Contract No. and Disclaimer:

This manuscript has been authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

1	
2	Rapid Determination of Radiostrontium in Seawater Samples
3	Sherrod L. Maxwell ¹ , Brian K. Culligan and Robin C. Utsey
4	Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808, USA
5	
6	¹ Author for correspondence (email: <u>sherrod.maxwell@srs.gov</u>)
7	phone 803-952-7473
8	fax 803-952-7881
9	Keywords: Strontium, ⁹⁰ Sr, ⁸⁹ Sr, ⁹⁰ Y, seawater, strontium, rapid, Fukushima
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

28 Abstract

29	A new method for the determination of radiostrontium in seawater samples has
30	been developed at the Savannah River National Laboratory (SRNL) that allows rapid
31	preconcentration and separation of strontium and yttrium isotopes in seawater samples for
32	measurement. The new SRNL method employs a novel and effective pre-concentration
33	step that utilizes a blend of calcium phosphate with iron hydroxide to collect both
34	strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields.
35	The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin
36	cartridge separation options using vacuum box technology, allow seawater samples up to
37	10 liters to be analyzed. The total 89 Sr + 90 Sr activity may be determined by gas flow
38	proportional counting and recounted after ingrowth of ⁹⁰ Y to differentiate ⁸⁹ Sr from ⁹⁰ Sr.
39	Gas flow proportional counting provides a lower method detection limit than liquid
40	scintillation or Cerenkov counting and allows simultaneous counting of samples.
41	Simultaneous counting allows for longer count times and lower method detection limits
42	without handling very large aliquots of seawater. Seawater samples up to 6 liters may be
43	analyzed using Sr Resin for ⁸⁹ Sr and ⁹⁰ Sr with a Minimum Detectable Activity (MDA) of
44	1-10 mBq/L, depending on count times. Seawater samples up to 10 liters may be analyzed
45	for ⁹⁰ Sr using a DGA Resin method via collection and purification of ⁹⁰ Yonly. If ⁸⁹ Sr and
46	other fission products are present, then ⁹¹ Y (beta energy 1.55 MeV, 58.5 day half-life) is
47	also likely to be present. ⁹¹ Y interferes with attempts to collect ⁹⁰ Y directly from the
48	seawater sample without initial purification of Sr isotopes first and ⁹⁰ Y ingrowth. The
49	DGA Resin option can be used to determine ⁹⁰ Sr, and if ⁹¹ Y is also present, an ingrowth
50	option with using DGA Resin again to collect ⁹⁰ Y can be performed. An MDA for ⁹⁰ Sr of

1 = 1 mBq/L for an 8 hour count may be obtained using 10 liter seawater sample aliquots.

52

53 Introduction

There is an increasing need to develop faster analytical methods for emergency 54 response, including emergency environmental samples [1-2]. In light of the nuclear 55 accident at Fukushima Nuclear Power Plant in March, 2011, there is a need for a rapid 56 method for seawater samples which can be applied quickly with high chemical yields and 57 effective removal of interferences. There are a number of analytical methods reported that 58 use ion exchange/extraction chromatography to determine radiostrontium in seawater. 59 Vaida and Kim provide a very thorough overview of recent radiostrontium separation and 60 analytical measurement techniques for a wide range of sample matrices. Only a limited 61 number of seawater methods, however, seem to be available. Many methods seem to use 62 older, more tedious sample preparation steps or need improvements in chemical yield. 63 64 Older methods which use very large cation exchange columns and multiple precipitations, for example, have a very low sample throughput. [3] 65 This review also included more classical methods for water samples using fuming

This review also included more classical methods for water samples using fuming nitric precipitation as reported by Bojanowski et al [4]. Fuming nitric acid presents safety and handling difficulties and can be very tedious and time-consuming. An additional precipitation step to remove barium as barium chromate is also required and chemical yields for Sr can be ~50-60%.

Butkalyuk et al [5] reported an approach in which ⁹⁰Y was collected from 1 liter seawater samples using rare earth fluoride columns, with lead sulfide column being used to remove ²¹⁰Bi, followed by Cerenkov counting. The method seemed to be limited to a 1 liter sample aliquot and the presence of ⁹¹Y using this approach would interfere with ⁹⁰Y measurements. Grahek et al [6] reported a newer method using Sr Resin (Eichrom Technologies,
Inc. Lisle, IL). For one liter seawater samples, an average Sr chemical yield of ~60% was
obtained, using a carbonate precipitation and Sr Resin separation. Cerenkov counting was
used to avoid problems the method had from residual calcium. The counting efficiency,
however, for Cerenkov counting of ⁸⁹Sr is only about 38%, adversely affecting the MDA.
An anion exchange method using alcohol was utilized to separate ⁹⁰Y with a~70-%
chemical yield.

