Methods for Analysis of Outdoor Performance Data

NREL

Dirk Jordan

2011 Photovoltaic Module Reliability Workshop

February 16, 2011

Golden, Colorado

NREL/PR-5200-51120
Outline

• Motivation: Impact of uncertainty in degradation rates (R_d)

• Methodologies
 1. IV data taken in discrete intervals
 2. Continuous data, PVUSA & Performance Ratio
 3. Additional methodologies for continuous data - Classical Decomposition, ARIMA

• Historical R_d and what we can learn from it.
 1. Methodologies
 2. Number of measurements
 3. Climate
Motivation

For solar industry to keep growing we need to accurately understand & predict how different technologies behave/change with weather, climate and time.

Change of power output with time is degradation rate \((R_d)\)….uncertainty is very important too.

2 examples from NREL:
Different observation lengths, seasonality etc. \(\rightarrow\) Leads to different uncertainties

\[
R_d \text{ (Module 1)} = (0.8 \pm 0.2) \%/\text{year} \\
R_d \text{ (Module 2)} = (0.8 \pm 1.0) \%/\text{year}
\]

Same \(R_d\) but very different uncertainty
Manufacturer Warranty often twofold: 90% after 10 years, 80% after 25 years

Probability to default warranty:

- 1.0 %/year uncertainty = 46%
- 0.2 %/year uncertainty = 4%

Probability to invoke warranty:

- 1.0 %/year uncertainty = 57%
- 0.2 %/year uncertainty = 24%

Higher R_d uncertainty significantly increases warranty risk
Degradation Rate (R_d) - Discrete Points

1. Translation to reference conditions (IEC60891)
2. Time series to determine degradation rate

$R_d = (0.33 \pm 0.07) \%$/year

Quarterly taken I-V curves for degradation

$$FF = \frac{P_{max}}{I_{sc} \cdot V_{oc}} = \frac{I_{max} \cdot V_{max}}{I_{sc} \cdot V_{oc}}$$
Degradation Rate - Discrete Points

Monocrystalline-Si

Degradation is due to decline in I_{sc}, (V_{oc} & FF are stable) \rightarrow clues to degradation mechanism

Problem: 1. Labor-intensive, has to be clear sky
2. Large arrays \rightarrow portable I-V tracer may not be available
3. Typically historical data not available

I-V curves provide clues to underlying failure mechanism
The plant was originally constructed by the Atlantic Richfield oil company (ARCO) in 1983. Provided electricity, data & experience in the 1980s and 1990s. Plant was dismantled in the late 1990s.

PVUSA Rating Methodology

Improved PVUSA models include Sandia & BEW model**

1. Step: Translation to reference conditions (use a multiple regression approach)

\[P = H \cdot (a_1 + a_2 \cdot H + a_3 \cdot T_{ambient} + a_4 \cdot ws) \]

\(H = \) Plane-of-array irradiance
\(T_{ambient} = \) ambient temperature
\(ws = \) wind speed
\(a_1, a_2, a_3, a_4 = \) regression coefficients

Reference conditions:
PVUSA Test Conditions (PTC): \(E=1000\) W/m², \(T_{ambient}=20^\circ\)C, wind speed=1 m/s

Need basic weather station to collect \(T_{ambient} \) and wind speed on top of irradiance
Seasonality leads to required observation times of 3-5 years* \(\rightarrow \) long time in today’s market

Long time required for accurate \(R_d \)

Classical Decomposition

Signal = Trend + Seasonality + Irregular

Original Data

![Graph showing original data with DC Power (W) on the y-axis and Time (Months) on the x-axis. The data points form a downward trend over time.]
Classical Decomposition

\[\text{Signal} = \text{Trend} + \text{Seasonality} + \text{Irregular} \]

Original Data

![Original Data Graph](image)

