Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals

PDF Version Also Available for Download.

Description

We examine in detail the impact of passivating ligands (i.e., amines, phosphines, phosphine oxides and pyridines) on the electronic and optical spectra of Cd{sub 33}Se{sub 33} quantum dots (QDs) using density functional theory (DFT) and time-dependent DFT (TDDFT) quantum-chemical methodologies. Most ligand orbitals are found deep inside in the valence and conduction bands of the QD, with pyridine being an exception by introducing new states close to the conduction band edge. Importantly, all ligands contribute states which are highly delocalized over both the QD surface and ligands, forming hybridized orbitals rather than ligand-localized trap states. In contrast, the states close ... continued below

Physical Description

904-914

Creation Information

Fischer, S.; Crotty, A.; Kilina, S.; Ivanov, I. & Tretiak, S January 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We examine in detail the impact of passivating ligands (i.e., amines, phosphines, phosphine oxides and pyridines) on the electronic and optical spectra of Cd{sub 33}Se{sub 33} quantum dots (QDs) using density functional theory (DFT) and time-dependent DFT (TDDFT) quantum-chemical methodologies. Most ligand orbitals are found deep inside in the valence and conduction bands of the QD, with pyridine being an exception by introducing new states close to the conduction band edge. Importantly, all ligands contribute states which are highly delocalized over both the QD surface and ligands, forming hybridized orbitals rather than ligand-localized trap states. In contrast, the states close to the band gap are delocalized over the QD atoms only and define the lower energy absorption spectra. The random detachment of one of ligands from the QD surface results in the appearance of a highly localized unoccupied state inside the energy gap of the QD. Such changes in the electronic structure are correlated with the respective QD-ligand binding energy and steric ligand-ligand interactions. Polar solvent significantly reduces both effects leading to delocalization and stabilization of the surface states. Thus, trap and surface states are substantially eliminated by the solvent. Polar solvent also blue-shifts (e.g., 0.3-0.4 eV in acetonitrile) the calculated absorption spectra. This shift increases with an increase of the dielectric constant of the solvent. We also found that the approximate single-particle Kohn-Sham (KS) approach is adequate for calculating the absorption spectra of the ligated QDs. Besides a systematic blue-shift, the KS spectra are in very good agreement with their respective counterparts calculated with the more accurate TDDFT method.

Physical Description

904-914

Source

  • Journal Name: Nanoscale; Journal Volume: 4; Journal Issue: 3

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/GO/88160-43
  • Grant Number: FG36-08GO88160
  • DOI: 10.1039/C2NR11398H | External Link
  • Office of Scientific & Technical Information Report Number: 1038917
  • Archival Resource Key: ark:/67531/metadc841152

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • July 22, 2016, 7:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fischer, S.; Crotty, A.; Kilina, S.; Ivanov, I. & Tretiak, S. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals, article, January 1, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc841152/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.