Based on this survey of the literature, a more rapid method to determine 83 radiostrontium in seawater samples is needed. The method would need simple, effective 84 pre-concentration steps and good chemical yields. By also utilizing simultaneous gas flow 85 proportional counters (instead of sequential counters) and extended count times, smaller 86 seawater aliquots (<<50 liters) can be used with much easier handling and faster sample 87 preparation throughput for analyses. This is particularly important in a radiological 88 89 emergency, but also important to reduce labor costs and analysis times for routine operations. 90

The recent nuclear accident at Fukushima Nuclear Power Plant in March, 2011 highlights the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident, or even from a terrorist such as a Radiological Dispersive Device (RDD) or Improvised Nuclear Device (IND).

Rapid radiostrontium methods for water and air filter samples have been reported
by the SRNL Laboratory in the past, applicable for emergency response samples
containing high levels of beta interferences, as demonstrated by good performance on
NIST (National Institute of Standards and Technology) NRIP samples containing high
levels of gamma isotopes to simulate emergency response samples. [7, 8] These rapid
methods employ calcium phosphate precipitation for water samples and accelerated

digestion for air filter samples. Sr Resin cartridges with vacuum- assisted flow rates are used for rapid separations. Radiostrontium results were reported on water and air filter samples within ~3 hours. When very high levels of interferences are present (where decontamination >1000 is needed), a second Sr Resin purification step can be applied by adjusting the purified Sr eluent solution from the first column to ~5-6M HNO₃ and passing the solution through a second Sr Resin cartridge, followed by 8M HNO₃ rinsing, and final Sr elution using 0.05M HNO₃.

108 This two column approach using Sr Resin cartridges was applied to air samples received from the U.S. Embassy and other sites in Japan following the Fukushima 109 Daijchi event in April, 2011. Gross alpha beta measurements on the filters showed the 110 111 presence of high levels of beta activity for some air filter samples. It is also important to use 8M HNO₃ rinsing with Sr Resin to effectively remove ¹⁴⁰Ba, since the k' of Ba is 112 reduced to < 8 free column volumes in 8M HNO₃ Calcium phosphate precipitation, 113 unlike time-consuming water evaporation methods, also reduces the levels of some 114 potential sample interferences such as ¹³⁷Cs, ¹³⁴Cs and ¹³¹I. [9] It is important to note that 115 Pb isotopes, which may be present in environmental samples, are retained on Sr Resin 116 and remain on the resin when 0.05M HNO₃ is used to elute Sr. [10] 117

When relatively high levels of Pb are present (higher uranium samples), it is possible for short-lived Bi isotopes to grow-in during the short elution step for Sr while Pb isotopes are retained on the resin. In that case, waiting 2 to 6 hours after elution to allow unsupported Bi isotopes to decay may be warranted.

A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL, Aiken, SC, USA) that allows rapid preconcentration and separation of strontium and yttrium in seawater samples for the measurement of strontium and yttrium isotopes by gas flow proportional counting. While the method can be adapted for use with liquid scintillation or Cerenkov

127 counting, gas flow proportional counting was selected to enable lower MDA and128 simultaneous counting of samples.

While radiostrontium in fresh water samples can be separated quickly and easily using calcium phosphate precipitation and a single 2ml Sr Resin cartridge (Eichrom Technologies, Lisle, IL, USA), seawater samples cab be much more difficult. The seawater matrix offers significant sample matrix challenges due to the high salt content, in particular, the stable strontium (~8 mg L⁻¹), calcium (~400 mg L⁻¹) and magnesium (~1300 mg L⁻¹) ion content. The stable strontium, in particular, limits the size of the seawater aliquot, depending on the amount of Sr Resin used.

