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The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and

gyrokinetic systems

J. Squire,1 H. Qin,1, 2 and W. M. Tang1

1)Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543,

USA
2)Dept. of Modern Physics, University of Science and Technology of China, Hefei,

Anhui 230026, China

We present a new variational principle for the gyrokinetic system, similar to the Maxwell-

Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and

based on constrained variations of the phase space fluid velocity and particle distribution

function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian

structure of the system. This is carried out with the Dirac theory of constraints, which is

used to construct meaningful brackets from those obtained directly from Euler-Poincaré

theory. Possible applications of these formulations include continuum geometric integra-

tion techniques, large-eddy simulation models and Casimir type stability methods.

1



I. INTRODUCTION

An inherent difficulty in studying the dynamics of magnetized plasmas is the enormous separa-

tion of important time-scales present in many physical systems of interest. Nonlinear gyrokinetic

theory has become an indispensable tool in these inquiries, as it removes the fastest time-scales

from the system, while keeping much of important physics relevant to turbulent transport2–4. A

particularly nice way to construct a gyrokinetic theory, pioneered in Refs. 5–7, is to use Lie-

transforms to asymptotically change into co-ordinates in which gyro-orbit dynamics are decoupled

from the rest of the system. A great advantage of this technique, aside from the entirely systematic

and formal procedure, is that the single particle equations are guaranteed to be Hamiltonian, with

associated conservation properties. Going further, it is advantageous from both a philosophical

and practical standpoint to derive the entire system, including both electromagnetic fields and par-

ticles, from a single field-theoretic variational principle. These ideas were explored by Sugama8

and Brizard9, who derived gyrokinetic action principles starting from Maxwell-Vlasov theories,

as well as in previous work in Refs. 10 and 11. Some advantages of this type of formulation are a

much simplified derivation of the gyrokinetic Maxwell’s equations and exact energy-momentum

conservation laws through Noether’s theorem. Field theories often admit many different varia-

tional principles (e.g., for Maxwell-Vlasov see Refs. 1, 12–15), each with its own advantages and

disadvantages. A good example is the difference between Lagrangian and Eulerian actions; the

former being constructed in variables that follow particle motion and the latter in variables at fixed

points in phase space. It is interesting to explore new types of variational principles, both for the

general understanding of the structure of the theory in question and for practical applications that

may require an action of a particular form.

In this work, we present a new gyrokinetic action principle in Eulerian co-ordinates, using

Euler-Poincaré reduction theory16,17 on the Lagrangian action in Ref. 8 and 18. In addition, using

the reduced Legendre transform and the Dirac theory of constraints, we derive field theoretic Pois-

son brackets, similar to the Vlasov-Maxwell19 and Vlasov-Poisson20 brackets. To our knowledge,

this is the first explicit demonstration of the Hamiltonian structure of the gyrokinetic system. Our

derivation proceeds from the action principle in Ref. 8 and its geometric formulation18. We do not

purport to derive a gyrokinetic co-ordinate system, but rather formulate the theory based on a given

single particle Lagrangian. In this way, it is trivial to extend concepts to deal with more complex

gyrokinetic theories, for instance theories with self consistent, time-evolving background fields18.
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We then use the ideas in Ref. 1 to reduce the Lagrangian action to one in Eulerian co-ordinates,

based on symmetry under the particle-relabeling map from Lagrangian to Eulerian variables. The

variations for this new action principle in the Eulerian frame are constrained, and lead to the Euler-

Poincaré equations, which are shown to give the standard gyrokinetic Vlasov equation. In some

ways the action principle is similar to that of Brizard9, in that constrained variations must be used,

with both theories having a similar form for the variation of the distribution function, F. Neverthe-

less, there are significant differences, particularly that our principle is formulated in terms of the

Eulerian phase space fluid velocity and is in standard 6-D phase space, rather than 8-D extended

phase space. The Eulerian gyrokinetic action of Ref. 21 is quite different to that presented here,

with unconstrained variations in 12-dimensional extended phase space and the use of Hamilton-

Jacobi functions in the action functional. Equipped with the Eulerian action, a reduced Legendre

transform is performed1, leading straightforwardly to a Poisson bracket. However, this bracket

must be reduced to a constraint submanifold before a meaningful form can be obtained, a process

that is performed with the Dirac theory of constraints22–24. Finally, we show how to include the

electromagnetic fields in the bracket via second application of Dirac theory.

One of the our primary motivations in this work is the possibility of utilizing recent ideas from

fluid mechanics to develop advanced numerical tools for gyrokinetics. Of particular importance

is the idea of geometric integrators, which are designed to numerically conserve various impor-

tant geometrical properties of the physical system. For instance, having a numerical algorithm

that has Hamiltonian structure can be very important, with profound consequences for the long-

time conservation properties25. The theory of finite dimensional geometric integrators is relatively

well developed25, including an application to single particle guiding center dynamics26–28. How-

ever, many aspects of the construction of field-theoretic geometrical integrators are not as well

understood, both for practical implementation and the deeper mathematical theory. One approach,

which has yielded fruitful results, is to discretize a variational principle and perform variations

on the discrete action to derive an integration scheme. Some examples of field theoretic inte-

grators constructed in this way are those for elastomechanics29,30 electromagnetism31, fluids and

magnetohydrodynamics32,33 and a particle-in-cell (PIC) scheme for the Vlasov-Maxwell system34.

The results presented in this work would be used to construct a continuum Eulerian gyrokinetic

integrator, since our variational principle is in Eulerian form. Analogously, a variational princi-

ple in Lagrangian form is used to construct a Lagrangian (particle-in-cell) integrator34. We note

that in discretizing a variational principle it is obviously not desirable to be in an extended phase

3



space, unless these extra dimensions can somehow be removed after a discretization. As well as

integrators, other potential applications of the formulation presented here are the use in stability

calculations with Casimir invariants35 and the construction of regularized models for large-eddy

simulation36–39.

The article is organized as follows. In Section II we clarify the differences between Eulerian

and Lagrangian action principles for kinetic theories and explain the Euler-Poincaré formulation

of the Maxwell-Vlasov system1. This is done with as little reference to the formal mathematics

as possible, with the hope that readers unfamiliar with the concepts of Lie groups and algebras

should understand the general structure of the theory. Section III explains the construction of the

gyrokinetic variational principle, starting from a given single particle gyrokinetic Lagrangian. We

give a brief derivation of the Euler-Poincaré equations and show how these lead to a standard

form of the gyrokinetic equations. The Hamiltonian structure is dealt with in Section IV. After

formally constructing a Poisson bracket from the Lagrangian, we describe how the Dirac theory

of constraints is used to reduce the bracket to a meaningful form. Finally, numerical applications

are briefly discussed in Section V and conclusions given in Section VI.

Throughout this article we use cgs units. In integrals and derivatives, z denotes all phase space

variables, while x denotes just position space variables. Species labels are left out for clarity and

implied on the variables F (or f ), m, e, U and M, respectively the distribution function, particle

mass, particle charge, Eulerian fluid velocity and momenta conjugate to U. Summation notation

is utilized where applicable, with capital indices spanning 1→ 6 and lower case indices 1→ 3.