Trend

12-month centered-Moving Average

![Trend Graph](image)
Classical Decomposition

Signal = Trend + Seasonality + Irregular

Original Data

Seasonality
Average of each month for all years of observation

Trend
12-month centered-Moving Average
Classical Decomposition

Signal = Trend + Seasonality + Irregular

Original Data

Seasonality
Average of each month for all years of observation

Trend
12-month centered-Moving Average

Irregular

Determine R_d from Trend graph for higher accuracy

ARIMA

AutoRegressive Integrated Moving Average (ARIMA)

Model trend & seasonality component w/ Linear Combination of weighted differences & averages

\[P_t - P_{t-12} - \phi \cdot P_{t-1} + \phi \cdot P_{t-13} = \delta + \varepsilon_t - \theta \cdot \varepsilon_{t-12} \]

\(P = \text{Power} \)
\(c, \delta, \phi, \theta = \text{constant} \)
\(\varepsilon = \text{noise} \)

1. Built several Models \(\rightarrow \) minimize noise component
2. Chose parsimonious model w/ aid of several selection criteria

2 free software packages, US Census Bureau, Bank of Spain: plug & play, sensitive to outliers!

Many statistical software packages include time series analysis (JMP, Minitab, R etc)
Developed script to make model selection less sensitive to outliers.

Use ARIMA to model data, then decompose

Outliers

Compare sensitivity of 3 methods to outliers

Procedure:
1. Dataset from NREL
2. Introduce outliers sequentially
3. Calculate R_d & study effect on all 3 methodologies

ARIMA most robust against outliers
Data Shifts

Compare sensitivity of 3 methods to data shifts
Example: inverter change

Procedure:
1. Dataset from NREL
2. Introduce a data shift deliberately
3. Multiply shifted section with a scaling factor
4. Calculate R_d & study effect on all 3 methodologies

Correct data shifts by minimizing residual sum of squares
Data Shift Results

Results from induced shift

Real Shift – Blind test

Data shift correction procedure is successful for all 3 approaches.

Data shift cause: Erratic ambient Temp sensor.
Misleading degradation rate if \(R_d \) calculated after shift.

Residual minimization technique works on real shifts
PVUSA – Weekly Intervals

Multi-crystalline module

Monthly Intervals

Weekly Intervals
PVUSA – Weekly Intervals

Multi-crystalline module

Monthly Intervals

Weekly Intervals

Weekly intervals → converges in less time
Performance Ratio

PVUSA

Monthly PR

Daily PR

Multi-crystalline Si system

\[
Y_f = \frac{E}{P_0} \\
E = \text{Net Energy output} \\
P_0 = \text{Nameplate DC rating}
\]

\[
Y_r = \frac{H}{G} \\
H = \text{In-plane Irradiance} \\
G = \text{Reference Irradiation}
\]

\[
PR = \frac{Y_f^*}{Y_r}
\]

Can apply same modeling approaches to minimize seasonality

Data Filtering

Example on how variable R_d may be depending on irradiance filtering (may not be representative)

Filtering interval too tight or broad \Rightarrow R_d may be substantially different and uncertainty goes up

