SANDIA REPORT SAND2012-7491 Unlimited Release Printed September 2012

Electrothermal Phenomena in Zinc Oxide Nanowires and Contacts

Saniya A. LeBlanc Kenneth E. Goodson

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831

Telephone:	(865) 576-8401
Facsimile:	(865) 576-5728
E-Mail:	reports@adonis.osti.gov
Online ordering:	http://www.osti.gov/bridge

Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd. Springfield, VA 22161

 Telephone:
 (800) 553-6847

 Facsimile:
 (703) 605-6900

 E-Mail:
 orders@ntis.fedworld.gov

 Online order:
 http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Electrothermal Phenomena in Zinc Oxide Nanowires and Contacts

Saniya A. LeBlanc and Kenneth E. Goodson Department of Mechanical Engineering Stanford University Stanford, California 94305

Abstract

Heat generation along nanowires and near their electrical contacts influences the feasibility of energy conversion devices. This work presents ZnO nanowire electrical resistivity data and models electrothermal transport accounting for heat generation at metal-semiconductor contacts, axial thermal conduction, and substrate heat losses. The current-voltage relationships and electron microscopy indicate sample degradation is caused by the interplay of heat generation at contacts and within the nanowire volume. The model is used to interpret literature data for Si, GaN, and ZnO nanowires. This work assists with electrothermal nanowire measurements and highlights practical implications of utilizing solution-synthesized nanowires. The work was conducted at Stanford University from 2010-2 through a Sandia Campus Executive Fellowship awarded to PhD candidate Saniya LeBlanc.

ACKNOWLEDGMENTS

This work was supported by a Sandia National Laboratories campus executive fellowship and a Stanford DARE fellowship. Collaborations with Dr. Sujay Phadke and Dr. Alberto Salleo at Stanford University's Materials Science and Engineering department were instrumental for nanowire synthesis and measurements. S. LeBlanc would like to thank Sandia scientist Dr. Doug Medlin for his support of the project and Dr. Sarah Allendorf for her career mentoring and professional support.

CONTENTS

1. Introduction	7
2. Electrothermal Model of a Single Nanowire	9
3. Electrothermal Analysis of Zinc Oxide Nanowires	
4. Development and Application of a Relative Heat Generation Metric	
5. Conclusions	
6. References	

FIGURES

TABLES

Table 3.1: ZnO nanowire parameters determined here from 4- and 2-point measurements. 14

1. INTRODUCTION

Nanowires are promising for applications including transistors [1, 2], sensors [3, 4], and energy conversion devices [5]. Recent research has examined their potential in energy applications including thermoelectric waste heat recovery [6, 7], solar cells [8], and batteries [9-11]. Zinc oxide nanostructures have generated particular interest due to their optical and electrical properties, ease of synthesis, and non-toxicity [12-14]. Most ZnO nanowire devices use electrical contacts where the contact composition and transport of energy carriers are critical for performance [15]. Contacts can dominate nanowire device response, particularly in devices exhibiting rectifying behavior [16, 17].

Nanoscale thermal contact resistance has been studied for nanowires and nanotubes. Using a contact resistance model based on acoustic mismatch theory [18], the thermal resistance of a nanowire point contact and variations in phonon transmission through welded and non-welded nanowire contacts were determined for indium arsenide nanowires [19]. Heat generation and thermal failure limit the reliability of nanowire/nanotube devices [20, 21]. Heat generation and electrical breakdown studies on individual carbon nanotubes show failure often occurs in the interior, away from contacts [21]. There is a pressing need for a methodology determining the impact of heat generation in nanowire devices, particularly those which may have limited electrode contact area and interfacial layers. The need is significant for oxide nanowires such as ZnO, SnO₂, and MgO in which the nanocontact interfacial effects increase the effective contact resistance [22].

