A Model for Tow Impregnation and Consolidation for Partially Impregnated Thermoset Prepregs

PDF Version Also Available for Download.

Description

The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presented ... continued below

Creation Information

Jr, John J. Gangloff; Sinha, Shatil & Advani, Suresh G. May 23, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presented that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.

Source

  • SAMPE 2011, Long Beach Convention Center, Long Beach CA, 23-26 May 2011

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DE-EE0001367
  • Grant Number: EE0001367
  • Office of Scientific & Technical Information Report Number: 1018722
  • Archival Resource Key: ark:/67531/metadc840952

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 23, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Dec. 7, 2016, 5:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Jr, John J. Gangloff; Sinha, Shatil & Advani, Suresh G. A Model for Tow Impregnation and Consolidation for Partially Impregnated Thermoset Prepregs, article, May 23, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc840952/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.