Xyce[™] Parallel Electronic Simulator Release Notes

Release 5.1.2

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831

Telephone:	(865) 576-8401
Facsimile:	(865) 576-5728
E-Mail:	reports@adonis.osti.gov
Online ordering:	http://www.doe.gov/bridge

Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd Springfield, VA 22161

Telephone:(800) 553-6847Facsimile:(703) 605-6900E-Mail:orders@ntis.fedworld.govOnline ordering:http://www.ntis.gov/ordering.htm

SAND2010-3333

Unlimited Release Printed May 2010

Xyce[™] Parallel Electronic Simulator Release Notes

Release 5.1.2

Eric R. Keiter, Robert J. Hoekstra, Ting Mei, Thomas V. Russo, Richard L. Schiek, Heidi K. Thornquist, and Eric L. Rankin Electrical and Microsystems Modeling

> Todd S. Coffey Roger P. Pawlowski Applied Mathematics and Applications

Keith R. Santarelli Discrete Mathematics and Complex Systems

> Sandia National Laboratories P.O. Box 5800 Mail Stop 0316 Albuquerque, NM 87185-0316

Scope/Product Definition

The **Xyce** Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. Specific requirements include, among others, the ability to solve extremely large circuit problems by supporting large-scale parallel computing platforms, improved numerical performance and object-oriented code design and implementation.

The Xyce release notes describe:

Hardware and software requirements

Xyce[™] Release Notes Version 5.1.2

- New features and enhancements
- Any defects fixed since the last release
- Current known defects and defect workarounds

For up-to-date information not available at the time these notes were produced, please visit the **Xyce** web page at http://www.cs.sandia.gov/xyce.

Hardware/Software

This section gives basic information on supported platforms and hardware and software requirements for running **Xyce** 5.1.2.

Supported Platforms (Certified Support)

Xyce 5.1.2 currently supports any of the following operating system (all versions imply the earliest supported – **Xyce** generally works on later versions as well) platforms. These platforms are supported in the sense that they have been subject to certification testing for the **Xyce** version 5.1.2 release.

- Red Hat Enterprise Linux[®] 4 or 5, x86 and x86-64 (serial and parallel)
- Microsoft Windows XP Professional[®], x86 (serial)
- Apple[®] OS X, x86-64 (serial and parallel)
- TLCC (glory) (serial and parallel)
- Xyce directly coupled to the Dakota optimization and uncertainty quantification library for Apple OS X and Linux platforms.

Build Supported Platforms (not Certified)

The platforms listed in this section are "not supported" in the sense that they are not subject to nightly regression testing, and they also were not subject to certification testing for the **Xyce** version 5.1.2 release.

FreeBSD 7.2 on Intel x86 architectures (serial and parallel)

Please contact the Xyce development team for platform and configuration availability.

Hardware Requirements

The following are *estimated* hardware requirements for running **Xyce**:

- 128MB memory memory minimum *memory requirements increase with circuit size*
- 128MB disk space required for installation (does not include space needed for output files)

Software Requirements

Several libraries are required to run **Xyce** or build **Xyce** from source on a platform. Serial versions of the static **Xyce** binary have no run-time software requirements. However, parallel versions require the following software at run time:

- Open MPI (http://www.open-mpi.org/) (version 1.2.5 or higher)
- Intel (http://www.intel.com/) MKL (version 10.0) and Compilers (version 10.1)
- TLCC (glory) users can load the **xyce** module to properly set the environment

Several libraries (all freely available from Sandia National Laboratories or other sites) are always required when building **Xyce** from source. These are:

- Trilinos Solver Library version 10 (Sandia, http://trilinos.sandia.gov). This is a suite of libraries including Amesos, AztecOO, Belos, Teuchos, Epetra, EpetraExt, Ifpack, NOX, LOCA, Sacado, Zoltan.
- SuperLU (libsuperlu.a) (http://crd.lbl.gov/ xiaoye/SuperLU/)
- UMFPACK version 4.1 and AMD version 1.0 (libumfpack.a, libamd.a) (http://www.cise.ufl.edu/research/sparse/umfpack/)
- LAPACK (liblapack.a).
- BLAS (libblas.a).