A. Kimber paper showed uncertainty may be reduced by using only sunny days

Data filtering has important impact on determined R_d

Discrete vs. Continuous Data

IEC 60891

- IEC60891-Method1
- IEC60891-Method2
- IEC60891-Method3

R_d(IEC-M1) = (0.33 ± 0.07) %/year

R_d(IEC-M2) = (0.34 ± 0.06) %/year

R_d(IEC-M3) = (0.30 ± 0.07) %/year

PVUSA

- St.Least Squares
- Class.Decomp.
- ARIMA

R_d(PVUSA SLS) = (0.47 ± 0.12) %/year

R_d(PVUSA CD) = (0.34 ± 0.04) %/year

R_d(PVUSA AR) = (0.33 ± 0.08) %/year

Quarterly taken IV + IEC translation less uncertainty than PVUSA

PVUSA + Modeling uncertainty is comparable to IEC method
Methodologies - Summary

<table>
<thead>
<tr>
<th></th>
<th>Time series</th>
<th>Data Type /# Data Pts.</th>
<th>Data Aqc.</th>
<th>Reference condition</th>
<th>Uncertainty</th>
<th>Outliers/Dt.shifts sensitivity</th>
<th>Implementation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVUSA</td>
<td>SLS</td>
<td>continuous</td>
<td>DC, H, T, ws</td>
<td>PTC</td>
<td>ok?</td>
<td>high</td>
<td>easy</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>“”</td>
<td>“”</td>
<td>“”</td>
<td>good</td>
<td>medium</td>
<td>high</td>
<td>easy</td>
<td></td>
</tr>
<tr>
<td>ARIMA</td>
<td>“”</td>
<td>“”</td>
<td>“”</td>
<td>best</td>
<td>low</td>
<td>difficult</td>
<td>difficult</td>
<td>Software & training required</td>
</tr>
<tr>
<td>PR</td>
<td>SLS</td>
<td>continuous</td>
<td>AC, H</td>
<td>----</td>
<td>ok?</td>
<td>high</td>
<td>easy</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>“”</td>
<td>“”</td>
<td>“”</td>
<td>good</td>
<td>medium</td>
<td>high</td>
<td>easy</td>
<td></td>
</tr>
<tr>
<td>ARIMA</td>
<td>“”</td>
<td>“”</td>
<td>“”</td>
<td>best</td>
<td>low</td>
<td>difficult</td>
<td>difficult</td>
<td>Software & training required</td>
</tr>
<tr>
<td>IV-2</td>
<td>SLS</td>
<td>discrete, 2</td>
<td>I,V, H, T</td>
<td>STC, IEC60891</td>
<td>ok?</td>
<td>high</td>
<td>easy</td>
<td>difficult for larger arrays</td>
</tr>
<tr>
<td>IV-3+</td>
<td>SLS</td>
<td>Discrete, >2</td>
<td>“”</td>
<td>best</td>
<td>low</td>
<td>easy</td>
<td>“”</td>
<td></td>
</tr>
</tbody>
</table>

SLS: Standard Least Squares, **CD**: Classical Decomposition
H: in-plane irradiance, **T**: temperature, **ws**: wind speed

Contin. Data: Class. Decomp. may be good compromise

Discrete: Better take more than 2 measurements
Performance Energy Rating
Testbed = PERT

More than 40 Modules,
> 10 manufacturers,
Monitoring time: 2 yrs-16 yrs

Appears that CdTe, CIGS & multi-Si improved

Pre: Installed before year 2000
Post: Installed after year 2000

Photo credit: Warren Gretz, NREL PIX 03877.

Degradation Rates – Literature Survey

Number of R_d from literature: 1364 ca. 100 publications (see end)

Partitioned by date of installation: Pre- & Post-2000
Red diamonds: mean & 95% confidence interval

Crystalline Si technologies appear to be the same

Thin-film technologies saw significant drop in R_d in last 10 years
Shell Solar E80-C modules deployed at NREL. Photo credit: Harin Ullal, NREL PIX 14725

Results from this array appears to support findings from literature
Development of Methodologies

Percentage of Indoor IV has increased manifold → better tools

Percentage PR has increased → more installations, easy to collect AC data, don’t necessarily need an entire weather station

Percentage PVUSA decreased significantly → pronounced seasonality & sensitivity to outliers

PVUSA methodology use has significantly declined
R_d literature – Number of measurements

40% take only 1 or 2 measurements

1 Measurement: baseline no longer available or were never taken → have to compare to nameplate rating

Procedure:
1. Take quarterly I-V data set
2. Randomly pick 2 data points & calculate R_d → repeat many times
3. Randomly pick 3 data points & calculate R_d → repeat many times
4. R_d will depend on # of data points & time span → can create 2D map

More than 40% of all R_d literature take only 1 or 2 measurements
Effect of number of data points and years on R_d

"True $R_d"=-0.33 \%/year$ (dark blue)

The curve is very steep for small data points and short time span

Even between 2-3 years can come close to “true R_d" simply by taken a few more data points

Would like to see more data points taken
Degradation Rates around the World

Size of circle: number of modules/systems tested

No reported degradation rates in many climate zones
Degradation Rates around the USA

Similar picture as from around the world → some climate zones have not been investigated

No reported degradation rates in some climate zones
Rainflow Calculations

Steppe Climate has high damage due to thermal cycling

*Quantifying the Thermal Fatigue of CPV Modules_Bosco__NREL_International Conference on Concentrating Photovoltaics_2010
Analysis of all R_d by climate

Steppe Climate shows significantly higher R_d before 2000.