This work analyzes heat generation within a nanowire and at its contacts, and the relative heat generation is used to determine nanowire device limitations. The model is applied to ZnO nanowires fabricated using solution-synthesis [23]. Data for ZnO, GaN, and Si nanowire structures measured by other researchers are utilized to determine the relative heat generation for a broader range of materials. This project was completed through a Sandia National Laboratories Campus Executive Fellowship at Stanford University's Department of Mechanical Engineering.

2. ELECTROTHERMAL MODEL OF A SINGLE NANOWIRE

The model considers a nanowire contacted by two metal electrodes as shown in Figure 2.1a with current flowing through the structure. The simplified one-dimensional heat diffusion equation

$$k_{w}A\frac{d^{2}T}{dx^{2}} + \rho_{w}AJ^{2} - g(T - T_{o}) = 0$$
⁽¹⁾

neglects the temperature dependence of both thermal conductivity and thermal conductance from the nanowire to the substrate. The parameters k_w , ρ_w , A, and T are the nanowire thermal conductivity, resistivity, cross-sectional area, and local temperature, respectively. The first term quantifies heat diffusion along the nanowire; the second term accounts for Joule heating within the nanowire due to current density J flowing through it. Thermal boundary conductance g is used to calculate the rate of heat loss per unit length to the underlying substrate at ambient temperature T_o . By linearizing the relationship between the nanowire-substrate heat conduction with respect to the temperature difference, this analysis may overestimate the peak temperature distribution in the nanowire by up to 15% for temperature differences exceeding 1000 K. Other complications reduce the accuracy for the case of extreme temperature differences, including the temperature dependent thermal conductivity and nanowire-metal electrical and thermal contact resistances, which renders this approach approximate and best suited for scaling assessment. One-dimensional conduction is assumed, and temperature variations in the nanowire and electrode cross-sections are neglected. The resistance to heat conduction inside the nanowire and electrode cross-sections is several orders of magnitude smaller than the thermal resistance of their surroundings, so the 1D approximation is valid [24].

Heat generation occurs at the electrode-nanowire contact due to electrical contact resistance. The model is applied to Ohmic contacts in which the metal work function is smaller than the semiconducting nanowire electron affinity, and the current-voltage relationship is linear. This condition does not preclude analysis of metal-nanowire contacts with interfacial layers so long as the barrier width is thin enough to fulfill the Ohmic contact requirement. The representation of electrical contact resistance for Schottky contacts [25] is not valid in this approach because it applies only near zero bias condition and does not describe the barrier to charge carrier transport resulting in heat generation.

Figure 2.1: Micrograph of single nanowire structure and temperature profiles obtained from electrothermal analysis.

(a) Scanning electron micrograph of a nanowire device with labels indicating heat conduction and generation. (b) Temperature profiles obtained by applying the electrothermal analysis to a ZnO nanowire structure with metal contacts. Metal-nanowire contacts are circled. The parameters used to generate the profiles are $k_w = 20$ W/m-K, r = 80 nm, $L_w = 10 \mu$ m, $\rho_c = 5 \times 10^{-3} \Omega$ -cm², g = 1.2 W/m-K and I = 400 nA. The resistivity range is representative of ZnO nanowires measured by other researchers [26].

Research on thermal contact resistance between a nanowire and an underlying substrate provided a theoretical framework for determining this thermal resistance based on van der Waals interactions between the two surfaces [27]. An extended model accounting for ballistic and diffusive phonon transport through a nanoscale constriction was developed along with the effective reduction in fluid thermal conductivity due to the small gap between the nanowire and substrate [28]. Both approaches have been applied to experimental characterization of a carbon nanotube with the extended model predicting a value closer to the one deduced from experiments [29]. The phonon mean free path in ZnO is approximately 30 nm; the contact width between the nanowire and substrate is 2 nm for nanowires analyzed here. While the contact is smaller than the phonon mean free path, the substrate is a 200 nm layer of SiO₂ on silicon, so transport across the interface is treated as diffusive. Thermal constriction resistance R_c to a substrate with thermal conductivity k_s is [27]

