Understanding Size Effect in Cleavage Cracking in Thin Materials

PDF Version Also Available for Download.

Description

In a specially designed tensile fracture experiment on bicrysal thin films, it was discovered that the fracture toughness of a thin film is not a material constant; rather, as the film becomes thinner it decreases much faster than the prediction of conventional theory. A detailed analysis revealed that this is caused by the mismatch of crystalline structures and, more importantly, with an appropriate crystalline orientation distribution the decrease may be suppressed. This result shed light on the fundamentals of crystal behaviors in pressurized matters. It also provides a promising solution to minimize unexpected failures in nano/micro-electromechanical systems, and therefore is ... continued below

Creation Information

Qiao, Yu February 22, 2013.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In a specially designed tensile fracture experiment on bicrysal thin films, it was discovered that the fracture toughness of a thin film is not a material constant; rather, as the film becomes thinner it decreases much faster than the prediction of conventional theory. A detailed analysis revealed that this is caused by the mismatch of crystalline structures and, more importantly, with an appropriate crystalline orientation distribution the decrease may be suppressed. This result shed light on the fundamentals of crystal behaviors in pressurized matters. It also provides a promising solution to minimize unexpected failures in nano/micro-electromechanical systems, and therefore is of immense technological importance.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: 25095A
  • Grant Number: FG02-07ER46355
  • DOI: 10.2172/1063785 | External Link
  • Office of Scientific & Technical Information Report Number: 1063785
  • Archival Resource Key: ark:/67531/metadc840002

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 22, 2013

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 20, 2016, 12:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Qiao, Yu. Understanding Size Effect in Cleavage Cracking in Thin Materials, report, February 22, 2013; United States. (digital.library.unt.edu/ark:/67531/metadc840002/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.