The new SRNL method employs a rapid pre-concentration step that utilizes a 136 calcium phosphate precipitation (enhanced with iron hydroxide) to collect both strontium 137 and yttrium from the seawater matrix. The iron hydroxide appears to enhance the 138 precipitation of strontium in particular, possibly due to the difficulties associated with 139 achieving excess phosphate ions given the large amounts of calcium and magnesium ions 140 present. The pre-concentration steps, in combination with a rapid Sr Resin separation 141 using vacuum box technology, allow seawater samples up to 10 liters to be analyzed for 142 ^{89,90}Sr using gas flow proportional counters. The preconcentration steps can be 143 performed quickly using 500 ml centrifuges tubes with no waiting on settling. Since iron 144 145 has no adverse impact on Sr Resin or DGA Resin in nitric acid, this enhanced 146 precipitation approach works very well. By using simultaneous gas flow proportional 147 counting and long count times, low detection limits can still be achieved with sample aliquot volumes << 50 liters. 148

149 Several method approaches were investigated. The total 89 Sr + 90 Sr activity may 150 be determined by gas flow proportional counting and recounted after ingrowth of 90 Y to

6

differentiate ⁸⁹Sr from ⁹⁰Sr. Soon after a nuclear accident, the total ⁸⁹Sr + ⁹⁰Sr detected 151 from a release will be primarily ⁸⁹Sr. It should be noted that a radiological event, such as 152 a RDD containing ⁹⁰Sr nuclear waste, for example, would be a predominantly ⁹⁰Sr. In 153 either case, once the source is identified through early measurements, the total 89 Sr + 90 Sr 154 assay, which can be performed very quickly, has rapid screening value. 155 A second option was investigated. ⁹⁰Y can be collected immediately using Sr 156 Resin +DGA Resin (stacked) and counted to determine if the Sr isotope activity results 157 from 90 Sr (90 Y) by comparison with the 89 Sr + 90 Sr results, however, 91 Y is a problem for 158 this approach. If ⁸⁹Sr and other fission products are present, then ⁹¹Y (beta energy 1.55 159 MeV, 58.5 day half-life) will also typically be present. ⁹¹Y interferes with the collection 160 of ⁹⁰Y directly from the seawater sample without initial purification of Sr isotopes. 161 Therefore, this stacked approach can simply be used as a confirmatory method, and the 162 presence of ⁹¹Y is a problem. Since ⁹¹Y interferes, this is not recommended. 163 A better option seems to rapidly determine the total 89 Sr + 90 Sr, wait 1-10 days for 164 ⁹⁰Y ingrowth, and collect and purify ⁹⁰Y using DGA Resin or Sr Resin to determine ⁹⁰Y, 165 and thus ⁸⁹Sr and ⁹⁰Sr, respectively. Sr Resin has been used to collect and separate ⁹⁰Y 166 from the Sr isotopes after in growth, but in that approach it is very important that no ⁸⁹Sr 167 or ⁹⁰Sr bleeds through the Sr Resin and is collected with the ⁹⁰Y. Under circumstances 168 where ⁸⁹Sr is very high and ⁹⁰Sr is very low, the slightest bleed through of ⁸⁹Sr through Sr 169 Resin can change the ⁹⁰Sr results significantly. This risk can be eliminated by using DGA 170 Resin to purify ⁹⁰Y. In addition, the DGA Resin separation offers additional removal of 171 high levels of beta emitters that could affect relatively low levels of ⁹⁰Y using this 172 approach. While Y chemical yield may need to be determined, this may outweigh the risk 173 of some any ⁸⁹Sr or ⁹⁰Sr bleeding through the Sr Resin into the ⁹⁰Y fraction. 174 175

The assay of ⁹⁰Sr in seawater is of interest for oceanographic reasons due to its'

176	relatively long half -life (28.8 years). A ⁹⁰ Sr only method option was also developed using
177	DGA Resin alone. DGA Resin has a very high retention of yttrium, and it can be easily
178	purified using this resin. In addition, since strontium is not retained under strong nitric
179	acid conditions, the amount of stable Sr in seawater is not a limiting factor.
180	Seawater samples up to 10 liters may be analyzed for ⁹⁰ Sr using a DGA Resin
181	method via collection and purification of ⁹⁰ Y only. If ⁸⁹ Sr and other fission products are
182	present, then ⁹¹ Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present.
183	⁹¹ Y interferes with attempts to collect ⁹⁰ Y directly from the seawater sample without
184	initial purification of Sr isotopes first and ⁹⁰ Y ingrowth. The DGA Resin option can be
185	used to determine ⁹⁰ Sr with excellent removal of interferences, but if ⁹¹ Y is present, an
186	ingrowth option using DGA Resin again to collect ⁹⁰ Y can be performed.
187	The sample preparation steps to obtain purified 89 Sr + 90 Sr and /or 90 Y (present
188	initially in the sample) take <8 hours to complete, and sample aliquots count times and
189	may be adjusted based on MDA requirements. While two count methods after 90 Y
190	ingrowth can be applied, this counting method can lead to large uncertainties for the
191	smaller radiostrontium isotope when ratios of 89 Sr / 90 Sr are very large or very small.
192	While the two count method can provide valuable information, there are times where
193	purification of ⁹⁰ Y after ingrowth to differentiate ⁸⁹ Sr from ⁹⁰ Sr offers significant
194	advantages.
195 196	Experimental
197	Reagents
198	Sr Resin (4, 4', (5') di-t-butylcyclohexane-18-crown-6) and DGA Resin

