (e.g. voids, dislocation loops, etc.). (c) Implementation of this information (dislocation mobilities and dislocation-defect interaction rules) into DD codes that will allow us to study plasticity of single crystals Fe alloys under relevant irradiation conditions.

Physical Description

PDF-file: 10 pages; size: 1.3 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LLNL-TR-533152
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/1037845 | External Link
  • Office of Scientific & Technical Information Report Number: 1037845
  • Archival Resource Key: ark:/67531/metadc841169

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 24, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 23, 2016, 11:33 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Marian, J & Meier, W. Contribution to Fusion Materials Semiannual Report, report, February 24, 2012; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc841169/: accessed January 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.