No significant difference.

Steppe Climate shows significantly higher R_d before 2000.
Analysis of R_d by climate – c-Si

Pre 2000

Post 2000

Analysis of Variance

Similar but not as distinct trend for c-Si

Use of automated equipment, low stress ribbon effect visible…?

Steppe Climate shows significantly higher R_d before 2000
PV Data Acquisition

Use data from government-funded and other projects

Performance data accessible on web page

Eliminate blank spots on the map
Conclusion

- Uncertainty can result in significant warranty risk
- Time series Modeling with continuous data (PVUSA, PR ..) can significantly reduce uncertainty
- Cont. Data: Class. Decomp. May be a good compromise between quality of results & ease of implementation.
- Discrete data: better practice to take more than 2 measurements.
- Analysis from literature and our own systems indicate that degradation rates have improved for installations after 2000.
- Have no data from many of the world’s climate zones
Conclusion

- Uncertainty can result in significant warranty risk
- Time series Modeling with continuous data (PVUSA, PR ..) can significantly reduce uncertainty
- Cont. Data: Class. Decomp. May be a good compromise between quality of results & ease of implementation.
- Discrete data: better practice to take more than 2 measurements.
- Analysis from literature and our own systems indicate that degradation rates have improved for installations after 2000.
- Have no data from many of the world’s climate zones

Need more data!
Acknowledgments

Thank you for your attention!

