Secondary-electron emission from hydrogen-terminated diamond

PDF Version Also Available for Download.

Description

Diamond amplifiers demonstrably are an electron source with the potential to support high-brightness, high-average-current emission into a vacuum. We recently developed a reliable hydrogenation procedure for the diamond amplifier. The systematic study of hydrogenation resulted in the reproducible fabrication of high gain diamond amplifier. Furthermore, we measured the emission probability of diamond amplifier as a function of the external field and modelled the process with resulting changes in the vacuum level due to the Schottky effect. We demonstrated that the decrease in the secondary electrons average emission gain was a function of the pulse width and related this to the ... continued below

Creation Information

E., Wang; Ben-Zvi, I.; Rao, T.; Wu, Q.; Dimitrov, D.A. & T. Xin, T. May 20, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Diamond amplifiers demonstrably are an electron source with the potential to support high-brightness, high-average-current emission into a vacuum. We recently developed a reliable hydrogenation procedure for the diamond amplifier. The systematic study of hydrogenation resulted in the reproducible fabrication of high gain diamond amplifier. Furthermore, we measured the emission probability of diamond amplifier as a function of the external field and modelled the process with resulting changes in the vacuum level due to the Schottky effect. We demonstrated that the decrease in the secondary electrons average emission gain was a function of the pulse width and related this to the trapping of electrons by the effective NEA surface. The findings from the model agree well with our experimental measurements. As an application of the model, the energy spread of secondary electrons inside the diamond was estimated from the measured emission.

Source

  • 2012 International Particle Accelerator Conference (IPAC 2012); New Orleans, LA; 20120520 through 20120525

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--98173-2012-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1048207
  • Archival Resource Key: ark:/67531/metadc840766

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 20, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • July 21, 2016, 7:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

E., Wang; Ben-Zvi, I.; Rao, T.; Wu, Q.; Dimitrov, D.A. & T. Xin, T. Secondary-electron emission from hydrogen-terminated diamond, article, May 20, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc840766/: accessed May 28, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.