Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process

PDF Version Also Available for Download.

Description

This project was aimed at obtaining process engineering and scale-up data at a laboratory scale to investigate the technical and economic feasibility of a patented post-combustion carbon dioxide (CO{sub 2}) capture process?the Integrated Vacuum Carbonate Absorption Process (IVCAP). Unique features of the IVCAP include its ability to be fully-integrated with the power plant?s steam cycle and potential for combined sulfur dioxide (SO{sub 2}) removal and CO{sub 2} capture. Theoretical and experimental studies of this project were aimed at answering three major technical questions: 1) What additives can effectively reduce the water vapor saturation pressure and energy requirement for water vaporization ... continued below

Creation Information

Lu, Yongqi; Rostam-Abadi, Massoud; Ye, Xinhuai; Zhang, Shihan; Ruhter, David; Khodayari, Arezoo et al. April 30, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This project was aimed at obtaining process engineering and scale-up data at a laboratory scale to investigate the technical and economic feasibility of a patented post-combustion carbon dioxide (CO{sub 2}) capture process?the Integrated Vacuum Carbonate Absorption Process (IVCAP). Unique features of the IVCAP include its ability to be fully-integrated with the power plant?s steam cycle and potential for combined sulfur dioxide (SO{sub 2}) removal and CO{sub 2} capture. Theoretical and experimental studies of this project were aimed at answering three major technical questions: 1) What additives can effectively reduce the water vapor saturation pressure and energy requirement for water vaporization in the vacuum stripper of the IVCAP? 2) What catalysts can promote CO{sub 2} absorption into the potassium carbonate (PC) solution to achieve an overall absorption rate comparable to monoethanolamine (MEA) and are the catalysts stable at the IVCAP conditions and in the flue gas environment? 3) Are any process modifications needed to combine SO{sub 2} and CO{sub 2} removal in the IVCAP? Lab-scale experiments and thermodynamic and process simulation studies performed to obtain detailed information pertinent to the above three technical questions produced the following results: 1) Two additives were identified that lower the saturation pressure of water vapor over the PC solution by about 20%. 2) The carbonic anhydrase (CA) enzyme was identified as the most effective catalyst for promoting CO{sub 2} absorption. The absorption rate into the CO{sub 2}-lean PC solution promoted with 300 mg/L CA was several times slower than the corresponding 5 M MEA solution, but absorption into the CO{sub 2}-rich PC solution was comparable to the CO{sub 2}-rich MEA solution. The tested CA enzymes demonstrated excellent resistance to major flue gas impurities. A technical-grade CA enzyme was stable at 40{degrees}C (104{degrees}F) over a six-month test period, while its half-life was about two months at 50{degrees}C (122{degrees}F). Enzyme immobilization improved the CA enzyme?s thermal stability by up to three times compared to its free counterpart. 3) Two process modifications were proposed to improve the technical performance of the IVCAP for combined SO{sub 2} removal and CO{sub 2} capture. The results from a techno-economic study of a 528 MWe (gross) pulverized coal-fired, subcritical steam power plant revealed that the cost of CO{sub 2} avoidance with the IVCAP was about 30% lower than conventional MEA-based processes. The levelized cost of electricity (LCOE) of the IVCAP ranged from $40 to 46/MWh, an increase of 60 to 70% compared to a reference power plant without CO{sub 2} capture. The overall conclusion of this study is that the IVCAP is a technically feasible and economically more attractive process than available MEA-based processes. A scale-up study using the slipstream of an actual coal-derived flue gas and development of a more stable CA enzyme are recommended for future studies.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: NT0005498
  • DOI: 10.2172/1083750 | External Link
  • Office of Scientific & Technical Information Report Number: 1083750
  • Archival Resource Key: ark:/67531/metadc840678

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 30, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • March 23, 2018, 4:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lu, Yongqi; Rostam-Abadi, Massoud; Ye, Xinhuai; Zhang, Shihan; Ruhter, David; Khodayari, Arezoo et al. Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process, report, April 30, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc840678/: accessed June 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.