dirk.jordan@nrel.gov

Thank you to:
Sarah Kurtz
Ryan Smith
John Wohlgemuth
Nick Bosco
Peter Hacke
Bill Marion
Bill Sekulic
Kent Terwilliger
Rest of the NREL reliability team
Eric Maass
<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 year field exposure_Reis_Humbold State CA_PVSC_2002.pdf</td>
</tr>
<tr>
<td>10 year PV review_Rosenthal_NM_PVSC_1993.pdf</td>
</tr>
<tr>
<td>Field test of 2400 PV modules_Hishikawa_Japan_PVSC_2002.pdf</td>
</tr>
<tr>
<td>Rd analysis c-Si_Osterwald_NREL_PVSC_2002.pdf</td>
</tr>
<tr>
<td>c-Si after 20 years_Quintana_Sandia_PVSC_2000.pdf</td>
</tr>
<tr>
<td>Rd c-Si_Machida_Japan_SEM&SC_1997.pdf</td>
</tr>
<tr>
<td>PV durability_King_Sandia_PiPV_2000.pdf</td>
</tr>
<tr>
<td>27+ years PV_Tang_ASU_2006.pdf</td>
</tr>
<tr>
<td>PV performance arctic college_Poisant_Canada_2006.pdf</td>
</tr>
<tr>
<td>Performance analysis a-Si_Gregg_Unted Solar_PVSC_2005.pdf</td>
</tr>
<tr>
<td>Long-term performance of 8 PV arrays_Granata_Sandia_2006.pdf</td>
</tr>
<tr>
<td>Eff degradation c-Si_DeLuia_Italy_2003.pdf</td>
</tr>
<tr>
<td>double junction a-Si BIPV_Ruther_Brazil_2003.pdf</td>
</tr>
<tr>
<td>Performance losses_Mani_IPVR_2009.pdf</td>
</tr>
<tr>
<td>a-Si in different climates_Gottschalg_England_2001.pdf</td>
</tr>
<tr>
<td>Performance of a-Si in difT climates_Ruther_Brazil_2006.pdf</td>
</tr>
<tr>
<td>PV round robin_IEA_Task2_Austria_2006.pdf</td>
</tr>
<tr>
<td>TISO-20 Jahre ARCO-PP.pdf</td>
</tr>
<tr>
<td>Anual report_IEEE-TISO_Switzerland.pdf</td>
</tr>
<tr>
<td>Field test in Mexico_Foster_New Mexico State_2005.pdf</td>
</tr>
<tr>
<td>c-Si of 22 years_Dunlop_EU_2006.pdf</td>
</tr>
<tr>
<td>Common degradation mechanism_Quintana_Sandia_IEEE_2003.pdf</td>
</tr>
<tr>
<td>Field test of c-Si in 1990_Sakamoto_Japan_PVenergyconv_2003.pdf</td>
</tr>
<tr>
<td>PV degradation_King_Sandia_2003.pdf</td>
</tr>
<tr>
<td>Outdoor PV in Sahara 3months_Saak_Algeria_2008.pdf</td>
</tr>
<tr>
<td>PV Greece_Kalykakis_Greece_2009.pdf</td>
</tr>
<tr>
<td>PV Korea_So_Korea_2006.pdf</td>
</tr>
<tr>
<td>Outdoor PV on Cyprus_Makrides_Cyprus_2009.pdf</td>
</tr>
<tr>
<td>DegRate for c-Si_Osterwald_NREL_2002.pdf</td>
</tr>
<tr>
<td>Outdoor testing at ASU_Mani_ASU_2006.pdf</td>
</tr>
<tr>
<td>PV Power production after 10 years_Cereghetti_Switzerland_2003.pdf</td>
</tr>
<tr>
<td>Degradation of a-Si_van Dyk_South Africa_SEM&SC_2010.pdf</td>
</tr>
<tr>
<td>Predicted long-term PV performance_Muirhead_Australia_PVScienceConf_1996.pdf</td>
</tr>
<tr>
<td>Long-term field age_Skozek_Italy_2009.pdf</td>
</tr>
<tr>
<td>Degradationenergy payback_Davis_FSEC_2009.pdf</td>
</tr>
<tr>
<td>PV Performance analysis_Mau_Austria_2005.pdf</td>
</tr>
<tr>
<td>PV Performance after field exposure_King_Sandia_.pdf</td>
</tr>
<tr>
<td>Performance of 100 sites_Wolgemuth_BP_PVSC_2005.pdf</td>
</tr>
<tr>
<td>PV performance in different climates_Carr_Australia_SolarEnergy_2003.pdf</td>
</tr>
<tr>
<td>Outdoor monitoring_Dhere_FSEC_2005.doc</td>
</tr>
<tr>
<td>Energy rating for CPV_Verlinden_Australia_2009.ppt</td>
</tr>
<tr>
<td>Degradation rates from PERT_Osterwald_NREL_2005.pdf</td>
