Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

PDF Version Also Available for Download.

Description

Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It ... continued below

Physical Description

108

Creation Information

Medford, Andrew February 16, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

Physical Description

108

Source

  • Journal Name: Submitted to Journal of Catalysis; Journal Volume: 290

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-14660
  • Grant Number: AC02-76SF00515
  • DOI: 10.1016/j.jcat.2012.03.007 | External Link
  • Office of Scientific & Technical Information Report Number: 1035091
  • Archival Resource Key: ark:/67531/metadc840665

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 16, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 23, 2016, 6:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Medford, Andrew. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation, article, February 16, 2012; United States. (digital.library.unt.edu/ark:/67531/metadc840665/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.