II. EULERIAN AND LAGRANGIAN KINETIC VARIATIONAL PRINCIPLES

When formulating a variational principle for a continuum fluid-type theory, it is very important

to specify whether Lagrangian or Eulerian variables are being used. These notions can be con-

fusing in kinetic plasma theories, since one must consider the motion of the phase-space fluid. In

addition, unlike the Euler fluid equations, the equations of motion for kinetic plasma theories have

the same form in Eulerian and Lagrangian co-ordinates. Considering the Vlasov-Maxwell system

for simplicity, a Lagrangian description gives the equation of motion at the position of a particle

carried along by the flow (simply a physical particle). One formulates a variational principle in

terms of the fields x (x0, v0, t), v (x0, v0, t), which are the current position and velocity of an ele-

ment of phase space that was initially at (x0, v0). The distribution function is of course just carried
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FIG. 1. Illustration of the particle relabelling map, ψ (x0, v0) and its inverse for the one-dimensional Vlasov-
Poisson system.

along by the Lagrangian co-ordinates, i.e., f (x (x0, v0, t) , v (x0, v0, t)) = f0 (x0, v0). This type of

formulation is the most natural for a kinetic theory, since it is the logical continuum generalization

of the action principle for a collection of particles interacting with an electromagnetic field.

An Eulerian variational principle is formulated in terms of the velocity of the phase space fluid

at a fixed point, U, without the notion of where phase space density has been in the past. Thus,

at a point (x, v), the x component of the fluid velocity is simply v (the co-ordinate), while the

v component is E + v × B/c. The distribution function f , is advected by U, meaning it is the

solution to the differential equation ∂t f = −LU f = −U · ∇ f , where Uand ∇ are in six-dimensional

phase space. An illustration of these concepts is given in Figure 1 for the 1-D Poisson-Vlasov

system (in 2-D phase space). Finally, we note that in discussing the distinction between Eulerian

and Lagrangian actions, we refer only to the plasma component of the variational principle; the

electromagnetic fields are always in Eulerian co-ordinates.

A. Euler-Poincaré reduction

This section gives a very informal introduction to Euler-Poincaré theory through a brief re-

view of the Vlasov-Maxwell formulation presented in Ref. 1. We purposefully do not use precise

mathematics and notation (e.g., the � and ad? operations) so as to introduce the general ideas to

readers not familiar with Lie groups and algebras. A more formal exposition of the mathematical

foundations can be found in, for example Refs. 1, 16, and 17.

The purpose of the Euler-Poincaré framework is to provide a straightforward method to pass

from a Lagrangian to an Eulerian action principle. Mathematically, the important idea is that the

field theory dynamics of the plasma take place on the tangent bundle of the infinite dimensional
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group of symplectic diffeomorphisms, G = Diff
(
TR3

)
and the Lagrangian is symmetric under

right action of this same group. For practical purposes, ψ ∈ G is simply the particle relabeling

map, ψ (x0, v0) = (x (x0, v0) , v (x0, v0)), which maps plasma particles with initial position (x0, v0)

to their current position (x, v). The distribution function, f , lives on a separate vector space V?,

and ψ acts on f on the right such that f = f0 ψ
−1, where f0 is the initial distribution function. This

equation is simply f (x (x0, v0, t) , v (x0, v0, t)) = f0 (x0, v0), as discussed above. ψ acts trivially

on the electromagnetic potentials, φ and A, which are located on a separate manifold Q. The

phase space fluid velocity in the Lagrangian frame is simply ψ̇ (x0, v0), since this is the rate of

change of (x, v) at the position (x, v). In contrast, the Eulerian phase space fluid velocity is ψ̇ψ−1,

since this operation first takes (x, v) back to (x0, v0) with ψ−1, then gives the velocity at (x, v)

with ψ̇ (x0, v0), see Figure 1. Mathematically, the Eulerian fluid velocity is an element of the Lie

algebra, g, associated with G and the process of Euler-Poincaré reduction takes a Lagrangian on

TG × V? × T Q to a reduced Lagrangian on g × V? × T Q

The starting point for the reduction is a Lagrangian Lagrangian for the Vlasov-Maxwell system.

For instance,

L =
∑

s

ˆ
dx0dv0 f0

[(e
c

A (x) + mv
)
· ẋ −

1
2

mv2 − eφ (x)
]

+
1

8π

ˆ
dx

[∣∣∣∣∣−∇φ − ∂A
∂t

∣∣∣∣∣2 − |∇ × A|2
]
, (1)

which is very similar to the action principle of Low14. The Vlasov equation follows from the

standard Euler-Lagrange equations for ψ = (x, v),

d
dt
δL
δψ̇
−
δL
δψ

= 0, (2)

along with f (x, v, t) = f0 (x0, v0). Maxwell’s equations come from the Euler-Lagrange equations

for A and φ. This Lagrangian is right invariant with respect to the action of G, i.e.,

L f0

(
ψ, ψ̇, φ, φ̇, A, Ȧ

)
= L f0ψ−1

(
ψψ−1, ψ̇ψ−1, φ, φ̇, A, Ȧ

)
≡ l

(
U, φ, φ̇, A, Ȧ, F

)
, (3)

where U = ψ̇ψ−1 ∈ g is the Eulerian fluid velocity, a vector field. In recognizing that the distribu-

tion function is actually a phase space density, we denote F = f dx ∧ dv. Treating F as 6-form
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rather than a scalar changes the form of certain geometrical operations in the Euler-Poincaré equa-

tions [Eqs. (6) and (7)] and is very important for the gyrokinetic Euler-Poincaré treatment (see

Section III). Practically speaking, to construct the reduced Lagrangian, l, one simply replaces

(ẋ, v̇) with U, and considers x and v to be co-ordinates rather than fields. Thus,

l =
∑

s

ˆ
F

[(e
c

A + mv
)
· Ux −

1
2

mv2 − eφ (x)
]

+
1

8π

ˆ
dx

[∣∣∣∣∣−∇φ − ∂A
∂t

∣∣∣∣∣2 − |∇ × A|2
]
, (4)

where Ux denotes the x components of U. The equations of motion are derived from the reduced

Lagrangian l, by considering how the unconstrained variations of ψ (used to derive the standard

Euler-Lagrange equations) translate into constrained variations of U and F. This leads to varia-

tions of the form

δU =
∂η

∂t
−

[
U, η

]
, δF = −LηF, (5)

where η ∈ g (i.e., in the same space as U) and vanishes at the endpoints; and [ , ] is the standard

Lie bracket, U.∇η − η.∇U. Evolution of F is given by the advection equation

∂F
∂t

+LUF = 0, (6)

which arises from the group action on F. Variation of
´

dt l with δU and δF leads to the Euler-

Poincaré equations,
∂

∂t
δl
δU

= −LU
δl
δU

+ F∇
δl
δF

, (7)

where δl
δU ∈ g

? is a 1-form density. We give derivations of Eqs. (5) and (7) in Section III A below.