199 (N,N,N',N' tetraoctyldiglycolamide) cartridges were obtained from Eichrom

200 Technologies, Inc., (Lyle, Illinois, USA). Nitric, hydrochloric and hydrofluoric acids were

201 prepared from reagent-grade acids (Fisher Scientific, Inc., Pittsburgh, PA, USA). All

water was obtained from a Milli-Q2[™] water purification system. All other materials were
 ACS reagent grade and were used as received. Radiochemical isotopes ⁹⁰Sr were obtained
 from Eckert & Ziegler Analytics, Inc. (Atlanta, GA, USA) and diluted to the appropriate
 level.

206

207 <u>Procedures</u>

Column preparation. Sr Resin and DGA Resin was obtained as cartridges
containing 2 ml of each resin from Eichrom Technologies, Inc.. Sr Resin columns stacked
to achieve the desired resin volume (4 ml Sr Resin or 6 ml Sr Resin). Small particle size
(50-100 micron) resin was employed, along with a vacuum extraction system (Eichrom
Technologies).

Sample Preparation. Seawater samples were obtained from Isle of Palms, South 213 Carolina. USA. Known amounts of ⁹⁰Sr were pipetted into each filtered seawater sample 214 aliquot to demonstrate method performance. ⁹⁰Sr was added to each set of seawater 215 samples to test at the following levels: 148 mBq/L and 74 mBq/L respectively. The 216 uncertainty associated with the known value of 90 Sr standard added was ~3 % at the 95% 217 confidence level. The amount of stable strontium in the batches of seawater collected was 218 determined using an inductively-coupled mass spectrometer (ICP-MS) so that stable 219 strontium could be used as a vield tracer. A Perkin Elmer DRC-e (using standard ICP-MS 220 221 mode) was used to perform the stable Sr and Y measurements. Instrument operating conditions are shown in Table 1.⁸⁵Sr could have been used to determine chemical yield. 222 223 but this requires a separate gamma count of the purified sample, and the simplicity of gravimetric yield determination was preferred. 224

Figure 1 provides a flow chart of the initial sample preparation method for seawater. It was found that handling of the seawater sample aliquots was much easier if aliquots were limited to 2 liters of seawater. Two liter aliquots can be processed as replicates and recombined after purification to facilitate handling of larger aliquots. Up to ~6 liters of seawater can be processed in this manner using Sr Resin for ⁸⁹Sr, ⁹⁰Sr analysis and up to 10 liters to determine ⁹⁰Sr (⁹⁰Y) using DGA Resin, with a single 2ml DGA cartridge for each 2 L replicate.

For a 2 liter seawater aliquot, 200 mg of Fe $^{3+}$ as iron nitrate, 1 mg stable yttrium (if 90 Y was determined immediately using DGA Resin) and 25 ml 3.2M ammonium hydrogen phosphate were added. The pH was adjusted to ~ 10 by adding 30 ml 14.5 M ammonium hydroxide and stirring to mix well.

The samples were centrifuged using 500 ml centrifuge tubes, splitting the samples 236 between two 500 ml tubes and centrifuging for ~6 minutes @3400 rpm. The supernatant 237 was discarded. The rest of the 2 liter seawater aliquot was centrifuged using the same two 238 500 ml tubes. The calcium phosphate/iron hydroxide mixed precipitate was redissolved in 239 a total of 25 ml 15.8M HNO₃ (15 ml, then 10 ml volumes), transferring dissolved solids 240 from one of the replicate tubes to the next tube and then into a 600 ml glass beaker. The 241 tubes were rinsed with a total of 8 ml 2M aluminum nitrate and ~5 ml 3M HNO₃, which 242 was used to rinse the replicate centrifuge tubes and then transferred into the 600 ml glass 243 beaker. Each dissolved sample precipitate was evaporated to a volume of ~ 25 ml on a hot 244 plate and transferred to a 50 ml centrifuge tube. The glass beaker was rinsed with two 5 245 ml volumes of 1M HNO₃, which were added to the 50 ml tube. Each sample tube was 246 247 warmed slightly in a hot block and centrifuged ~ 5 minutes to remove any residual solids. 248 If any residual solids remained, these were rinsed with \sim 3 to 5 ml 8M HNO₃, centrifuged to remove the solids and this rinse was added to the load solution. 249