</tr>
<tr>
<td>TEP study_Moore_Sandia_PiPV_2008.pdf</td>
</tr>
<tr>
<td>Improved Power rating_Kimber_PVSC_2009.pdf</td>
</tr>
<tr>
<td>Degradation x-Si_Skozek_Italy_PPV_2009.pdf</td>
</tr>
<tr>
<td>Field PV reliability_Vazquez_Spain_2008.pdf</td>
</tr>
<tr>
<td>PV degradation_Moore_Tucson Electric_2007.pdf</td>
</tr>
<tr>
<td>Reliability 1kW a-Si_NREL_Adelstein_2005p</td>
</tr>
<tr>
<td>PV performance parameters_Marion_NREL_PVSC_2005.pdf</td>
</tr>
<tr>
<td>6 years 100 sites summary_Ransome_BP_PVSC_2005.pdf</td>
</tr>
<tr>
<td>Performance of a-Si in dif climates_Brazil_2006.pdf</td>
</tr>
<tr>
<td>A-Si in Kenya_Jacobsen_Berkley__ASES_2000</td>
</tr>
<tr>
<td>Outdoor testing at ASU_Mani_ASU_2006.pdf</td>
</tr>
<tr>
<td>Field PV Reliability_Vazquez_Spain_2008.pdf</td>
</tr>
<tr>
<td>PV durability_King_Sandia_PiPV_2000.pdf</td>
</tr>
<tr>
<td>25 yearold PV modules_Hedstroem_Sweden_2006</td>
</tr>
<tr>
<td>Sunpower reliability_Bunea_Sunpower_PVSC_2010.pdf</td>
</tr>
<tr>
<td>C-Si degradation_Morita_Japan_PVenergyconv_2003</td>
</tr>
<tr>
<td>Rd c-Si_Machida_Japan_SEM&SC_1997.pdf</td>
</tr>
<tr>
<td>c-Si after 20 years_Quintana_Sandia_PVSC_2000.pdf</td>
</tr>
<tr>
<td>Rd analysis c-Si_Osterwald_NREL_PVSC_2002.pdf</td>
</tr>
<tr>
<td>10 year PV review_Rosenthal_NM_PVSC_1993.pdf</td>
</tr>
<tr>
<td>11 year field exposure_Reis_Humbold State CA_PVSC_2002.pdf</td>
</tr>
<tr>
<td>Long-term PV FL_Hickman_FSEC_NRELworkshop_2010.ppt</td>
</tr>
<tr>
<td>Degradationenergy payback_Davis_FSEC_2009.pdf</td>
</tr>
<tr>
<td>PV degradation in moderate climate_Tetsuyuki_Japan_PiPV_2010</td>
</tr>
<tr>
<td>Outdoor PV Degradation comparison_Jordan_NREL_PVSC_2010.pdf</td>
</tr>
<tr>
<td>PV module characterization_Eikelboom_Netherlands_2000.pdf</td>
</tr>
<tr>
<td>Mean time before failure_Realini_Switzerland_2003.pdf</td>
</tr>
<tr>
<td>PV EVA browning Negev Desert_Berman_Israel_SEM&SC_1995.pdf</td>
</tr>
<tr>
<td>PV modules Gobi desert_Adiyabat_Mongolia_PVSC_2010.pdf</td>
</tr>
<tr>
<td>Degradation rates from PERT_Osterwald_NREL_2005.pdf</td>
</tr>
<tr>
<td>PV performance parameters_Marion_NREL_PVSC_2005.pdf</td>
</tr>
<tr>
<td>Outdoor Rd wo Irr_Pulver_UofA_PVSC_2010</td>
</tr>
<tr>
<td>20+ years PV_Bing_Massachusetts_PVMR2010_2010.pdf</td>
</tr>
<tr>
<td>Rd c-Si in Spain_Sanchez_Spain_PiPV_2011.pdf</td>
</tr>
<tr>
<td>Degradation Analysis PV Plants_Kiefer_Fraunhofer_PVSEC_2010.pdf</td>
</tr>
<tr>
<td>Long-term PV testing_Hawkins_Australia_PVSEC_1996.pdf</td>
</tr>
<tr>
<td>PV power at Telstra_Muirhead_Australia_PVSEC_1996.pdf</td>
</tr>
<tr>
<td>Field performance a-Si_Osborn_CA_2008.pdf</td>
</tr>
<tr>
<td>Power drop rate_Kang_Korea_PVSEC_2010.pdf</td>
</tr>
<tr>
<td>PV reliability in 4 climates_Bogdanski_Germany_PVSEC_2010.pdf</td>
</tr>
<tr>
<td>Long-term CIS_Musikowski_Germany_PVSEC_2010.pdf</td>
</tr>
<tr>
<td>735 c-Si modules after 1 year_Coello_Spain_PVSC_2010.pdf</td>
</tr>
<tr>
<td>PV performance arctic college_Poisant_Canada_2006.pdf</td>
</tr>
</tbody>
</table>

Notation: Title_Author_Institute/Country_Journal/Conference_Year