Hybrid Enrichment Assay Methods for a UF6 Cylinder Verification Station: FY10 Progress Report

PDF Version Also Available for Download.

Description

Pacific Northwest National Laboratory (PNNL) is developing the concept of an automated UF6 cylinder verification station that would be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until the arrival of International Atomic Energy Agency (IAEA) inspectors. At the center of this unattended system is a hybrid enrichment assay technique that combines the traditional enrichment-meter method (based on the 186 keV peak from 235U) with non-traditional neutron-induced high-energy gamma-ray signatures (spawned primarily by 234U alpha emissions and ... continued below

Physical Description

PDFN

Creation Information

Smith, Leon E.; Jordan, David V.; Orton, Christopher R.; Misner, Alex C. & Mace, Emily K. August 1, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Pacific Northwest National Laboratory (PNNL) is developing the concept of an automated UF6 cylinder verification station that would be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until the arrival of International Atomic Energy Agency (IAEA) inspectors. At the center of this unattended system is a hybrid enrichment assay technique that combines the traditional enrichment-meter method (based on the 186 keV peak from 235U) with non-traditional neutron-induced high-energy gamma-ray signatures (spawned primarily by 234U alpha emissions and 19F(alpha, neutron) reactions). Previous work by PNNL provided proof-of-principle for the non-traditional signatures to support accurate, full-volume interrogation of the cylinder enrichment, thereby reducing the systematic uncertainties in enrichment assay due to UF6 heterogeneity and providing greater sensitivity to material substitution scenarios. The work described here builds on that preliminary evaluation of the non-traditional signatures, but focuses on a prototype field system utilizing NaI(Tl) and LaBr3(Ce) spectrometers, and enrichment analysis algorithms that integrate the traditional and non-traditional signatures. Results for the assay of Type-30B cylinders ranging from 0.2 to 4.95 wt% 235U, at an AREVA fuel fabrication plant in Richland, WA, are described for the following enrichment analysis methods: 1) traditional enrichment meter signature (186 keV peak) as calculated using a square-wave convolute (SWC) algorithm; 2) non-traditional high-energy gamma-ray signature that provides neutron detection without neutron detectors and 3) hybrid algorithm that merges the traditional and non-traditional signatures. Uncertainties for each method, relative to the declared enrichment for each cylinder, are calculated and compared to the uncertainties from an attended HPGe verification station at AREVA, and the IAEA’s uncertainty target values for feed, tail and product cylinders. A summary of the major findings from the field measurements and subsequent analysis follows: • Traditional enrichment-meter assay using specially collimated NaI spectrometers and a Square-Wave-Convolute algorithm can achieve uncertainties comparable to HPGe and LaBr for product, natural and depleted cylinders. • Non-traditional signatures measured using NaI spectrometers enable interrogation of the entire cylinder volume and accurate measurement of absolute 235U mass in product, natural and depleted cylinders. • A hybrid enrichment assay method can achieve lower uncertainties than either the traditional or non-traditional methods acting independently because there is a low degree of correlation in the systematic errors of the two individual methods (wall thickness variation and 234U/235U variation, respectively). This work has indicated that the hybrid NDA method has the potential to serve as the foundation for an unattended cylinder verification station. When compared to today’s handheld cylinder-verification approach, such a station would have the following advantages: 1) improved enrichment assay accuracy for product, tail and feed cylinders; 2) full-volume assay of absolute 235U mass; 3) assay of minor isotopes (234U and 232U) important to verification of feedstock origin; single instrumentation design for both Type 30B and Type 48 cylinders; and 4) substantial reduction in the inspector manpower associated with cylinder verification.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-19854
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/1012306 | External Link
  • Office of Scientific & Technical Information Report Number: 1012306
  • Archival Resource Key: ark:/67531/metadc840735

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 29, 2016, 1:43 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Smith, Leon E.; Jordan, David V.; Orton, Christopher R.; Misner, Alex C. & Mace, Emily K. Hybrid Enrichment Assay Methods for a UF6 Cylinder Verification Station: FY10 Progress Report, report, August 1, 2010; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc840735/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.