- It should be noted that smaller volume seawater aliquots (200 ml, 500 ml, etc.) can be processed in the same way even more quickly, if a higher MDA is still sufficient to meet measurement quality objectives.
- 253

Column separation. Figure 2 provides a flow chart of the rapid column separation 254 method using two 2 ml Sr cartridges (~1.4 g Sr Resin total) for a 2 liter sample aliquot. Sr 255 Resin columns were conditioned with 10 ml 8M HNO₃. The sample solution was loaded 256 257 onto the Sr Resin column at approximately ~1 drop per second. After the sample was loaded, a tube rinse of ~ 5 mL 8M HNO₃ was transferred to the Sr Resin column and 258 259 allowed to pass through the resin at ~ 2 drops per second. The following column rinses were performed at ~2-3 drops per second: 15 ml 8M HNO₃, 10 ml 3M HNO₃ - 0.05M 260 oxalic acid, and 8 ml 8M HNO₃. Sr was eluted from the resin with 20 ml 0.05M HNO₃ at 261 ~ 1 drop per second. It is possible to combine purified eluents on a single planchet to 262 263 increase the sample aliquot and lower the MDA.

This solution was transferred to preweighed planchets and evaporated on a hot 264 plate with medium heat to dryness. Two milliliters 0.05M HNO₃ were used to rinse each 265 266 tube and then was transferred to each planchet, and evaporated to dryness on a hot plate. The dried planchets were allowed to cool and then were weighed to determine 267 gravimetric carrier recovery. The planchets were counted by simultaneous gas flow 268 269 proportional counting (Tennelec LB 4100) for 120 minutes. Longer count times to 270 significantly lower MDA can be performed. The detectors were calibrated using NIST Traceable ⁹⁰Sr/⁹⁰Y sources matching the sample geometry. Detector backgrounds are 271 determined and subtracted from the sample counts. A mass attenuation correction factor 272 was determined experimentally using prepared mounts containing 90 Sr/ 90 Y (>167 Bg) and 273 a nominal amount of Sr carrier. 274

275

Figure 3 shows the DGA Resin only option using a single 2 ml DGA Resin

cartridge for each 2 liter volume of seawater processed. Ca, Sr, and Pb isotopes are

277 removed during the 8M HNO₃ rinse step. Bi isotopes are also removed using DGA Resin,

as Bi isotopes are retained on the resin during the nitric acid rinsese and stay on the resin

during the 0.25M HCl elution of yttrium. U and Th isotopes are removed using 3M

280 HNO₃-0.25M HF rinse steps, and lighter rare earths such as La and Ce are removed with

the 1.75M HCl rinsing. [11] The DGA Resin option can be used to determine ⁹⁰Sr with

excellent removal of interferences, but if ⁹¹Y is present, an ingrowth option using DGA

283 Resin again to collect 90 Y can be performed.

284 <u>Apparatus</u>

Polycarbonate vacuum boxes with 24 positions and a rack to hold 50 ml plastic tubes were used. Two boxes were connected to a single vacuum source by using a Tconnector and individual valves on the tubing to each box.

Planchets were annealed for \sim 4 hours in a furnace at 550 °C prior to use. This provides chemical resistance to the planchets so that iron oxide does not form during evaporation of the nitric acid, which would cause error in the gravimetric weights.

291

292 Results and Discussion

Table 1 shows the measured values for 90 Sr in a set of eleven 1 liter seawater samples

spiked at the 148 mBq L⁻¹ level. The average 90 Sr result was 149.8 mBq L⁻¹ ± 11 mBq

295 (1SD, standard deviation) with an average bias of 1.2%. The average stable Sr carrier

recovery was 88.8% (1 SD =5.3%), indicating very good chemical yield. The stable Sr

level in the seawater used was determined by ICP-MS to be 7.66 mg Sr L^{-1} . The

uncertainty in this ICP-MS assay is $\sim 1.5\%$ at 1 SD.

Table 2 shows the measured values for 90 Sr in a set of eleven 1 liter seawater samples

300 spiked at the 148 mBq L⁻¹ level. The average 90 Sr result was 152.6 mBq L⁻¹ ± 3.1 mBq L⁻

 1 (1 SD). The average stable Y carrier recovery was 95.0% (1 SD =1.6%) with an

average bias of 3.1%. The Y yield measurements were very consistent and rapid using
the ICP-MS in a single element assay mode.