$$R_{c} = \frac{1}{L_{w}} \left[\frac{1}{\pi k_{w}} \ln \left(\frac{2D}{w} \right) - \frac{1}{2k_{w}} + \frac{1}{\pi k_{s}} \ln \left(\frac{D}{\pi w} \right) \right]$$
(2)

where L_w , D, and w are the nanowire length, diameter, and the half-width of its contact with the substrate, respectively. The effective thermal resistance R_f of the fluidic gap between the nanowire and substrate is [28]

$$\frac{1}{R_f} = 2L_w k_f \int_w^{D/2} \frac{dy}{D/2 - \sqrt{D^2/4 - y^2} + 2a\lambda_f}$$
(3)

where *a* is 2 for an air gap at room temperature, k_f is the thermal conductivity of the fluid, and λ_f is the mean free path of air molecules. The total thermal resistance R_t is $R_t = (R_c R_f)/(R_c + R_f)$. The heat loss *g* is the inverse of this thermal resistance divided by nanowire length.

The model yields the temperature profile of a nanowire with contacting electrodes. Figure 2.1b demonstrates the results for a nanowire device where symmetric contact heat generation is assumed. Asymmetric contact heating could occur in rectifying systems with Ohmic and Schottky contacts. The temperature distribution depends strongly on nanowire electrical resistance as demonstrated by the case where the large nanowire resistivity leads to a peak device temperature within the nanowire. Several researchers have conducted experiments using the resulting nanowire/nanotube failure to characterize the nanostructure's properties [20, 30]. Nonetheless, there is another critical failure mode in which metal-nanowire contact resistance dominates.

3. ELECTROTHERMAL ANALYSIS OF ZINC OXIDE NANOWIRES

The electrothermal model is applied to measurement structures of 1% Ga-doped ZnO nanowires with Ti/Ag electrodes. The nanowires were solution-synthesized and single crystalline wurtzite in structure [23]. A dilute nanowire solution was dispersed on a silicon substrate topped with 200 nm SiO₂. Electrodes were patterned on nanowires with electron beam lithography as shown in Figure 4.2; atomic force microscopy was used to verify electrode thickness. Images obtained with an FEI XL30 Sirion scanning electron microscope (SEM) enabled extraction of nanowire and electrode dimensions. A Keithley 2612 measured current and voltage to provide electrical resistance.

Unique precautions are required for individual nanowire measurements [31]. Stray voltages, even at low levels, can easily damage the nanowire or contact electrodes. Hence, all the electrical probes were shorted and connected to the ground potential before putting the probes in contact with the microfabricated measurement structure. Additionally, the nanowire structure is a high impedance load, so measurements were conducted by sourcing voltage and measuring current. Particularly for the highly variable nanowire contact conditions, this is the safest method to protect the device under test. Finally, all measurements were conducted inside a Faraday cage.

The selection of the metal electrode material contacting the semiconducting nanowire is important. In some cases, Schottky contacts can form when the metal's work function is larger than the semiconducting nanowire's electron affinity. Given the altered surface state on the nanowires, the electron affinity may be different than the nominal value. Even when a low metal work function is used as an intermediate layer between the nanowire and a higher work function metal, Schottky contacts can form. It is particularly important to isolate a device with Schottky contacts from any light source since the structure will operate as a Schottky contact solar cell. The incident energy from the light will alter the nonlinear current-voltage relationship. Nanowire structures with Ti/Au electrodes had Schottky contacts which resulted in combined thermionic and field emission, or tunneling, as the dominant current transport process through the Schottky contacts [32] where the relationship between current and voltage is nonlinear [16, 25, 33-35]:

$$\ln(I) \propto V \left(\frac{q}{k_b T} - \frac{1}{E_o} \right) \tag{4}$$

The parameter E_o is related to the transparency of the barrier to electron flow E_{oo} :

$$E_{oo} = \frac{qh_p}{2} \sqrt{\frac{N}{m_{eff} \mathcal{E}_s}}$$
(5)

where N, m_{eff} , ε_s are the doping concentration, carrier effective mass, and permittivity of the semiconducting nanowire, respectively. This nonlinear current-voltage relationship from the back-to-back Schottky contact devices enabled extraction of a nanowire doping concentration of

 10^{18} cm⁻³. Given the variability of the nanowire surface and the contacts made to it, verifying the doping concentration using another method is advisable.