For parallel builds, the following libraries are additionally required:

- MPI (http://www.open-mpi.org) library for message passing (version 1.1 or higher). The version used to build Xyce must be the same that is used for building Trilinos.
- ParMETIS (http://glaros.dtc.umn.edu/gkhome/views/metis) library for graph partitioning (version 3.1 or higher). The MPI compiler used to compile ParMETIS must be the same that is used for Trilinos and Xyce.

Xyce Release 5.1.2 Documentation

The following **Xyce** documentation is available at the **Xyce** internal website in pdf form.

- **Xyce** Users' Guide, Version 5.1.2
- **Xyce** Reference Guide, Version 5.1.2
- **Xyce** Release Notes, Version 5.1.2
- **Xyce** Theory Document
- **Xyce** Test Plan

New Features and Enhancements

Xyce Release 5.1.2 is a minor release building on release 5.1.1.

Highlights for this release include:

- Update to the stand-alone neutron model, to better model the transition from saturation mode to forward-active mode.
- New reduced-order model (ROM) device that enables reintegration of linear ROMs into circuits.
- Significant improvements to the Vertical Bipolar Intercompany Model (VBIC).
- New preprocessing features for effectively handling supernoding and R=0 resistors.

For details of each of these new features, see the **Xyce** Users' Guide, and the **Xyce** Reference Guide. Also, a more complete listing of new features and improvements are given in the following sections.

Device Support

Device	Comments
Capacitor	Age-aware, semiconductor
Inductor	Nonlinear mutual inductor (see below)
Nonlinear Mutual Inductor	Sandia Core model (not fully PSpice compatible)
	Stability improvements
Resistor (Level 1)	Semiconductor

Table 1 contains a complete list of devices for **Xyce** Release 5.1.2.

Device	Comments
Resistor (Level 2)	Thermal Resistor
Diode (Level 1)	
Diode (Level 2)	Addition of PSPICE enhancements
Diode (Level 3)	Prompt and delayed photocurrent radiation model
Diode (Level 4)	Generic photocurrent source model
Independent Voltage Source (VSRC)	
Independent Current Source (ISRC)	
Voltage Controlled Voltage Source	
(VCVS)	
Voltage Controlled Current Source	
(VCCS)	
Current Controlled Voltage Source	
(CCVS)	
Nonlinear Dependent Source (B	
Source)	
Bipolar Junction Transistor (BJT)	
(Level 1)	
Bipolar Junction Transistor (BJT)	Prompt photocurrent radiation model
(Level 2)	- F.F
Bipolar Junction Transistor (BJT)	Neutron-effects model
(Level 3) Bipolor, Junction Transistor (B IT)	
	Prompt photocurrent radiation model (same as level 2)
(Level 4) Bipolar Junction Transistor (BJT)	
(l evel 5)	Deveney-Wrobel Neutron model, with photocurrent
Bipolar Junction Transistor (BJT)	Physics-based (QASPR) Neutron model, with
(Level 6)	photocurrent
Bipolar Junction Transistor (BJT)	Vertical Bipolar Intercompany (VBIC) model Updated!
(Level 10)	
Junction Field Effect Transistor	SPICE-compatible JFET model
(JFET) (Level 1)	
	Shockley JFET model
(JFET) (LEVEL2) MESEET	
IVIUSFET (Level 2)	Spice level 2 IVIUSEE I

Xyce[™] Release Notes Version 5.1.2

Device	Comments
MOSFET (Level 3)	
MOSFET (Level 6)	Spice level 6 MOSFET
MOSFET (Level 9)	BSIM3 model with initial condition support
MOSFET (Level 10)	BSIM SOI model with initial condition support
MOSFET (Level 11)	BSIM SOI model with Transient Photocurrent
MOSFET (Level 12)	BSIM SOI model with Transient Photocurrent
MOSFET (Level 14)	BSIM4 model
MOSFET (Level 18)	VDMOS general model
MOSFET (Level 19)	VDMOS total dose radiation model
MOSFET (Level 20)	VDMOS photocurrent model
MOSFET (Level 21)	Level 1 with photocurrent
MOSFET (Level 23)	Level 3 with photocurrent
Transmission Line	Lossless
Controlled Switch (S,W)	Voltage or current controlled
(VSWITCH/ISWITCH)	
Generic Switch (SW)	Controlled by an expression
PDE Devices (Level 1)	one-dimensional
PDE Devices (Level 2)	two-dimensional
Digital (Level 1)	Behavioral Digital
EXT (Level 1)	External device, used for code coupling and
	power-node parasitics simulations
OP AMP (Level 1)	Ideal operational amplifier
ACC	Accelerated mass device, used for simulation of
	electromechanical and magnetically-driven machines
NEUTRON (Level 1)	Stand-alone neutron device model Updated!
BOM (Level 1)	Reduced-order model device for linear (RLC) circuits
- ()	New!