Table 3 shows the measured values for ⁹⁰Sr in a set of four 2 liter seawater samples spiked at the 148 mBq L⁻¹ level. The average ⁹⁰Sr result was 154.2 mBq L⁻¹ \pm 4.2 mBq L⁻ 1 (1 SD), with an average bias of 4.2%. The stable Sr level in the seawater used was determined by ICP-MS to be 7.70 mg Sr L⁻¹. The uncertainty in this ICP-MS assay is \sim 1.5% at 1 SD. The average stable Sr carrier recovery was 81.9% (1 SD =4.1%), indicating very good

The average stable Sr carrier recovery was 81.9% (1 SD =4.1%), indicating very good
chemical yield, despite increasing the sample aliquot to 2 liters.

Table 4 shows the measured values for 90 Sr in a set of four 2 liter seawater samples spiked at the 148 mBq L⁻¹ level. The average 90 Sr result was 157.8 mBq L⁻¹ ± 6.9 mBq L⁻¹ 1 (1 SD), with an average bias of 6.6%. The average stable Y carrier recovery was 89.1% (1 SD =2.8%), indicating very good chemical yield, despite increasing the sample aliquot to 2 liters.

Table 5 shows the measured values for 90 Sr in a set of five seawater samples spiked at 740 and 74 mBq L⁻¹, respectively. The average bias in the 90 Sr results was only -2.0% The average stable Y carrier recovery was 91.9% (1 SD =2.5%). The Y carrier added was split between the two liter replicate aliquots and recombined in the final purified solution for counting so that up to 10L of seawater could be processed.

The tests indicate that radiostrontium can be measured very well using Sr Resin, and that ⁹⁰Sr can be analyzed using DGA Resin only (a single 2 ml cartridge per 2 liter sample replicate). The sample pre-concentration steps to remove the seawater matrix worked very well. Chemical yields were very good and no column flow issues were observed. The use of iron hydroxide along with calcium phosphate to enhance the precipitation was

effective, and tests demonstrate that up to 10 liters of seawater can be analyzed by 326 327 combining purified replicates, working with 2 liter aliquots. When calcium phosphate alone was tested Sr vields were only 60-70%. 328 Due to the Sr capacity limitations of Sr Resin and the large amounts of stable Sr in 329 seawater, the two liter samples required 6 ml of Sr Resin to separate ⁸⁹Sr and ⁹⁰Sr. Three 330 2 liter aliquots of seawater can be processed using 6 ml of Sr Resin be combining purified 331 replicates. Larger aliquots would require and inordinate amount of Sr Resin to perform 332 the separation. 333 The MDA (Minimum Detectable Activity) for the ⁹⁰Sr using this method with gas 334 flow proportional counting were calculated according to equations prescribed by Currie: 335 [12] 336 337 $MDA = [3+4.65\sqrt{B}]/(CT*R*V*Eff*0.060)$ 338 Where B = Total Background counts, = BKG (rate) * BKG Count time 339 CT = sample count time (min)340 R = Chemical Recoverv341 V =Sample aliquot (g) 342 EFF = Detector Efficiency 343 0.060 = conversion from dpm to mBq344 In low-level counting, where a zero background count is quite common, the constant 3 is 345 used to prevent an excessively high false positive rate. 346

The MDA for the results can be adjusted as needed, depending on the sample 347 aliquot and count time. For a 2 L sample aliquot, the method MDA for ⁸⁹Sr and /or ⁹⁰Sr 348 with a 120 minute count time is 9.1 mBq L^{-1} . For a 6 L sample aliquot, the method MDA 349 for ⁸⁹Sr and /or ⁹⁰Sr with a 1000 minute count time is 1 mBg L^{-1} . For a 10 L sample 350

aliquot (DGA only option), the method MDA for 90 Sr with a 1000 minute count time is 0.61 mBq L⁻¹.

The method can be applied to smaller seawater sample aliquots (even more rapidly) if slightly higher MDA levels are adequate for emergency response measurements, depending on the measurement quality objectives following an incident. The option to perform a second Sr Resin separation when a decontamination factor of greater than ~1000 is needed to ensure sufficient removal of high levels of beta interferences is also a recommended.