For the Ohmic contact devices with Ti/Ag electrodes, a transmission line analysis yields specific contact resistivity of the metal-nanowire contact [36-38]. The electrical contact resistance R_m between the metal and the nanowire is [36, 38]

$$R_m = \frac{\rho_c}{2\pi L_T F} \coth \frac{L_m}{L_T} \tag{6}$$

 L_T , the electrical transfer length [36, 38]

$$L_T = \sqrt{\frac{r\rho_c}{2F\rho_w}} \tag{7}$$

relates nanowire resistivity ρ_w to specific resistivity of the metal-nanowire contact ρ_c . The fraction of nanowire circumference covered by metal is *F* for a nanowire with radius *r*; the length of contact is L_m . SEM imaging of the structures tilted at various angles show the majority (~75% or more) of the nanowire circumference is covered by metal. Full coverage (*F* = 1) is assumed, providing an upper-bound on ρ_c . The total resistance between two contacts is $R_T = 2R_m + (\rho_w/\pi r^2)L_w$. A 4-point measurement reveals nanowire resistivity which is used with 2-point measurements to determine contact resistance. Surface depletion is neglected; the analysis assumes the entire nanowire cross-section is used for electrical conduction. This assumption is validated by a calculation of the depletion width which is less than 3 nm, less than 5% of the radius [39].

Nanowire and specific contact resistivity for two structures are listed in Table 3.1. There are two possible reasons the extracted contact resistivity spans multiple orders of magnitude. Solution-synthesized nanowires often have a surfactant coating remaining on the nanowire surface. Raman spectroscopy on the same batch of nanowires measured here shows evidence of the surfactant [40]. Multiple 4-point measurements were performed on sample 2 before the 2-point measurements. It is possible one of the electrode-nanowire contact areas decreased during the measurement. In this case, the actual contact resistivity would be lower than the value calculated using the contact area determined from pre-measurement SEM images.

Table 3.1: ZnO nanowire parameters determined here from 4- and 2-point measurements.

Sample	<i>r</i> (nm)	$\rho_w (\Omega$ -cm)	$\rho_c (\Omega - \mathrm{cm}^2)$
1	52	$4.7 \ge 10^{-3} (\pm 2.4 \ge 10^{-3})$	$5.4 \ge 10^{-4} (\pm 1.3 \ge 10^{-4})$
2	67	$1.0 \ge 10^{-2} (\pm 1.4 \ge 10^{-2})$	17 (±12)

Incorporating experimental nanowire and contact resistivity values into the electrothermal model indicates the peak temperature rise occurs at the metal-nanowire contact. At the maximum measured current of 5 μ A, the predicted contact temperature is 900 K which approaches the silver electrode melting point. Shown in Figure 3.1, post-measurement images show device

failure at the metal contact while much of the nanowire between the electrodes remains intact. The images reveal pitting of the metal at the contact resulting in reduced contact area between the nanowire and electrode. The pitting may be due to current crowding at the leading edge of the metal-nanowire contact region [41]. The localized region of high current density at the leading edge may exacerbate electromigration of the metal electrode. Therefore, the actual contact area between the electrode and nanowire is less than the nominal value causing an increase in current density and contact temperature as shown in Figure 3.2. Failure of the device occurs at one contact indicating the contact resistances are asymmetric. Though challenging due to the rapid evolution of dimensional changes from heat generation, an informative future study would involve *in situ* imaging of the nanowire structure during the electrical measurement to capture the dynamic change in electrode width.