New Devices

There is one new device in Xyce version 5.1.2, a reduced-order model (ROM) device for linear (RLC) circuits. The ROM device for linear (RLC) circuits is an implementation of the macromodel integration presented for the Passive Reduced-order Interconnect Macromodeling Algorithm (PRIMA). The macromodel is generated external to Xyce at this time and read in during the simulation. The new ROM device in **Xyce** should be considered a trial (beta) version. This release provides improvements to the Vertical Bipolar Intercompany Model (VBIC), which was released for the first time in Xyce release 5.1. Release 5.1.2 improves the support for the VBIC model by adding convergence-assisting junction voltage limiting to the implementation.

The VBIC is a bipolar junction transistor (BJT) model that was developed as a public domain replacement for the SPICE Gummel-Poon (SGP) model. VBIC is designed to be as similar as possible to the SGP model, yet overcomes its major deficiencies. VBIC improvements on the SGP model include:

- improved Early effect modeling
- quasi-saturation modeling
- parasitic substrate transistor modeling
- parasitic fixed (oxide) capacitance modeling
- avalanche multiplication model
- improved temperature modeling
- base current is decoupled from collector current
- electrothermal modeling
- improved smoothness in the model.

The new VBIC implementation in **Xyce** should be considered a trial (beta) version.

The stand-alone neutron model (Neutron level 1), while not a new model, has been substantially updated for Xyce release 5.1.2. The updates primarily affect the transition from saturation mode to forward active mode. The base-collector carrier model is now more accurate on the base side of the junction.

Interface Improvements

- Updates to the Habanero API, to support linking **Xyce** to ModelSim.
- When Xyce encounters a resistor with zero resistance in a netlist, Xyce can now remove that device from the circuit to avoid numerical complications that could abort the simulation. When a resistor with zero resistance is removed the remaining nodes are combined or super-noded into one node. Any other devices that are now connected to just one node are then removed automatically. This new capability is off by default, but can be activated by adding .options topology supernode=true to your netlist. See the Xyce Users' Guide, and the Xyce Reference Guide for more information.

Defects of Release 5.1 Fixed in this Release

Defect	Description
	Typically, Xyce's non-linear solver will find a solution for
bug 105, 171 : Improve handling of Time Step Too Small Errors	the next time step, but the time integrator will reject that step because an estimated error is too high. Now Xyce can be instructed to take a fixed number of steps where the non-linear solver passes, but the error control in the time integrator fails. An example use of this option is .options timeint mintimesteprecovery=10 where Xyce will attempt 10 such steps before giving up.
bug 177 : Modify resistor device to handle R=0 correctly	Xyce can now remove such resistors from a circuit and combine or supernode, the remaining nodes. Any other devices that are left connected to only one node after supernoding are then also removed. This new capability is off by default, but can be activated by adding .options topology supernode=true to your netlist.
bug 1602: VBIC model incorrectly	Xyce was improperly converting the TNOM value
handling TNOM parameter	specified by the user in Celsius to Kelvin, and the VBIC model was expecting the value in Celsius. This was fixed in release 5.1.2.
	These long-standing issues rarely caused failures in
bugs 1774, 1775, and 1776: incorrect handling of initial guess during nested DC sweeps	existing devices, but were the reason that certain steps in nested DC sweep over VBIC models were failing. All three have been fixed, and Xyce is now correctly resetting its initial guesses at apporpriate times during a nested DC sweep.
	Prior to release 5.1.2, the VBIC model attempted no
bug 1770 : Add convergence enhancements to VBIC	junction-voltage limiting. This meant that running any realistic VBIC model generally required homotopy approaches to get convergence. In this release, VBIC transistors use the same sort of voltage limiting as the standard SPICE BJT to aid convergence. It is now possible to use this model in more realistic circuits without resorting to GMIN stepping.
bug 1626: BSIM4 . IC and	Attempting to set initial conditions on a BSIM4
.NODESET not working	transistor with .IC or .NODESET was broken until Release 5.1.2. This has been fixed.
bug 1765 : Xyce crashes when using semiconductor capacitor	The voltage-dependent capacitor feature introduced in version 5.1.1 of Xyce introduced a bug that led to crashes of Xyce if the semiconductor capacitor was used. This has been fixed in Release 5.1.2. ble 2: Fixed Defects.

