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We discuss briefly the constitutive modeling of the stress tensor for nanofluids. In particular, we look at the viscosity of nanofluids
containing multiwalled carbon nanotubes (MWCNTs) stabilized by cationic chitosan. MWCNTs can be used either to enhance or
reduce the fluid base viscosity depending on their weight fractions. By assuming that MWCNT nanofluids behave as generalized
second-grade fluid where the viscosity coefficient depends upon the rate of deformation, a theoretical model is developed. A
simplified version of this model, similar to the traditional power-law model, is used in this study. It is observed that the theoretical
results agree well with the experimental data.

1. Introduction

Nanofluids are made by adding nanoscale particles in low
volumetric fractions to a fluid in order to enhance or
improve their rheological, mechanical, optical, and thermal
properties. The base fluid can be any liquid such as oil, water,
ethylene glycol, or conventional fluid mixtures. Limited
available studies on nanofluid viscosity have been reported
[1–19]. In most of these studies, the behavior of the viscosity
and the shear stress of nanofluids have been interpreted using
the widely used empirical model developed by Casson [20]

τ1/2 = τ1/2
0 + μ1/2

∞ γ̇1/2. (1)

In this equation, τ0 is the yield stress, μ∞ is the suspension
viscosity at infinite shear rate, and γ̇ is the shear rate. One
of the inherent limitations of such empirical models is that
they are, in general, one-dimensional in nature and it is not
that easy or straightforward to generalize and obtain the
appropriate 3-dimensional form, which are often necessary
to solve general 3-dimensional problems. Nevertheless, this
equation has been found to be successful for a range of
parameters and a class of fluids. Phuoc and Massoudi
[14] used this equation and obtained the values for μ∞
being 0.1225 cp and 0.0225 cp for Fe2O3—deionized water
nanofluids with polyvinylpyrrolidone (PVP) or polyethylene

oxide (PEO) as a dispersant, respectively. These values are
about two orders of magnitude lower than the viscosity of the
base fluid (a liquid prepared with PVP as a dispersant (DW-
0.2% PVP) had a viscosity similar to that of water, while
the viscosity of water with PEO as a dispersant (DW-0.2%
PEO) was about 12.5 cp). Choi et al. [8] used this equation
and calculated the intrinsic viscosities of CrO2—ethylene
glycol, γ-Fe2O3, α-Fe2O3—EG and Ba-ferrite-EG nanofluids
at infinite shear rate and reported a decrease of the viscosity
with an increase in the particle volume fraction. This could
be problematic, since the intrinsic viscosity should reach
the viscosity of the base fluid in case of dilute suspensions
or increase as the particle volume fraction increases if the
suspension is dense enough.

In general, most complex, that is, nonlinear, materials
exhibit unusual and peculiar characteristics such as viscoelas-
ticity (as, for example, identified by creep or relaxation
experiments, often exhibiting memory effects), yield stress,
normal stress differences. The science of studying non-
linear fluids is “Rheology” and according to Reiner [21, p.
457]: “rheology started when Bingham in 1916 investigated
concentrated clay-suspensions, and Bingham and Green in
1919 investigated oilpaints.” The non-linear time-dependent
response of complex fluids constitutes an important area of
mathematical modeling of non-Newtonian fluids. For many
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practical engineering cases, where complex fluids such as
paint and slurries are used, the shear viscosity can be a
function of one or all of the following:

(i) Time,

(ii) shear rate,

(iii) concentration,

(iv) temperature,

(v) pressure,

(vi) electric field,

(vii) magnetic field,

(viii) . . ..