Figure 3.1: Scanning electron microscope image of ZnO nanowire device (a) before and (b & c) after measurement.

There is pitting of the contact where the effective electrode width and area of contact with the nanowire decrease, and the metal electrode melts. The rightmost electrode shown in (a) was not used for measurements presented here.

Figure 3.2: Peak contact temperature as a function of electrode width. The minimum width the ZnO nanowire device can tolerate is 720 nm; further electrode narrowing causes the contact to reach the electrode melting point.

4. DEVELOPMENT AND APPLICATION OF A RELATIVE HEAT GENERATION METRIC

Analysis of nanowire structure failure is critical to the development of reliable devices. It is useful to compare heat generation in the nanowire divided by heat generation at the contacts. For Ohmic contacts and device current *I*, this non-dimensional, relative heat generation is represented as $\theta = I^2 R_w/(III + I^2 R_w)$ which can also be expressed as

$$\theta = \frac{J\rho_w L_w}{\pm \frac{1}{e} \left[\left(E_C - E_F \right) + Ck_b T \right] + J\rho_w L_T \coth\left(L_m / L_T \right)}$$
(7)

where E_C and E_F are the semiconducting nanowire conduction band edge and Fermi level, respectively. The parameter *C* in the Peltier coefficient Π depends on the variation of the density of states and mobility with energy [42]. The numerator represents nanowire Joule heating. The denominator has two components contributing to contact heating, the Peltier effect and the power dissipated due to electrical contact resistance. The sign of the Peltier term depends on the direction of current through the metal-nanowire contact where one contact has a positive Peltier heat release term while the other has a negative heat absorption term. The relative heat generation θ thus indicates where nanowire device failure is likely. Figure 4.1 shows the relative heating as a function of contact resistivity for the wide range of ZnO nanowire contact resistivity [43]. As effective contact resistance of the junction increases, or nanowire resistivity decreases, the device is more prone to fail at the contact.

Figure 4.1: Ratio, θ , of the heat generation rate in the nanowire to the heat generation at the contacts varies with electrical contact resistivity of the metal-nanowire contact and indicates the likely device failure point.

The figure shows the variation in θ for a ZnO nanowire device operating at 1 µA for which the Peltier coefficient is evaluated at the contact temperature determined from the electrothermal model. The parameters used are $\Pi = 0.17$ V, r = 66 nm, $L_w = 7$ µm, $\rho_w = 1$ x 10^{-2} Ω-cm.

Electrothermal transport data for relevant materials are examined to assess the impact of relative heating on an array of nanowire devices proposed for energy conversion applications. Figure 4.2 shows the relative heating versus specific contact resistivity for silicon [36, 44-48], gallium nitride [38, 49-52], and zinc oxide [2, 53-55]. Using data reported by previous studies, the relative heat generation rate is determined assuming typical metal-nanowire contact length, nanowire length, and device current of 1 μ m, 10 μ m, and 1 μ A, respectively. The electrical transfer length is calculated assuming full metal coverage (*F* = 1). When not reported, nanowire radius is measured from the authors' presented SEM images using an image analysis program. If authors report carrier concentration and mobility from 4-point measurements, nanowire resistivity is calculated. The Peltier term is several orders of magnitude less than heating from contact resistivity, so this term was neglected in calculations for the data in Figure 4.2.

Figure 4.2: The ratio of nanowire-internal to contact heat generation plotted as a function of reported contact resistivity for Si, GaN, and ZnO.

Data for Si (\blacksquare), GaN (\blacklozenge), and ZnO (\bullet) nanowire devices are taken from various studies (Si [36, 44-48], GaN [38, 49-52], ZnO [2, 53-55]). Nanowire material type is designated by marker type. Data from each source are differentiated by color as indicated in the references. Data from this work are circled.