The combination of Sr Resin to assay total 89 Sr + 90 Sr, followed by DGA Resin to collect and purify 90 Y is a powerful combination and avoids any breakthrough of high levels of 89 Sr into the 90 Y fraction when high levels of 89 Sr are present. The ingrowth time for 90 Y may only need to be a 3-5 days, depending on levels present and MDA needs to facilitate more rapid results.

364 **Conclusions**

A new method to determine ⁸⁹Sr and ⁹⁰Sr has been developed that allows the rapid separation of radiostrontium in seawater samples with high chemical yields and effective removal of interferences. The simple matrix removal steps and rapid column separation steps resulted in reliable measurements of radiostrontium isotopes at very low levels from 1 to 10 liter sample aliquots. Simultaneous gas flow proportional counters with longer count times can be used to reduce the amount of seawater samples processed.

372

373 Acknowledgment

This work was performed under the auspices of the Department of Energy, DOE
Contract No. DE-AC09-96SR18500.

References

- [1] D. Larivière, T. Cumming, S.Kiser, C. Li, and R. Cornett, Automated flow injection system using extraction chromatography for the determination of plutonium in urine by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 23 (2008), 352
- [2] D.L. Stricklin, A. Tjarnhage, and U. Nygren, Application of low energy gamma-spectrometry in rapid actinide analysis for emergency preparedness, J. Radioanal. Nucl.Chem. 251 (2002) (1), 69
- [3] N. Vajda and C.K. Kim, Determination of radiostrontium isotopes: A review of analytical methodology, Applied Radiation and Isotopes 67 (2010), 2306
- [4] R. Bojanowski and D. Knapinska- Skiba, Determination of low-level ⁹⁰Sr in environmental samples: a novel approach to the classical method, J. Radioanal. Nucl.Chem, VoL 138, No. 2 (1990), 207
- [5] P.S. Butkalyuk, Rapid Determination of Sr-90 in Seawater, Moscow University Chemical Bulletin, (2009) Vol. 64, 165
- [6] Z. Grahek and M. Macefat, Determination of radioactive strontium in seawater, Analytica Chimica Acta 534 (2005), 271
- [7] S. Maxwell, and B. Culligan, Rapid separation method for emergency water and urine samples, J. Radioanal. Nucl. Chem, 279 (No.3), (2009), 901
- [8] S. Maxwell, B. Culligan, and G. Noyes, G. Rapid separation method for actinides in emergency air filter samples, Applied Radiation and Isotopes Vol. 68, Issue 12, December 2010, 2125

- [9] Rapid Radiochemical Methods in Support of Fukushima presentation at Radiobioassay and Radiochemical measurements Conference Eichrom User's group meeting, <u>http://www.eichrom.com/radiochem/meetings/2011/rrmc/pdf/4-</u> <u>Maxwell-Eichromworkshop2011.pdf</u>, November 2, 2011
- [10] E. P. Horwitz, R. Chiarizia, and M. Dietz, A Novel Strontium-Selective
 Extraction Chromatographic Resin, Solvent Extraction & Ion Exchange, Vol. 10, (1992) 313
- S. L. Maxwell, B. K. Culligan, R. C. Utsey, D. R. McAlister and E. P. Horwitz, Rapid method for determination of ²²⁸Ra in water samples, Journal of Radioanalytical and Nuclear Chemistry, online first, October, 2012
- [12] L.A., Currie, Limits for qualitative and quantitative determination, Anal. Chem.40 (1968) 586

Table Captions

Table 1	Operating Conditions for Perkin Elmer DRC-e
Table 2	⁹⁰ Sr in Seawater Results using Sr Resin (1 liter samples)
Table 3	⁹⁰ Sr in Seawater Results using DGA Resin (⁹⁰ Y-1 liter samples)
Table 4	⁹⁰ Sr in Seawater Results using Sr Resin (2 liter samples)
Table 5	⁹⁰ Sr in Seawater Results using DGA Resin (⁹⁰ Y-2 liter samples)
Table 6	⁹⁰ Sr in Seawater Results using DGA Resin Only (⁹⁰ Y)

Table 1Operating Conditions for	Perkin Elmer DRC-e
---------------------------------	--------------------