Thus, in general, μ = μ(t,π, θ,φ, p, E, B, . . .), where t is the
time, π is some measure of the shear rate, θ the temperature,
φ the concentration, p the pressure, E the electric field, and
B the magnetic field. Of course, in certain materials or under
certain conditions, the dependence of one or more of these
can be dropped. A more appropriate question is not what
the shear viscosity should be, but rather, what the stress
tensor of a given fluid should be. Bingham [22] was one of
the first scientists who proposed a constitutive relation for
the stress tensor of a viscoplastic material in a simple one
dimensional shear flow, where the relationship between the
shear stress and the rate of shear was described in terms of a
yield function F = 1−τ0/|τ|where τ0 is the yield stress and τ
is the shear stress. For many fluids such as polymers, slurries,
and suspensions, some generalizations have been made to
model shear-dependent viscosities. These fluids are known
as the power-law or the generalized Newtonian fluid models;
these widely used models are deficient in many ways; for
example, they cannot predict the normal stress differences or
yield stresses and they cannot capture the memory or history
effects [23, 24].

In an effort to obtain a model that does exhibit both
normal stress effects and shear-thinning/thickening, Man
[25] modified the constitutive equation developed by Rivlin
and Ericksen [26] (see also [27, 28]) for a second-grade fluid
by allowing the viscosity coefficient to depend upon the rate
of deformation; that is, μeff = μΠm/2, where Π is the second
invariant of the symmetric part of the velocity gradient, and
m is a material parameter. When m < 0, the fluid is shear-
thinning, and if m > 0, the fluid is shear-thickening. In
this paper, the viscosity of nanofluids containing multiwalled
carbon nanotubes (MWCNTs) stabilized by cationic chitosan
is studied. MWCNTs can be used either to enhance or reduce
the fluid base viscosity depending on their weight fractions.
By assuming that MWCNT nanofluids behave as a gen-
eralized second-grade fluid, where the viscosity coefficient
depends upon the rate of deformation, a theoretical model is
developed, and comparisons are made with the experimental
data.

2. Constitutive Modeling

Mathematically, the purpose of constitutive relations in
mechanics is to supply connections between kinematic,

mechanical, and thermal fields providing a suitable formu-
lation of a problem which can be solved for properly posed
problems. Just as different figures in geometry are defined
as idealizations of natural objects, continuum mechanics
seeks to establish particular relations between the stress
tensor and the motion of the body for “ideal materials”
[27]. In some instances, it may be necessary to represent the
same real material by different ideal materials in different
circumstances. A classic example is that of the theory
of incompressible viscous fluids, which gives an excellent
description of the behavior of water flowing through pipes
but is useless for the study of the propagation of sound waves
through water. While a constitutive equation is a postulate
or a definition from the mathematical standpoint, physical
experience remains the first guide, perhaps reinforced by
experimental data. Constitutive relations are required to
satisfy some general principles. Wang and Truesdell [29,
page 135] list six general principles: (1) determinism, (2)
local action, (3) equipresence, (4) universal dissipation, (5)
material frame indifference, and (6) material symmetry.
Constitutive relations should hold equally in all inertial
coordinate systems at any given time (often referred to
as coordinate invariance requirement). This would guard
against proposing a relation in which a mere change of
coordinate description would imply a different response in
the material. Many of the so-called “power-law” models
used in describing non-Newtonian fluids are not coordinate
invariant. In general, this difficulty can easily be overcome
by stating the equations either in tensorial form or by
using direct notations not employing coordinates at all.
The principle of material frame-indifference (sometimes
referred to as objectivity), which requires that the consti-
tutive equations be invariant under changes of frame, is
perhaps the most important of all. It is a consequence of
a fundamental principle of classical physics that material
properties are indifferent, that is, independent of the frame
of reference of the observer. This principle requires that
constitutive relations depend only on frame-indifferent
forms (or combinations thereof) of the variables pertaining
to the given problem (see Massoudi [30] for further details).
Among other approaches to model complex materials, one
can list (i) using physical and experimental models, (ii)
doing numerical simulations, (iii) using statistical mechanics
approaches, and (iv) ad hoc approaches.

