Light-Front Quantization and AdS/QCD: An Overview

PDF Version Also Available for Download.

Description

We give an overview of the light-front holographic approach to strongly coupled QCD, whereby a confining gauge theory, quantized on the light front, is mapped to a higher-dimensional anti de Sitter (AdS) space. The framework is guided by the AdS/CFT correspondence incorporating a gravitational background asymptotic to AdS space which encodes the salient properties of QCD, such as the ultraviolet conformal limit at the AdS boundary at z {yields} 0, as well as modifications of the geometry in the large z infrared region to describe confinement and linear Regge behavior. There are two equivalent procedures for deriving the AdS/QCD equations ... continued below

Creation Information

de Teramond, Guy F.; U., /Costa Rica; Brodsky, Stanley J. & /SLAC /Stanford U., Phys. Dept. August 19, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We give an overview of the light-front holographic approach to strongly coupled QCD, whereby a confining gauge theory, quantized on the light front, is mapped to a higher-dimensional anti de Sitter (AdS) space. The framework is guided by the AdS/CFT correspondence incorporating a gravitational background asymptotic to AdS space which encodes the salient properties of QCD, such as the ultraviolet conformal limit at the AdS boundary at z {yields} 0, as well as modifications of the geometry in the large z infrared region to describe confinement and linear Regge behavior. There are two equivalent procedures for deriving the AdS/QCD equations of motion: one can start from the Hamiltonian equation of motion in physical space time by studying the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a light-front Hamiltonian equation which describes the bound state dynamics of light hadrons in terms of an invariant impact variable {zeta} which measures the separation of the partons within the hadron at equal light-front time. Alternatively, one can start from the gravity side by studying the propagation of hadronic modes in a fixed effective gravitational background. Both approaches are equivalent in the semiclassical approximation. This allows us to identify the holographic variable z in AdS space with the impact variable {zeta}. Light-front holography thus allows a precise mapping of transition amplitudes from AdS to physical space-time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.

Source

  • Journal Name: J.Phys.Conf.Ser.287:012007,2011; Conference: InvitedThe XIV Mexican School on Particles and Fields, of Morelia, Michoacan, Mexico, 11/8/2010-11/12/2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14393
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 1022479
  • Archival Resource Key: ark:/67531/metadc841083

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 19, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 29, 2016, 6:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

de Teramond, Guy F.; U., /Costa Rica; Brodsky, Stanley J. & /SLAC /Stanford U., Phys. Dept. Light-Front Quantization and AdS/QCD: An Overview, article, August 19, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc841083/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.