Known Defects and Workarounds

Defect	Description
	The diagnostic code used by the Xyce setup that
Connectivity checking is broken for devices with more than 10 leads [SON Bug 37]	checks circuit topology for basic errors such as a node having no DC path to ground or a node being connected to only one device has a bug in it that causes the code to emit a cryptic error message, "Internal: lead index not found" after which the code will exit. This error has so far only been seen when a user has attempted to connect a large number of inductors together using multiple mutual inductor lines. The maximum number of non-ground leads that can be used without confusing this piece of code is 10. If you see the error message "Internal: lead index not found." and you have such a large mutual inductor, this bug is the source of the problem. <i>Workaround:</i> Disable connectivity checking by adding the line .OPTIONS TOPOLOGY CHECK_CONNECTIVITY=0 to your netlist. This will disable the check for the basic errors such as floating nodes and improperly
	a highly-connected mutual inductor.
	. DC sweep calculation does not automatically output
. DC sweep output.	sweep results. <i>Workaround:</i> Use .PRINT statement to output sweep variable results.
	"Timestep too small" failures can result when IRB
BJT Current Crowding	nonzero with level 2 and level 4 BJT <i>Workaround:</i> If such failure observed, disable current crowding effect by setting IRB to zero in all BJT models. Please feed back such circuits to the Xyce development team so that this bug can be characterized and eliminated.
	Users with insufficient privileges (i.e.
Microsoft Windows installation restrictions	Limited Account) are not permitted to install Xyce into folders on the System Drive (usually C:). <i>Workaround:</i> First, manually create the desired folder on the System Drive. It is then possible to install Xyce into this folder by following the standard Setup procedure.

Defect	Description
	Netlists created with programs like Microsoft Word and
Incompatible proprietary file formats.	Microsoft Wordpad will not run in Xyce . Xyce does not recognize proprietary file formats. <i>Workaround:</i> It is best not to use such programs to create netlists, unless netlists are saved as *.txt files. If you must use a Microsoft editor, it is better to use Microsoft Notepad. In general, the best solution is to use a Unix-style editor, such as Vi, Gvim, or Emacs.
	There is one case for a customer's parallel run of a
One known instance of restart results not matching original run results.	large digital circuit of BSIM3's where the restart output does not match the original results for the same time range. <i>Workaround:</i> The only choice for now is to check the restart results against the baseline results for some block if the run results have a very tight tolerance for success. It is suggested to overlap the original run time with the restart time allowing comparison.
	The nonlinear dependent source ("B-source") allows
Infinite-slope transitions in B-sources causes "time step too small" errors [bug 772]	the user to specify expressions that could have infinite-slope transitions, such as
	Bcrtl OUTA 0 V={ IF((V(IN) > 3.5), 5, 0) }
	This can lead to "timestep too small" errors when Xyce reaches the transition point. Infinite-slope transitions in expressions dependent only on the time variable are a special case, because Xyce can detect that they are going to happen in the future and set a "breakpoint" to capture them. Infinite-slope transitions depending on other solution variables cannot be predicted in advance, and cause the time integrator to scale back the timestep repeatedly in an attempt to capture the feature until the timestep is too small to continue. <i>Workaround:</i> Do not use step-function or other infinite-slope transitions dependent on variables other than time. Smooth the transition so that it is more easily integrated through.