Since F is a 6-form, LUF = ∇ · (FU) and Eq. (6) is the conservative form of the Vlasov equation

(see Section III A for more information). The equations for A and φ are just the standard Euler-

Lagrange equations. Calculation of Eq. (7) with the Vlasov-Maxwell reduced Lagrangian [Eq. (4)]

leads to

Ux = v, Uv = E +
1
c

v × B, (8)

as expected. The fact that there is no need to solve differential equations for components of U is

related to the strong degeneracy in the system (see Sections III and IV below).

To obtain the Hamiltonian or Lie-Poisson form of the equations, one performs a reduced Leg-
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endre transform as,

h = 〈M,U〉 +
ˆ

dx A ·
δl
δȦ
− l, (9)

where M = δl/δU and the inner product 〈 , 〉 is integration over phase space [see Eq. (31)]. (A

thorough treatment of the degeneracies of the system is given in Ref. 1.) It is then straightforward

to show that

{Γ,Θ}LP = −
∑

s

ˆ
dzM ·

[
δΓ

δM
,
δΘ

δM

]
+

∑
s

ˆ
dzF

(
δΘ

δM
· ∇

δΓ

δF
−
δΓ

δM
· ∇

δΘ

δF

)
− 4πc

ˆ
dx

(
δΓ

δA
·
δΘ

δE
−
δΘ

δA
·
δΓ

δE

)
, (10)

is an infinite dimensional Poisson bracket for the system; that is, Ṁ = {M, h}, Ḟ = {F, h}, Ė =

{E, h} and Ȧ = {A, h} are formally the same as the Euler-Poincaré equations (using the generalized

Legendre transform of Ref. 1), and the Jacobi identity is satisfied. Nevertheless, this manifestation

of the bracket has major problems. In particular, the meaning of functional derivatives with respect

to the M variables can be unclear, since these are constrained due to the linearity of the Lagrangian

in U. To overcome these problems and formulate a meaningful bracket on the space of plasma

densities and electromagnetic fields, we use the Dirac theory of constraints22,40. A very brief

overview of this is given in the appendix for the convenience of the reader.

The relevant constraints are

Φi =Mi − F
(e
c

Ai + mvi

)
= 0, i = 1→ 3,

Φ j = M j = 0, j = 4→ 6. (11)

We form the constraint matrix CIJ (z, z′) =
{
Φi (z) ,Φ j (z)

}
and construct the inverse according to
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Eq. (A2). This comes out to be,

C−1
IJ

(
z, z′

)
=

1
mF (z)

δ
(
z − z′

)
δss′

×



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 e
mc Bz −

e
mc By

0 −1 0 − e
mc Bz 0 e

mc Bx

0 0 −1 e
mc By −

e
mc Bx 0


, (12)

which is simply the single particle Poisson matrix (multiplied by δ (z − z′) /F). We will see a sim-

ilar connection to the single particle Poisson bracket in the reduction of the gyrokinetic bracket.

We then use Eq. (A3) and restrict the functionals Γ and Θ to not depend M, i.e., δΓ/δM = 0.

Heuristically, this can be understood as the requirement that all of the F dependence in the func-

tionals is explicit and thus contained in δ/δF. Including any δ/δM term (e.g., by using the chain

rule for M[F]) would count this dependence twice. This argument breaks down for Mv, as these

variables are constrained to zero and the functional derivatives are undefined. However, all terms

involving δ/δMv cancel when the full calculation of Eq. (A3) is carried out, so there is no issue.

The final result, including a change of variables from A to B, is the Poisson bracket for the

Mawell-Vlasov system,

{Γ,Θ} =
∑

s

1
m

ˆ
dzF

(
∂ΓF

∂x
·
∂ΘF

∂v
−
∂ΘF

∂x
·
∂ΓF

∂v

)
+

∑
s

e
cm2

ˆ
dzFB ·

∂ΓF

∂v
×
∂ΘF

∂v

+ 4π
∑

s

e
m

ˆ
dz

[
ΘF

∂

∂v
·

(
F
δΓ

δE

)
− ΓF

∂

∂v
·

(
F
δΘ

δE

)]
+ 4πc

ˆ
dx

(
∂Γ

∂E
· ∇ ×

δΘ

δB
−
∂Θ

∂E
· ∇ ×

δΓ

δB

)
. (13)

In the case where δΓ/δE has no v dependence this bracket is identical to that calculated in Ref. 19

via alternative methods. The derivation above explicitly shows the link between this and the work

of Ref. 1. Somewhat more detail is given for the derivation of the gyrokinetic bracket (see Section

IV), which proceeds in a very similar manner.
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Euler-Poincaré reduction is perhaps more natural when applied to fluid systems. In this case,

there are fewer degeneracies and the Lagrangian/Eulerian distinction is more obviously relevant

(e.g. one does not measure phase space fluid velocities, in contrast to the Eulerian fluid velocity of

a fluid system). Applying the procedure to ideal magnetohydrodynamics leads to the 1962 action

principle of Newcomb41. Recently, similar ideas have been applied to general reduced fluid and

hybrid models in plasma physics42,43.

III. GYROKINETIC VARIATIONAL PRINCIPLE

Our starting point is the geometric approach to gyrokinetic theory advocated in Ref. 18. The

general idea is to construct a field theory, including electromagnetic potentials, from the particle

Poincaré-Cartan 1-form, γ. This approach is conceptually very simple; once the interaction of

quasi-particles with the electromagnetic field is specified, particle and field equations follow in

straightforward and transparent way via the Euler-Lagrange equations. With any desired approxi-

mation (e.g., expansion in gyroradius), energetically self-consistent equations are easily obtained

without necessitating the use of the pullback operator. The use of these ideas in gyrokinetic simu-

lation has been advocated in, for instance Refs. 44 and 47. In this article we consider the particle

1-form γ as given, its derivation can be found in Refs. 2, 8, and 18 among other works.

The Poincaré-Cartan form γ in 7-D phase space, P, (including time) defines particle motion

through Hamilton’s equation,

iτdγ = 0, (14)

which is derived from stationarity of the actionAsp =
´
γ. Here τ is a vector field whose integrals

define particle trajectories (including the time component) and i denotes the inner product. Note

that γ is essentially just Lspdt, where Lsp is the standard Lagrangian; that is, for γ = γαdzα − Hdt,

the Lagrangian is simply Lsp = γαżα − H. To construct a field theory, γ is used to define the

Louiville 6-form,

ΩT = −
1
3!

dγ ∧ dγ ∧ dγ. (15)

The Liouville theorem of phase space volume conservation is then simply, LτΩT = 0. Introducing

the distribution function of particles in phase space f , the field theory action for the interaction of
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a field of particles with the electromagnetic field is

A = 4π
ˆ

f ΩT ∧ γ +

ˆ
dxLEM, (16)

where LEM is the electromagnetic Lagrangian density. In this action γ is in the Lagrangian frame.

For example, in cartesian position and velocity space, f Ω is in (x0, v0) co-ordinates, while γ is in

(x (x0, v0) , v (x0, v0)) co-ordinates.