The comparison of multiple nanowire devices demonstrates a wide range of specific contact resistivity, approximately 1.2×10^{-8} to 0.75Ω -cm². Likewise, the relative heating parameter for devices other than the solution-synthesized ZnO nanowires spans two orders of magnitude. ZnO nanowire structures with relative heating parameters below 0.1 where contact heating dominates will likely fail during device operation due to melting of the metal contact. Little information is reported for such failures, rendering a thorough analysis of experimental electrothermal phenomena in nanowire devices difficult. The necessity of such communication is highlighted by this analysis. The paucity of such data for solution-synthesized nanowires is significant.

With the exception of data reported here for ZnO, the data used to generate Figure 4.2 are taken from measurements of vapor-synthesized (e.g. chemical vapor deposition, vapor-liquid-solid growth) nanowires. Ease of fabrication makes solution-synthesized nanowires promising, but contact resistivity may limit their functionality and impact device performance. Annealing processes to eliminate residual surfactant are particularly limited with ZnO nanowires since an insulating oxide readily forms at the nanowire-metal contact for multiple metals, a process that can be amplified with elevated temperatures. Annealing of these solution-synthesized ZnO nanowire structures with Ti and Ti/Al electrodes showed a reduction in electrical conductivity.

5. CONCLUSIONS

This work proposes an electrothermal model which links current-voltage measurement data to the resulting temperature profile of semiconducting ZnO nanowire devices. The contact resistance of the metal-semiconductor contact leads to heat generation at the contact which surpasses the nanowire Joule heating. Therefore, the contact heat generation limits the operating range of the nanowire device. This approach is used to determine design and operating parameters for nanowire devices. Additionally, recent reviews demonstrate the substantial variability in ZnO nanowire devices, particularly at the metal-semiconductor contacts. This work highlights the significance of these contacts and the need for further contact characterization and improvements.

6. REFERENCES

- [1] J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neil, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions," *Nature nanotechnology*, vol. 5, 2010.
- [2] J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, "ZnO Nanowire Transistors," *Society*, pp. 9-14, 2005.
- [3] F. Patolsky and C. M. Lieber, "Nanowire nanosensors," *Materials Today*, 2005.
- [4] A. Menzel, K. Subannajui, F. Guder, D. Moser, O. Paul, and M. Zacharias,
 "Multifunctional ZnO-Nanowire-Based Sensor," *Advanced Functional Materials*, vol. 21, pp. 4342-4348, 2011.
- [5] A. I. Hochbaum and P. Yang, "Semiconductor Nanowires for Energy Conversion," *Chemical Reviews*, vol. 110, pp. 527-546, 2010.
- [6] S. C. Andrews, M. A. Fardy, M. C. Moore, S. Aloni, M. Zhang, V. Radmilovic, and P. Yang, "Atomic-level control of the thermoelectric properties in polytypoind nanowires," *Chemical Science*, vol. 2, pp. 706-714, 2011.
- [7] J. A. Martinez, P. P. Provencio, S. T. Picraux, J. P. Sullivan, and B. S. Swartzentruber, "Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and holephonon scattering," *Journal of Applied Physics*, vol. 110, 2011.
- [8] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, "Nanowire Solar Cells," *Annual Review of Materials Research*, vol. 41, 2011.
- [9] C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel, and Y. Cui, "Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes," ACS Nano, vol. 4, pp. 1443-1450, 2010.
- [10] S. R. Gowda, A. L. M. Reddy, X. Zhan, and P. M. Ajayan, "Building Energy Storage Device on a Single Nanowire," *Nano letters*, vol. 11, pp. 3329-3333, 2011.
- [11] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High-performance lithium battery anodes using silicon nanowires," *Nature nanotechnology*, vol. 3, 2008.
- [12] U. Ozgur, Y. I. Alivov, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," *Journal of Applied Physics*, vol. 98, 2005.
- [13] A. B. Djurisic, X. Chen, Y. H. Leung, and A. M. C. Ng, "ZnO nanostructures: growth, properties and applications," *Journal of Materials Chemistry*, 2012.
- P. Jood, R. J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R. W. Siegel, T. Borca-Tasciuc, S. X. Dou, and G. Ramanath, "Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties," *NanoLetters*, vol. 11, pp. 4337-4342, 2011.
- [15] L. J. Brillson and Y. Lu, "ZnO Schottky barriers and Ohmic contacts," *Journal of Applied Physics*, vol. 109, 2011.
- [16] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, and L.-M. Peng, "Quantitative Analysis of Current-Voltage Characteristics of Semiconducting Nanowires: Decoupling of Contact Effects," *Advanced Functional Materials*, vol. 17, pp. 2478-2489, 2007.
- [17] Y.-F. Lin and W.-B. Jian, "The Impact of Nanocontact on Nanowire Based Nanoelectronics," *NanoLetters*, vol. 8, pp. 3146-3150, 2008.
- [18] R. Prasher, "Acoustic mismatch model for thermal contact resistance of van der Waals contacts," *Applied Physics Letters*, vol. 94, p. 041905, 2009.