<u>Plasm</u>	<u>a Conditions</u>	
	RF Power	1400 W
	Torch Depth	5.5 mm
	Plasma Gas	15 L/min
	Carrier Gas	1 L/min
	Nebulizer Gas	0.98 L/min
	Sample Pump	5 rps
<u>Ion Le</u>	ens/Quadrupole	
	E1 Lens Voltage	6.25 V
	E1 Lens Slope	0.0165
	E1 Lens Intercept	4.413
	Cell Path Voltage	-12 CPV
	Cell Rod Offset	-17 V
	Q-pole Rod Offset	-4 V
Detec	tor	
	Discriminator	17 V
	Analog HV	-1550 V
	Pulse HV	900 V
Typic	<u>al Tune</u>	
	Counts	>300,000 cps In-115 at 10 ug/L
	RSD%	< 5%
	Oxide 156/140	< 5%
	Background	< 10 cps at Mass 220; <10 cps at Mass 8.5 (Vacant mass
		for noise detection only)
	Resolution	0.60 - 0.80 amu at 10% peak height
Data A	Acquisition	
	Integration	1000 msec Dwell time 50 msec
	Replicates	3 with 20 sweeps/reading

Sample	Sr carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi L ⁻¹)	(mBq L ⁻¹)	(mBq L ⁻¹)	(%)
1	94.1	4.0	148.0	150.6	1.8
2	91.4	4.0	148.0	138.5	-6.4
3	86.5	4.0	148.0	146.4	-1.1
4	96.2	4.0	148.0	127.0	-14.2
5	83.3	4.0	148.0	146.4	-1.1
6	86.2	4.0	148.0	153.7	3.9
7	82.9	4.0	148.0	161.1	8.9
8	90.5	4.0	148.0	159.9	8.0
9	89.4	4.0	148.0	134.2	-9.3
10	87.3	4.0	148.0	170.5	15.2
11	88.9	4.0	148.0	159.8	8.0
Avg	88.8			149.8	1.2
SD	5.3			11.0	
% RSD	5.9			7.3	
Seawater a	assay by ICP-MS	7.66 mg Sr/L			
I liter samp	ole aliquot				
2 hour count time					

Sample	Y carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi L ⁻¹)	(mBq L ⁻¹)	(mBq L ⁻¹)	(%)
1	93.8	4.0	148	160.0	8.1
2	95.9	4.0	148	166.4	12.4
3	94.0	4.0	148	153.9	4.0
4	96.5	4.0	148	155.1	4.8
5	92.1	4.0	148	149.4	0.9
6	96.0	4.0	148	157.7	6.6
7	96.0	4.0	148	142.5	-3.7
8	95.2	4.0	148	150.0	1.4
9	95.0	4.0	148	153.2	3.5
10	96.3	4.0	148	139.5	-5.7
11	94.1	4.0	148	151.1	2.1
Avg	95.0			152.6	3.1
SD	1.6			7.6	
% RSD	1.7			5.0	
	Y carrier by ICP-MS				
	I liter sample aliquot				
	2 hour count time				

Sample	Sr carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi L ⁻¹)	(mBq L ⁻¹)	(mBq L ⁻¹)	(%)
1	80.6	4.0	148	154.8	4.6
2	84.9	4.0	148	151.1	2.1
3	85.5	4.0	148	150.0	1.4
4	76.7	4.0	148	160.7	8.6
Avg	81.9			154.2	4.16
SD	4.1			4.8	
% RSD	5.0			3.1	
Seawater assay by ICP-MS		7.70 mg Sr/L			
2 liter sample aliquot					
2 hour count time					

Sample	Y carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(%)	(pCi L ⁻¹)	(mBq L ⁻¹)	(mBq L ⁻¹)	(%)
1	87.0	4.0	148	148.1	0.1
2	93.2	4.0	148	157.9	6.7
3	88.0	4.0	148	163.8	10.7
4	88.0	4.0	148	161.5	9.1
Avg	89.1			157.8	6.6
SD	2.8			6.9	
% RSD	3.2			4.4	
	Y carrier by ICP-MS				
	2 liter sample aliquot				
	2 hour count time				

Table 6⁹⁰Sr in Seawater Results using DGA Resin Only (⁹⁰Y)

Sample	Smp. Vol.	Y carrier	⁹⁰ Sr Reference Value	⁹⁰ Sr Reference Value	⁹⁰ Sr Measured Value	Difference
ID	(L)	(%)	(pCi L⁻¹)	(mBq L ⁻¹)	(mBq L ⁻¹)	(%)
1	4	91.6	20.0	740	725	-2.0
2	4	88.7	2.0	74	74	0.0
3	10	94.3	2.0	74	74	0.0
4	10	94.5	2.0	74	66	-10.8
5	10	90.2	2.0	74	76	2.7
Avg		91.9				-2.0
SD		2.5				
% RSD		2.8				
	Y carrier by ICP-MS					
2 hour count time						