Unless general relativity is important, one can choose τ to be of the form τ = ∂/∂t+τZ, where τZ

has no time component, and consider 6-D phase space. Defining Ω to be the dX ∧ dP component

of ΩT (i.e., no ∧dt), the dX ∧ dP component of LτΩT is the standard Liouville theorem of phase

space volume conservation,
∂

∂t
Ω +LτZ Ω = 0. (17)

We can simplify the variational principle by considering γ to be Lspdt and carrying out the wedge

product. This type of procedure provides a generalization of the original variational principle of

Low14 [e.g., Eq. (1)] to arbitrary particle-field interaction.

We now specialize to a general gyrokinetic form for the particle Lagrangian,

γ =
e
c

A† (X) · dX +
mc
e
µdθ − Hdt, (18)

with

A† (X) = A +
mc
e

ub −
mc2

e2 µ

(
R +

1
2

b b · ∇ × b
)
. (19)

Here, X is the gyrocenter position, u the gyrocenter parallel velocity co-ordinate, µ the con-

served magnetic moment and θ the gyrophase. The vector field A (X) is the vector potential of

the background magnetic field and b (X) is the background magnetic field unit vector. These fields

will not be considered variables in the field theory action. The vector R (X) = ∇e1 · e2, where

e1 (X) ⊥ e2 (X) ⊥ b (X), is necessary for gyrogauge invariance of the Lagrangian, i.e., invariance

with respect to a change in the definition of the θ co-ordinate. Eq. (18) is accurate to first order in

εB, the ratio of the gyroradius to the scale length of the magentic field2. The single particle Hamil-

tonian, H = 1
2mu2 + µB (X) + Hgy, contains both the guiding center contribution, 1

2mu2 + µB (X),

and the gyrocenter contribution from the fluctuating fields, Hgy. For most of this article Hgy will

be taken to be a general function of (X, u, µ). Different forms exist in the literature, depending on
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desired accuracy and fluctuation model used. For instance, in Ref. 8, Hgy is given to second order

in εδ (the ratio of the magnitudes of the fluctuating fields, φ1 and A1, to the background field) as

Hgy = e 〈ψ (X + ρ)〉 +
e2

2mc2

〈
|A (X + ρ)|2

〉
(20)

−
e
2

〈{
S̃ 1, ψ̃

}〉
,

where ψ = φ1−
1
c v·A1, ρ is difference between the particle and gyrocenter positions, and 〈〉 denotes

an average over θ. The tilde in
〈{

S̃ 1, ψ̃
}〉

denotes the gyrophase dependent part of a function

and S 1 is a gauge function associated with the first order gyrocenter perturbation, 〈ψ (X + ρ)〉.

Eq. (18) is the standard gyrokinetic single particle Lagrangian in Hamiltonian form2, meaning all

the fluctuating field perturbations are in the Hamiltonian part (dt component) of γ. This is the form

most suitable for computer simulation2,44 and also has the advantage of having the same Poisson

structure as the guiding center equations.

To form a Lagrangian field theory we first calculate the phase space component (dX∧du∧dµ∧

dθ component) of the volume element Ω = −1
3dγ∧ dγ∧ dγ. This is simply B†

‖
/m = b · B†/m, with

B† = ∇ × A†, i.e., the standard guiding center Jacobian. In co-ordinates, the variational principle

Eq. (16) is then simply,

A =

ˆ
dt LGK

=
∑

s

ˆ
dt
ˆ

dX0 ∧ du0 ∧ dµ0 ∧ dθ0
1
m

B†
‖

f0

×

[e
c

A† · Ẋ +
mc
e
µθ̇ − H

]
+

ˆ
dt LEM, (21)

which is essentially the original gyrokinetic variational principle of Sugama8. LEM should be

chosen for the Ampére-Poisson system (to remove fast time-scale electromagnetic waves) as

LEM =
1

8π

ˆ
dx

(
|∇φ1|

2
− |∇ × (A + A1)|2

)
, (22)

where x = X + ρ.
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A. Eulerian Gyrokinetic variational principle

We proceed in the reduction of the gyrokinetic variational principle, Eq. (21), in a very similar

way to the Vlasov-Maxwell case (Section II). The advected parameter is the 6-form f Ω = dX ∧

du∧dµ∧dθ B†
‖

f /m ≡ F̂dX∧du∧dµ∧dθ. F̂ is often considered a function for simplicity of notation,

but it is understood that operations should be carried out as for a 6-form, e.g., LUF̂ = ∇ ·
(
F̂U

)
rather than LUF̂ = U · ∇F̂. The connection to the standard distribution function is provided by the

Liouville theorem; the advection equation

∂t ( f Ω) +LU ( f Ω) = 0, (23)

coupled with Liouville’s theorem, Eq. (17), implies

∂t f +LU f = 0, (24)

which is the standard Vlasov equation.

Operating on Eq. (21) on the right with the particle-relabeling map, ψ−1, leads to the reduced

Lagrangian

lGK

(
U, φ1, A1, F̂

)
= LGK

(
ψψ−1, ψ̇ψ−1, φ1, A1, f0Ωψ

−1
)

=
∑

s

ˆ
dXdudµdθ F̂

(e
c

A† · UX +
mc
e
µUθ − H

)
+

1
8π

ˆ
dx

(
|∇φ1|

2
− |∇ × (A + A1)|2

)
, (25)

where UX and Uθ are the X and θ components of the Eulerian fluid velocity U.

The unconstrained variations in the Lagrangian frame, δψ lead to constrained variations in the

Eulerian frame by defining17,41

η (z, t) = δψ (z0, t) , (26)

or equivalently η = δψψ−1. Recaling U (z, t) = ψ̇ (z0, t), one then calculates dη/dt and δU, giving

δψ̇ (z0, t) =
∂η (z, t)
∂t

+ ż j∂η (z, t)
∂z j , (27)

δψ̇ (z0, t) = δU (z, t) + δz j∂U (z, t)
∂z j , (28)
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which is solved for

δU =
∂η

∂t
+ U · ∇zη − η · ∇zU, (29)

giving the variational form stated in Eq. (5). Similarly, using f Ω (z) = f0Ω0 (z0) and δ ( f0Ω0) = 0,

one obtains

δ ( f Ω) = −Lη ( f Ω) . (30)

Using Eqs. (29) and (30), we give a basic derivation of the Euler-Poincaré equations for a general

Lagrangian with an advected volume form, F̂.

