NREL Paves the Way to Commercialization of Silicon Ink (Fact Sheet)

PDF Version Also Available for Download.

Description

In 2008, Innovalight, a start-up company in Sunnyvale, California, invented a liquid form of silicon, called Silicon Ink. It contains silicon nanoparticles that are suspended evenly within the solution. Those nanoparticles contain dopant atoms that can be driven into silicon solar cells, which changes the conductivity of the silicon and creates the internal electric fields that are needed to turn photons into electrons -- and thus into electricity. The ink is applied with a standard screen printer, already commonly used in the solar industry. The distinguishing feature of Silicon Ink is that it can be distributed in exact concentrations in ... continued below

Physical Description

2 p.

Creation Information

Creator: Unknown. April 1, 2012.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In 2008, Innovalight, a start-up company in Sunnyvale, California, invented a liquid form of silicon, called Silicon Ink. It contains silicon nanoparticles that are suspended evenly within the solution. Those nanoparticles contain dopant atoms that can be driven into silicon solar cells, which changes the conductivity of the silicon and creates the internal electric fields that are needed to turn photons into electrons -- and thus into electricity. The ink is applied with a standard screen printer, already commonly used in the solar industry. The distinguishing feature of Silicon Ink is that it can be distributed in exact concentrations in precisely the correct locations on the surface of the solar cell. This allows most of the surface to be lightly doped, enhancing its response to blue light, while heavily doping the area around the electrical contacts, raising the conductivity in that area to allow the contact to work more efficiently. The accuracy and uniformity of the ink distribution allows the production of solar cells that achieve higher power production at a minimal additional cost.

Physical Description

2 p.

Source

  • Related Information: Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NREL/FS-6A42-53611
  • Grant Number: AC36-08GO28308
  • DOI: 10.2172/1039794 | External Link
  • Office of Scientific & Technical Information Report Number: 1039794
  • Archival Resource Key: ark:/67531/metadc840213

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • April 4, 2017, 6:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

NREL Paves the Way to Commercialization of Silicon Ink (Fact Sheet), report, April 1, 2012; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc840213/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.