Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

PDF Version Also Available for Download.

Description

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production ... continued below

Physical Description

18 p.

Creation Information

Churchfield, M. J.; Li, Y. & Moriarty, P. J. July 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

Physical Description

18 p.

Source

  • Related Information: To be published in Philosophical Transactions of the Royal Society

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: NREL/JA-5000-55194
  • Grant Number: AC36-08GO28308
  • Office of Scientific & Technical Information Report Number: 1047336
  • Archival Resource Key: ark:/67531/metadc841125

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • April 4, 2017, 12:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Churchfield, M. J.; Li, Y. & Moriarty, P. J. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint, article, July 1, 2012; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc841125/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.