δ

ˆ
dt l =

ˆ
dt

〈 δl
δU

, δU
〉
g

+

〈
δl
δF̂

, δF̂
〉

V


=

ˆ
dt

〈 δl
δU

,

(
∂η

∂t
+

[
U, η

])〉
g

+

〈
δl
δF̂

,LηF̂
〉

V


=

ˆ
dt

∑
s

ˆ
dXdudµdθ

{
−
∂

∂t
δl
δU

ηi −

[
δl
δU j∂iU j

+∂ j

(
δl
δU i U

j

)]
ηi + ηiF̂∂i

δl
δF̂

}
=

ˆ
dt

〈
−
∂

∂t
δl
δU
− LU

δl
δU

+ F̂∇
δl
δF̂

, η

〉
g

, (31)

giving Eq. (7) since η is arbitrary. The two brackets used are defined as 〈µ, ξ〉g =
∑

s

´
dXdudµdθ µiξ

i

between a 1-form density µdz and a vector field ξ; and
〈

f , F̂
〉

v
=

∑
s

´
f F̂ between a function f

and a volume form F̂. Integration by parts is used, with boundary terms dropped, in arriving at

the third line. Note that F̂ sometimes includes the volume element (lines 1 and 2) and sometimes

does not (lines 3 and 4). A more precise derivation can be found in Refs. 1 and 16.

It is now simple to write down the equations of motion for U, using

δlGK

δUX
=

e
c

F̂ A†,
δlGK

δUθ

=
mc
e
µF̂

δlGK

δUu
=
δlGK

δUµ

= 0. (32)

The derivation is carried out without assumptions about the form of U (e.g., lack of θ dependence)

and the F̂ advection equation [Eq. (23)] is used to cancel time derivatives. We illustrate the general

14



form of the calculation with the δl/δU i
X component of Eq. (7),

∂

∂t

(e
c

F̂A†i
)

= −
e
c

A†i
∂

∂ZJ

(
F̂U J

)
−

e
c

F̂U J ∂A†i
∂ZJ

−
e
c

F̂A†j
∂U j

∂Xi −
mc
e
µF̂

∂Uθ

∂Xi + F̂
∂

∂Xi

(e
c

A† · UX

+
mc
e
µUθ −

1
2

mu2 − µB − Hgy

)
. (33)

The first two terms in Eq. (33) add to zero due to the advection equation, while the terms involving

Uθ cancel. Rearranging and expanding the divergence term leads to

e
c

UX × B† − mUub − µ∇B − ∇Hgy = 0, (34)

which gives

Uu = −
B†

mB†
‖

·
(
µ∇B + ∇Hgy

)
(35)

and

UX =
B†

B†
‖

UX · b +
c

eB†
‖

b ×
(
µ∇B + ∇Hgy

)
(36)

when B†· and b× are applied respectively. Similarly, the other δlGK/δU J equations give

Uµ = 0, (37)

b · UX = u +
1
m
∂Hgy

∂u
, (38)

Uθ =
eB
mc

+
e2

mc2 UX ·
∂A†

∂µ
+

e
mc

∂Hgy

∂µ
, (39)

and Eq. (38) is combined wiht Eq. (36) to give UX in terms of co-ordinates. The form of Eqs. (35)-

(39) is identical to the standard Lagrangian equations for
(
Ẋ, u̇, µ̇, θ̇

)
because of the linearity of the

Lagrangian in U. Note that various terms have different origins in the Lagrangian and Eulerian

derivations; for instance, ∂X/∂t = 0 in the Eulerian derivation (it is just a co-ordinate), while this

is not true in the Lagrangian case.

Equipped with the solution for U in terms of phase space co-ordinates, the gyrokinetic Vlasov

15



equation is Eq. (23), or in co-ordinates,

∂tF̂ + ∇ ·
(
UF̂

)
= 0. (40)

Maxwell’s equations follow from the standard Euler-Lagrange equations for A and φ,

δlGK

δA1
=
δlGK

δφ1
= 0, (41)

since φ̇1 and Ȧ1 do not appear in lGK . These lead to the gyrokinetic Maxwell’s equations for φ1

and A1,

1
4π
∇2φ1 (x) = −

δH

δφ1 (x)
(42)

1
4π
∇ × ∇ × A1 (x) = −

δH

δA1 (x)
−

1
4π
∇ × B, (43)

whereH ≡
∑

s

´
dXdudµdθF̂H.

IV. THE HAMILTONIAN FORMULATION AND GYROKINETIC POISSON

BRACKETS

We now perform the generalized Legendre transform of lGK and use the corresponding Hamil-

tonian formulation to construct the Poisson brackets for the gyrokinetic system. One complication

is the degeneracy in the Lagrangian that arises from the lack of quadratic dependence on U, Ȧ

and φ̇. This issue is discussed in detail Refs. 1 and 45 and those same arguments apply to the

gyrokinetic case.

For the moment, we formulate a bracket on the space of plasma densities (see Section IV B)

and carry out a Legendre transform in U by defining

M =
δlGK

δU
. (44)

This type of formulation treats the gyrokinetic Poisson-Ampére equations [Eqs. (42) and (43)] as

constraints on the motion of F̂, rather than dynamical equations in their own right. The gyrokinetic
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Hamiltonian is defined, as for a standard Legendre transform, as

hGK = 〈M,U〉g − lGK

(
U, F̂

)
=

∑
s

ˆ
dXdudµdθ

[
M · U − F̂

(e
c

A† · UX

+
mc
e

µUθ − H)
]
−

1
8π

ˆ
dx

(
|∇φ1|

2
− |∇ × (A + A1)|2

)
. (45)

It is easy to show that with this Hamiltonian

{Γ,Θ}LP = −

〈
M,

[
δΓ

δM
,
δΘ

δM

]〉
g

+

〈
F̂,

δΘ

δM
· ∇

δΓ

δF̂
−
δΓ

δM
· ∇

δΘ

δF̂

〉
V

(46)

is a valid Poisson bracket (see Sec. II A and Ref. 1). To evaluate functional derivatives of hGK

[Eq. (45)], one should obtain the Green’s function solutions for φ1 and A1, for instance

φ1 (x) =
∑

s

ˆ
dX′du′dµ′dθ′K

(
x|z′

)
F̂

(
z′
)
, (47)

from the gyrokinetic Poisson-Ampére equations, and insert these into hGK , see Refs. 20 and 45. For

practical calculation, this is the same as neglecting the electromagnetic part of hGK in the functional

derivative. In the same way as the Maxwell-Vlasov system (Sec. II A), the manifestation of the

bracket in Eq. (46) is not well defined due to the constraints on M. In the next section, the Dirac

theory of constraints (see appendix) is used to reduce Eq. (46) to a bracket of the space of densities

F̂.