In general, based on available experimental observations,
it can be said that many nanofluids exhibit characteristics
similar to those of non-linear materials such as colloidal
suspensions, polymers, rubber, and granular materials. The
main points of departure from linear behavior are the
following:

(1) the ability to shear-thin or shear-thicken,

(2) the ability to creep,

(3) the ability to relax stresses,

(4) the presence of normal stress differences in simple
shear flows,

(5) the presence of yield stress.
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To the best of our knowledge, it has not been reported
whether nanofluids exhibit normal stress effects, the non-
linear phenomena related to the stresses that are developed
orthogonal to the planes of shear. Therefore, we propose to
use a general model that can exhibit both the normal stress
effects and the shear-thinning/thickening effects. To do so, we
assume that nanofluids, such as the one studied in the present
work, behave as generalized second-grade fluids. For a sec-
ond grade fluid, the Cauchy stress tensor is given by [26–28]

T = −p1 + μA1 + α1A2 + α2A2
1, (2)

where p is the indeterminate part of the stress due to the con-
straint of incompressibility, 1 is the identity tensor, μ is the
coefficient of viscosity, α1 and α2 are material moduli which
are commonly referred to as the normal stress coefficients.
The kinematical tensors A1 and A2 are defined through

A1 = L + LT ,

A2 = dA1

dt
+ A1L + LTA1,

L = gradu.

(3)

where d/dt is the total time derivative, given by
d(·)/dt = ∂(·)/∂t + [grad(·)]u, where u is the velocity
vector. The thermodynamics and stability of fluids of second
grade have been studied in detail [28], where it is shown
that if the fluid is to be thermodynamically consistent in the
sense that all motions of the fluid meet the Clausius-Duhem
inequality and that the specific Helmholtz free energy of the
fluid be a minimum in equilibrium, then

μ ≥ 0,

α1 � 0,

α1 + α2 = 0.

(4)

By allowing the viscosity coefficient to depend on the rate of
deformation, Man [25] modified the constitutive equation,
(2) and proposed the following:

T = −p1 + μΠm/2A1 + α1A2 + α2A2
1, (5)

where

Π = 1
2

tr A2
1 (6)

is the second invariant of the symmetric part of the velocity
gradient, and m is a material parameter. When m < 0,
the fluid is shear-thinning, and if m > 0, the fluid is
shear-thickening. A subclass of models given by (7) is
the generalized power-law model, which can be obtained
by setting α1 = α2 = 0 in (7) (see [31–34] for further
discussions of this model). Notice that if the normal stress
parameters α1 and α2 are zero, then

T = −p1 + μΠm/2A1. (7)

In this paper, we will use this simplified form, which can also
be considered as a generalized power-law fluid model. Using

the cylindrical coordinate system for our present measure-
ments and assuming u = w(r)ez where ez denotes a unit
vector along the z direction yields the following calculations

A1 =

⎡
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0 0
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2
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2
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(8)

The z-component of the stress tensor becomes

Trz = μ

[(
∂w

∂r

)2
]m/2(

∂w

∂r

)
= (μγ̇m)γ̇, (9)

where the shear-dependent viscosity is defined as

μeff = μ

[(
∂w

∂r

)2
]m/2

= μγ̇m. (10)

In the next section, we will briefly discuss the results of our
experimental investigation and show how this model can be
used to describe the observed behavior of the fluid.

3. Experimental Evaluation

In Figures 1 and 2, we present the results on the calcu-
lated and measured viscosity and shear stress for water-
based nanofluids containing Multiwalled carbon nanotubes
(MWCNT) stabilized by low molecular weight chitosan
(>75% deacetylation). The measured data were reported by
Phuoc et al. [15]. The calculated results are carried out using
(9) for the shear stress and (10) for the viscosity with m =
−0.547,−0.65, and − 0.647 and μ = 0.134, 0.331, and 0.523
when CNTs weight percent increased from 1 to 3 and the
weight percent of the chitosan was 0.1. While using 0.2 wt%
chitosan, it was found that m = −0.584 and −0.678 and μ =
0.354 and 0.641 for 2 wt% and 3 wt% CNTs, respectively. It
is seen that using the generalized power-law model, with (7)
as a subclass of the generalized second-grade fluid models,
the measured experimental values compare well with the
theoretical model. For a given weight percent of the stabilizer,
increasing the CNTs weight percent has a strong effect on
the value of μ. For a given value of CNTs weight percent,
increasing the weight percent of the stabilizer increases both
m and μ.