Defect	Description
	If Xyce is run in parallel on a netlist that is so small that
Epetraext uses bad address in parallel, causing Xyce core dump [bug 1072]	all devices are assigned to the same processor, Xyce can core dump when the processor with no work attempts to access invalid memory. <i>Workaround:</i> It is best not to try to run Xyce on very small problems in parallel, as this capability is intended for and optimzed for very large problems; small problems should be run in serial. If trying to run medium-sized problems in parallel and these core dumps are observed, try running with Zoltan partitioning and singleton removal turned off: .OPTIONS LINSOL TR_partition=0 + TR_singleton_filter=0
Table 3: Kno	own Defects and Workarounds.

Incompatibilities With Other Circuit Simulators

Issue	Comment
AC Analysis not supported	Xyce does not currently support AC analysis.
.OP is not complete	A . OP netlist will run in Xyce , but will not produce the
	extra output normally associated with the .OP statement.
	A requested pulsed source rise/fall time of zero really is
Pulsed source rise time of zero.	zero in Xyce. In other simulators, requesting a zero rise/fall time causes them to use the printing interval found on the .TRAN line.
	Not the same as PSpice. This is a Sandia developed
Mutual Inductor Model.	model but is compatible with Cadence PSpice parameter set.
	Output variables have to be specified as V(node) or
.PRINT line shorthand.	I(source). Specifying the node alone will not work. Also, specifying V(*) or I(*) (to get all voltages or currents) will not work.
BSIM3 level.	In Xyce the BSIM3 level=9. Other simulators have
	different levels for the BSIM3.
BSIM SOI v3.2 level.	In Xyce the BSIM SOI (v3.2) level=10. Other
	simulators have different levels for the BSIM SOI.
Node names vs. device names.	a device and a node with the same name, but Xyce cannot.
Interactive mode.	Xyce does not have an interactive mode.
	These are not currently supported within Xyce .
ChileSPICE-specific "operating point voltage sources."	However Xyce does support "IC= <value>" statements for capacitors, inductors, and the two BSIM devices which will automatically set these voltage drops at the beginning of a transient simulation.</value>
	I he manner of specifying a model parameter to be
Syntax for .STEP is different.	swept is slightly different. Also, it is not possible to do a .STEP sweep over a global parameter. See the Users' and Reference Guides for details.

Table 4: Incompatibilities with other circuit simulators.

Important Changes to **Xyce** Usage Since the Release 5.1.

Table 5 lists some usage changes for **Xyce**.

Issue	Comment
	In all versions of Xyce prior to Release 5.1.1, the
New parameter added to rad-aware models.	rad-effects models had some terms in the photocurrent that inappropriately depended on the global GMIN setting. For very small devices, these terms were found to dominate the real effects. This dependence has now been replaced with a dependence on a device-specific parameter TFGMIN that defaults to zero. We have found that for most existing large-device examples, this change has negligible effect, while for small devices it eliminates the non-physical GMIN-dependent behavior. Should the user wish to produce results that are exactly compatible with prior releases, simply add a setting of TFGMIN=1e-12 to each model card for a rad-aware device. The TFGMIN parameter should be considered deprecated, and may be removed along with the terms dependent on it in a future release.

Table 5: Changes to netlist specification since the last release.

Acknowledgements

The authors would like to acknowledge the entire Sandia National Laboratories electrical modeling community, for their support on this project. This includes, but is not limited to, Bill Ballard, Steve Wix, Carolyn Bogdan, Chuck Hembree, Biliana Paskeleva, Ken Kambour, Brian Owens, and Nathan Nowlin.

Trademarks

The information herein is subject to change without notice.

Copyright © 2002-2010 Sandia Corporation. All rights reserved.

Xyce[™] Electronic Simulator and *Xyce*[™] trademarks of Sandia Corporation.

Portions of the *Xyce*[™] code are: Copyright © 2002, The Regents of the University of California. Produced at the Lawrence Livermore National Laboratory. Written by Alan Hindmarsh, Allan Taylor, Radu Serban. UCRL-CODE-2002-59 All rights reserved.

ModelSim is a registered trademark of Mentor Graphics, Inc.

Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design Systems, Inc.

HSpice is a registered trademarks of Synopsys, Inc.

Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.

Xyce's expression library is based on that inside Spice 3F5 developed by the EECS Department at the University of California.

All other trademarks are property of their respective owners.

Contacts

Bug Reports Email World Wide Web http://charleston.sandia.gov/bugzilla xyce-support@sandia.gov http://www.cs.sandia.gov/xyce

Sandia National Laboratories