A complete treatment of the geometry of the Poisson-Vlasov system, with the electric field as

a constraint, is given in Ref. 45. Many similar ideas will apply to the gyrokinetic system, with

complications arising from the nonlocal nature of the theory18 and larger constraint space (φ1 and

A1 rather than just φ). We reiterate that there are two sets of constraints we consider here; the

constraints on M variables, similar to the Maxwell-Vlasov system, and the constraints due to φ1

and A1, which are the gyrokinetic Poisson-Ampére equations. We first deal with the M constraints,

eliminating these variables entirely, then explain how to include φ1 and A1 in Section IV B.
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A. Gyrokinetic Poisson bracket

There are six constraints given by

ΦI (z) = MI (z) −
δlGK

δU I (z)
= 0, (48)

with the functional derivatives as listed in Eq. (32). One then forms the constraint matrix

CIJ (z, z′) = {ΦI (z) ,ΦJ (z′)} with the Poisson bracket of Eq. (46) using

δΦI (z)
δMJ ( z̄)

= δJ
I δ (z − z̄) δss′ ,

δΦu (z)
δF̂ ( z̄)

=
δΦµ

δF̂
= 0,

δΦi (z)
δF̂ ( z̄)

= −
e
c

A†i ( z̄) δ (z − z̄) δss′ ,

δΦθ (z)
δF̂ ( z̄)

= −µ̄ δ (z − z̄) δss′ . (49)

Dropping boundary terms in integrations and inserting the constraint equations (after calculation

of the brackets) leads to the very simple form,

CIJ
(
z, z′

)
= F̂δ

(
z − z′

)
δss′

×



0 − e
c B†z e

c B†y −mbx
mc
e Wx 0

e
c B†z 0 − e

c B†x −mby
mc
e Wy 0

− e
c B†y e

c B†x 0 −mbz
mc
e Wz 0

mbx mby mbz 0 0 0

−mc
e Wx −

mc
e Wy −

mc
e Wz 0 0 −mc

e

0 0 0 0 mc
e 0


, (50)
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where all functions are of the z variable and W = R + 1
2 b b · ∇ × b. Because of the simple form in

z′, this matrix is easy to invert according to Eq. (A2) giving,

C−1
IJ

(
z, z′

)
=

1

F̂B†
‖

δ
(
z − z′

)
δss′

×



0 c
ebz − c

eby
1
m B†x 0 c

eŴx

− c
ebz 0 c

ebx
1
m B†y 0 c

eŴy

c
eby − c

ebx 0 1
m B†z 0 c

eŴz

− 1
m B†x − 1

m B†y − 1
m B†z 0 0 1

mW†

0 0 0 0 0 e
mc B†

‖

− c
eŴx −

c
eŴy −

c
eŴz −

1
mW† − e

mc B†
‖

0


, (51)

where again functions are of the z variable, Ŵ ≡ b×W and W† ≡ B† ·W. Of course, this matrix is

nothing but the single particle gyrokinetic Poisson matrix2 as was the case for the Maxwell-Vlasov

system. Restricting the functionals Γ and Θ to not depend on M (see Sec. II A) and using

{
Γ[F̂],ΦJ (z)

}
= F̂ (z)

∂

∂zJ

δΓ

δF̂
, (52)

the field theory gyrokinetic Poisson bracket is simply,

{Γ,Θ}DB =

〈
F̂,

{
δΓ

δF̂
,
δΘ

δF̂

}
sp

〉
V

. (53)

Here { , }sp is the single particle Poisson bracket structure

{ f , g}sp = −
cb
eB†
‖

· ∇ f × ∇g +
B†

mB†
‖

·

(
∇ f

∂g
∂u
− ∇g

∂ f
∂u

)
+

cŴ
e
·

(
∇ f

∂g
∂θ
− ∇g

∂ f
∂θ

)
+

W†

m

(
∂ f
∂u

∂g
∂θ
−
∂g
∂u
∂ f
∂θ

)
+

e
mc

(
∂ f
∂µ

∂g
∂θ
−
∂ f
∂θ

∂g
∂µ

)
. (54)

We note that, as for the Maxwell Vlasov system, the δ/δMu and δ/δMµ terms cancel in a full

calculation, so there is no issue with these being undefined. The field theory bracket, Eq. (53), is

of exactly the form one would expect based on the Poisson-Vlasov bracket20 and Maxwell-Vlasov

bracket19 (Eq. (13) without δ/δE and δ/δB terms). It is aesthetically pleasing to see this type of
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structure emerge from the entirely systematic procedure applied above. The reduced Hamiltonian

to be used with Eq. (53) is simply Eq. (45) with constraints on M inserted explicitly,

h =
∑

s

ˆ
dXdudµdθF̂H −

1
8π

ˆ
dx

(
|∇φ1|

2
− |∇ × (A + A1)|2

)
. (55)

It is easy to show that ∂tF̂ =
{
F̂, h

}
is just the conservative form of the gyrokinetic Vlasov equation,

Eq. (40).

B. Inclusion of electromagnetic fields

The bracket, Eq. (54), does not include electromagnetic field equations, meaning the gyroki-

netic Maxwell’s equations, Eqs. (42) and (43), must be specified as separate constraints on the

motion to obtain a closed system. Here, we illustrate how to explicitly include the electromagnetic

potentials in the bracket for a simplified gyrokinetic system. This procedure also works to extend

the simple Poisson-Vlasov bracket20,45 to include the motion of φ. The general technique is to

add a Poisson-Ampére canonical bracket to the gyrokinetic bracket [Eq. (54)] and perform a re-

duction on this extended bracket with the Dirac theory of constraints. It is important to recognize

that this is only valid because the full constraint matrix would be block diagonal if the reduction

were performed in one-step from an original bracket that included electromagnetic and plasma

components (i.e., Eq. (46) with the addition of canonical brackets in A1 and φ1). This condition is

satisfied because A1 and φ1 do not appear in the symplectic structure of the original Lagrangian.

For clarity, we use with a simplified electrostatic system in the drift kinetic limit, with H =

eφ1 + m |δuE |
2 /2 where δuE = c (b × ∇φ1) /B. We also assume quasineutrality, which amounts to

neglecting the
´

dx |∇φ|2 /8π term in the Lagrangian, and set W to zero46. The Hamiltonian for the

system is

h =

ˆ
dXφ (X) Π (X)

+
∑

s

ˆ
dXdudµdθF̂

(
m
2

u2 + µB + eφ +
mc2

2B2 |∇⊥φ|
2
)
, (56)
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and the unreduced Poisson bracket

{Γ,Θ} =

〈
F̂,

{
δΓ

δF̂
,
δΘ

δF̂

}
sp

〉
V

+

ˆ
dX

(
δΓ

δφ

δΘ

δΠ
−
δΘ

δφ

δΓ

δΠ

)
, (57)

where Π = δl/δφ̇ is the variable canonically conjugate to φ. This model is the electrostatic

version of the simplified gyrokinetic system in Refs. 44 and 47. Physically, the m |δuE |
2 /2 =

mc2/2B2 |∇⊥φ|
2 term in the Hamiltonian is the polarization drift in the drift kinetic limit5,47. ∇⊥

indicates a gradient with respect to a co-ordinate system locally perpendicular to the background

magnetic field (we are neglecting derivatives of b). Unlike in the previous section, φ is now con-

sidered a separate field in the Hamiltonian, and Poisson’s equation should not be used to evaluate

functional derivatives.

The constraints are

Φ1 =
δh
δφ

=
∑

s

ˆ
dudµdθ

[
eF̂ − mc2∇⊥ ·

(
F̂
B2∇⊥φ

)]
,

Φ2 = Π, (58)

where Π = 0 since δl/δφ̇ = 0. Φ1 = 0 is the gyrokinetic Poisson equation; this constraint arises as

a secondary Dirac constraint that is necessary to satisfy Φ̇2 = 0, see Ref. 23 for more information.