4. Concluding Remarks

The two important constitutive relations needed for the
study of flow and heat transfer in complex fluid-like
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Figure 1: Viscosity and shear stress as a function of shear rate
showing the effect of the MWCNT weight percent. The base fluid
is DW + 0.1 wt% chitosan. The measured values are shown by
symbols, while the calculated values are shown by the solid and
dotted lines. These calculated viscosity values were obtained using
(10) and the shear stresses were calculated using (9) with m =
−0.547,−0.65, and −0.647 and μ = 0.134; 0.331; and 0.523 for
MWCNT weight percent increased from 1%, 2%, and to 3%,
respectively.

materials, where the effects of radiation are ignored, are the
stress tensor and the heat flux vector. From an engineering
perspective, this oftentimes translates into measuring viscos-
ity and thermal conductivity. As a result, most researchers
have attempted to generalize Newton’s law of viscosity and
Fourier’s law of heat conduction to various and more
complicated cases by assuming that the shear viscosity
and/or thermal conductivity could depend on a host of
parameters such as shear rate, temperature, and porosity.
This unfortunately does not fully take into account the
non-linear and time-dependent nature (such as normal
stress effects or visco-elastic response) of these complex
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Figure 2: Viscosity and shear stress as a function of shear rate
showing the effect of the MWCNT weight percent. The base fluid
is DW + 0.2 wt% chitosan. The measured values are shown by
symbols, while the calculated values are shown by the solid and
dotted lines. These calculated viscosity values were obtained using
(10) and the shear stresses were calculated using (9) with m =
−0.584 and −0.678 and μ = 0.354 and 0.641 for 2 wt% and 3 wt%
CNTs, respectively.

materials, as these generalizations cannot give rise to implicit
constitutive relations.

Nanofluids represent one of the newest complex materi-
als of the modern era. In many ways, constitutive modeling
of these fluids, from a macroscopic point of view, is still
at its infancy, perhaps similar to the early days of polymer
rheology, rubber viscoelasticity or composite materials. With
intense interest and research in the past two decades, great
strides have been made, and nanofluids, due to their peculiar
heat transfer and rheological properties, have been shown
to contribute in many diverse ways to many industrial
processes and to our lives [35]. An often neglected, yet
extremely important, conceptual question, and perhaps still
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an open question, is whether the same governing macro-
scopic balance equations can be used for nanofluids. For
a recent discussion of this issue, see [36]. Since nanofluids
form suspensions, theoretically from the point of view
of mechanics, their thermorheological responses can be
modeled either using the non-Newtonian approach or the
multicomponent approach [37].

To better understand the various mechanisms in the
heat transfer processes involving nanofluids, in addition to
studying the thermal conductivity or radiation effects, an
understanding of the mechanism for viscous dissipation is
also important. A proper constitutive model for the stress
tensor T, represents the first step in this direction, since
the term T · D (where 2D = A1) appears in the energy
equation. By assuming that nanofluids in general can behave
as generalized second-grade fluids whose viscosity coefficient
depends on the rate of deformation, a theoretical model
has been developed. The experimental results indicate that
the two important parameters in this study are related
to the effects of the solid concentration on the viscosity
of the base fluid and the degree of the nonlinearity of
the fluid (measured through m and μ). By comparing
with the measured data, the present model was found to
be suitable for describing the fluid behavior. To test to
see whether a particular nanofluid is capable of display-
ing normal stress differences, an orthogonal rheometer is
needed.
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