Using Eq. (57) the constraint matrix is,

CIJ
(
X, X′

)
=

 0 C

−C 0

 , (59)

where

C =
δΦ1 (X)
δφ (X′)

= −c2∇′⊥ ·

[
n̂ (X′)
B2 (X′)

∇′⊥δ
(
X − X′

)]
(60)

with n̂ =
∑

s

´
dudµdθmF̂ and ∇′⊥ indicating the derivative is with respect to X′⊥. The inverse

matrix, chosen to satisfy Eq. (A2), is

C−1
IJ

(
X, X′

)
=

 0 −C−1

C−1 0

 , (61)
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where

C−1 (
X, X′

)
= −

1
c2∇

−1
⊥ ·

[
B2 (X)
n̂ (X)

∇−1
⊥ δ

(
X − X′

)]
. (62)

The Dirac bracket is constructed using

{Γ,Φ1 (X)} = c2∇⊥ ·

(
n̂
B2∇⊥

δΓ

δΠ

)
+ÑΓ +

mc2

e
∇⊥ ·

(
∇⊥φ

B2 ÑΓ

)
,

{Γ,Φ2 (X)} =
δΓ

δφ (X)
, (63)

where

ÑΓ =
∑

s

ˆ
dudµdθ

1
m
∇ ·

(
c f b × ∇

δΓ

δF̂
+

e
m

f B†
∂

∂u
δΓ

δF̂

)
, (64)

with the corresponding definition for ÑΘ. With Eq. (A3), this leads to

{Γ,Θ}DB =
∑

s

ˆ
dXdudµdθF̂

{
δΓ

δF̂
,
δΘ

δF̂

}
sp

+

ˆ
dX∇−1

⊥ ·

(
B2

c2n̂
∇−1
⊥

δΘ

δφ

) [
ÑΓ +

mc2

e
∇⊥ ·

(
∇⊥φ

B2 ÑΓ

)]
−

ˆ
dX∇−1

⊥ ·

(
B2

c2n̂
∇−1
⊥

δΓ

δφ

) [
ÑΘ +

mc2

e
∇⊥ ·

(
∇⊥φ

B2 ÑΘ

)]
. (65)

Here, { , }sp is the single particle bracket as in Eq. (54) (with W = 0). Note that in forming Eq. (65),

terms involving δ/δΠ in the Dirac part of Eq. (A3), cancelled with the canonical part of the original

bracket, as would be expected.

With the reduced Hamiltonian (Eq. (56) without the first term), the bracket can easily be

checked to give the Vlasov equation as ∂tF̂ (X) =
{
F̂ (X) , h

}
DB

. Noticing that the ∂/∂u term

in ∂tF̂ [see Eq. (40)] integrates to zero, we see that
∑

s

´
dudµdθ e∂tF̂ = −Ñh. This is used in

∂tφ (X) = {φ (X) , h}DB to show

∑
s

ˆ
dudµdθ

{
e∂tF̂ − mc2∇⊥ ·

[
1
B2

∂

∂t

(
F̂∇⊥φ

)]}
= 0, (66)

which is just the time derivative of Poisson’s equation for this gyrokinetic model. Using the

procedure presented above there should be no particular obstacle to the construction of brackets

for more complex gyrokinetic theories. For instance, one could include finite Larmor radius effects
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or magnetic fluctuations48. However, considering the complexity of the bracket for even a very

simple gyrokinetic model, such brackets are unlikely to be of much practical use.

V. NUMERICAL APPLICATIONS

One of the main motivations for this work is the possibility of using similar ideas in a discrete

context to design continuum geometric integrators for gyrokinetic systems. To elaborate on this

idea, here we give a simple explanation of some geometric discretization methods based on recent

work in numerical fluid dynamics. The methods described here are just examples from a large

array of literature on the subject. Some other techniques can be found in, for instance Refs. 49–53.

In addition we remark on how Euler-Poincaré models can be used to formulate sub-grid models

for turbulence simulation and some of the challenges associated with extending these ideas to

gyrokinetic turbulence.

a. Lagrangian side: discrete Euler-Poincaré equations Conceptually, an obvious way to

design a geometric integrator for an Euler-Poincaré system is to directly discretize the Euler-

Poincaré variational principle. If one can design discrete variations of the correct form, the entire

integrator can be constructed directly from the variational principle as for a standard variational

integrator. This approach has recently been successfully applied to develop an integrator for the

Euler fluid equations32 and more complex fluids, including magnetohydrodynamics (MHD)33. The

utility of such an approach is illustrated by the very nice properties of these schemes. For instance,

the MHD scheme33 exactly preserves∇·B = 0 and the cross helicity
´

dx v·B. As one consequence

of this, there is almost no artificial magnetic reconnection. The symplectic nature of the scheme

also leads to other very good long time conservation properties.

The first requirement in constructing an Euler-Poincaré integrator is a finite dimensional ap-

proximation to the diffeomorphism Lie group. In the case of fluids or MHD, the group is that

of volume preserving diffeomorphisms and a matrix Lie group is constructed to satisfy analogous

properties to the infinite dimensional group. For Vlasov-Poisson, Vlasov-Maxwell or a gyrokinetic

system, the group is that of symplectomorphisms. Thus, for a discretization, a different matrix Lie

group than the fluid case should be used, with properties designed to mimic those of the infinite

dimensional symplectomorphism group. Using this group one can find the Lie algebra, which

will give the form of the space of discrete vector fields (just the Eulerian phase space fluid veloc-

ities). Group operations can then be constructed as matrix multiplications as for a standard finite
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dimensional Lie group, and advected parameters included through the use of discrete exterior cal-

culus. One would then use the discrete Euler-Poincaré theorem54, which gives discrete update

equations [in analogy with Eq. (31)] from a discrete reduced Lagrangian. An algorithm of this

form can be shown to be symplectic and have similar conservation properties (arising from vari-

ants of Noether’s theorem) to the continuous system. The final update equations obtained from

this method are not as complex as one might expect and would not preclude incorporation into

large scale codes. Obviously there are several unanswered questions regarding the application of

this method to kinetic plasma systems. First, one must discretize the symplectomorphism group,

which may not be trivial. In two phase space dimensions the group is the same as the group of vol-

ume preserving diffeomorphisms; however, in higher dimensions the symplectomorphisms form a

more restricted class of transformations. The lack of a finite boundary in velocity space may also

present issues relating to the discretization of the symplectomorphisms. The degeneracy of the

system is another aspect which differs from the fluid system, and the consequences of this in the

discrete setting would have to be carefully considered. Finally, for a gyrokinetic system, it would

be necessary to remove the θ dimension in some way. This could potentially be done either in the

continuous setting or after discrete equations have been obtained.

b. Hamiltonian side: Poisson bracket discretization Another way to form a discrete Hamil-

tonian system is to directly discretize the Poisson bracket. The general idea is simple, one finds

a discrete Hamiltonian functional and discrete bracket that are finite dimensional approximations

to the continuous versions. In this way, one discretizes (in phase space) via the method of lines,

and reduces the infinite dimensional system to an approximate finite dimensional one. Any sym-

plectic temporal discretization can then be used to ensure the system is discretely Hamiltonian53.

The difficultly arises in ensuring a correct Hamiltonian discretization of the bracket. This requires

antisymmetry and the Jacobi identity to be satisfied, and such a bracket can be very difficult to find

in practice. For instance, for the Euler fluid equations, the non-canonical structure complicates

matters and a discrete bracket has been found only for simplified cases55. An obvious place to

start in this endeavor would be the Vlasov-Poisson system, as the structure is much more simple.

Generalizations to gyrokinetic systems could then potentially be achieved through Nambu bracket

formulations44.

c. Alpha models and large-eddy simulation Much work has been done in the last decade in

the fluids community on so-called alpha models. The general idea is to regularize the fluid equa-

tions (Navier-Stokes or MHD) at the level of the Euler-Poincaré variational principle, by adding
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terms into the Lagrangian that include gradients of the fluid velocity. These terms penalize the

formation of small scale structures, and can thus be used as a large eddy simulation (LES) model,

causing turbulence to dissipate at larger scales56. These methods have been shown to have some

significant advantages over more traditional LES methods (for instance those based on hyperdif-

fusion) especially for simulation of MHD turbulence37,57. As gyrokinetic turbulence simulation

becomes a more mature subject, it is interesting to enquire whether similar alpha models could be

formulated for gyrokinetic large eddy simulation.

In fact, alpha models can be derived from a standard fluid variational principle, by averaging

over small scale fluctuations that are assumed to be advected by the larger scale flow38,39. Ap-

proaching the gyrokinetic variational principle in a similar way leads to the addition of extra,

regularized terms into the gyrokinetic Lagrangian. For instance, following the general ideas in

Ref. 38, averaging over perpendicular X-space fluctuations of scale length α, and ensuring gauge

invariance, we were led to the regularized Lagrangian l = lGK + lα, where

lα = α2
ˆ

dXdudµdθF̂
(
B† · ∇ × UX − ∇

2
⊥H

)
. (67)

While this Lagrangian gives well-defined equations of motion, there is a fundamental problem

in that it destroys some of the degeneracy in the original system. As a consequence of this, the

equations of motion involve solving spatial PDEs for U, which would significantly increase com-

putation times, defeating the purpose of an LES. It is not yet clear if it is possible to design a

regularization of this type for the gyrokinetic system that retains the redundancy of the U fields

and allows one to write down a standard Vlasov equation. We note that gyrokinetic LES has been

explored and implemented recently on the GENE code, by adding hyperdiffusive terms in the

perpendicular co-ordinates36,58.

VI. CONCLUDING REMARKS

In this article we have applied the Euler-Poincaré formalism to derive a new gyrokinetic action

principle in Eulerian co-ordinates. We start with a single-particle Poincaré-Cartan 1-form, using

the theory of Ref. 18 to systematically construct a gyrokinetic field theory action in Lagrangian

co-ordinates. The fundamental idea is then to reduce this action using symmetry under the the

particle-relabeling map, (x, v) = ψ (x0, v0), which takes particles with initial position (x0, v0) to
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their current location (x, v)1,16,17. This process leads to an action functional formulated in terms

of the Eulerian phase space fluid velocity, U, and the advected plasma density, F̂, as well as the

standard electromagnetic potentials. In the course of reduction, the arbitrary variations of the La-

grangian fields (used to derive equations of motion) lead to constrained variations of the Eulerian

fields, U and F̂. Because of this, field motion is governed by the Euler-Poincaré equations rather

than the standard Euler-Lagrange equations. Explicit calculation of the Euler-Poincaré equations

for a standard gyrokinetic single particle Lagrangian is shown to give the gyrokinetic Vlasov

equation. Since the space of electromagnetic potentials is not altered by ψ (x0, v0), the gyrokinetic

Poisson-Ampere equations arise from the standard Euler-Lagrange equations for the perturbed

potentials.

Using the methodology set out in Ref. 1 we then perform a Legendre transform to derive the

Hamiltonian form of the gyrokinetic system. The principal difficulty is the strong degeneracy,

which is related to the linearity and lack of time derivatives for certain function variables in the

action principle. Physically, this arises from the fact that the plasma distribution function encodes

the information about particle phase space trajectories. The degeneracy leads to a Poisson bracket

in terms of too many variables; namely, a series of constrained momentum variables canonically

conjugate to U as well as the distribution function F̂. To reduce the bracket into a well defined

form we use the Dirac theory of constraints, which is a systematic way to project a Poisson bracket

onto a constraint submanifold when momentum variables are constrained. This leads to an infinite

dimensional gyrokinetic Poisson bracket, which takes a natural form based on the single parti-

cle bracket. We also demonstrate how this procedure leads to the full, electromagnetic Vlasov-

Maxwell bracket as derived in Ref. 19. Since the electromagnetic equations in the gyrokinetic

system are really constraints on the motion, we chose to include these in the bracket via a second

application of the Dirac theory of constraints. The general method is expounded through con-

struction of the bracket for a simplified electrostatic model with no finite Larmor radius effects.

Although the brackets obtained by such an approach are probably to complicated to be of much

practical use, it makes for an interesting application of Dirac theory.
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Appendix A: Dirac Constraints

The Dirac theory of constraints or Dirac bracket, is used to generalize the Poisson bracket

to Hamiltonian systems with constraints. The original purpose of the theory was to construct

quantizable Poisson brackets starting with a degenerate Lagrangian; i.e., a Lagrangian where the

momenta are not independent functions of velocities. The theory applies equally well to a bracket

that is already in non-canonical form, a realization that can be very useful in the construction of

field theoretic brackets24,40. For example, in Ref. 23, the non-canonical magnetohydrodynamic

bracket is reduced to incorporate the incompressibility constraint. We give a very brief overview

of the theory here for the convenience of the reader. More complete treatments can be found in

Refs. 22–24, 40, and 59.

We consider an infinite dimensional Hamiltonian system with Poisson bracket { , }, Hamiltonian

h and N constraint functions Φ1, Φ2, . . . ,ΦN = 0. The constraint matrix,

Ci j
(
z, z′

)
=

{
Φi,Φ j

}
, (A1)

and its inverse, defined using

ˆ
dz′Ci j

(
z, z′

)
C−1

jk
(
z′, z′′

)
= δikδ

(
z − z′′

)
, (A2)

are used to form the Dirac bracket,

{Γ,Θ}DB = {Γ,Θ}

−

ˆ
dzdz′ {Γ,Φi (z)} C−1

i j
(
z, z′

) {
Φ j

(
z′
)
,Θ

}
. (A3)

Geometrically, the constraints force motion to lie on a constraint submanifold, which inherits the

Dirac bracket from the Poisson bracket on the original manifold59.

In the case where the matrix C is not invertible, Dirac theory gives one or more secondary

constraints, which must be included and the constraint matrix recalculated. See Refs. 23 and 59

for more information.
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