- [19] F. Zhou, A. Persson, L. Samuelson, H. Linke, and L. Shi, "Thermal resistance of a nanoscale point contact to an indium arsenide nanowire," *Applied Physics Letters*, vol. 99, 2011.
- [20] T. Westover, R. Jones, J. Y. Huang, G. Wang, E. Lai, and A. A. Talin, "Photoluminescence, Thermal Transport, and Breakdown in Joule-Heated GaN Nanowires," *NanoLetters*, vol. 9, pp. 257-263, 2009.
- [21] A. Liao, R. Alizadegan, Z.-Y. Ong, S. Dutta, F. Xiong, K. J. Hsia, and E. Pop, "Thermal dissipation and variability in electrical breakdown of carbon nanotube devices," *Physical Review B*, vol. 82, 2010.
- [22] K. Nagashima, T. Yanagida, A. Klamchuen, M. Kanai, K. Oka, S. Seki, and T. Kawai, "Interfacial effect on metal/oxide nanowire junctions," *Applied Physics Letters*, vol. 96, 2010.
- [23] L. Goris, R. Noriega, M. Donovan, J. Jokisaari, G. Kusinski, and A. Salleo, "Intrinsic and Doped Zinc Oxide Nanowires for Transparent Electrode Fabrication via Low-Temperature Solution Synthesis," *Journal of Electronic Materials*, vol. 38, pp. 586-595, April 2009 2009.
- [24] F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, *Fundamentals of Mass and Heat Transfer*. New York: McGraw-Hill, 2007.
- [25] S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, 3 ed. Hoboken, NJ: Wiley-Interscience, 2007.
- [26] E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Golzhauser, H.-H. Wehmann, and A. Waag, "On the difficulties in characterizing ZnO nanowires," *Nanotechnology*, vol. 19, 2008.
- [27] V. Bahadur, J. Xu, Y. Liu, and T. S. Fisher, "Thermal Resistance of Nanowire-Plane Interfaces," *Journal of Heat Transfer*, vol. 127, p. 664, 2005.
- [28] R. Prasher, "Predicting the Thermal Resistance of Nanosized Constrictions," *NanoLetters*, vol. 5, pp. 2155-2159, 2005.
- [29] C. Yu, S. Saha, J. Zhou, L. Shi, A. M. Cassell, B. A. Cruden, Q. Ngo, and J. Li, "Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber," *Journal of Heat Transfer*, vol. 128, 2006.
- [30] E. Pop, D. A. Mann, K. E. Goodson, and H. Dai, "Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates," *Journal of Applied Physics*, vol. 101, 2007.
- [31] J. Niemann. (2005, Electrical Measurements on Nanoscale Materials.
- [32] J. Appenzeller, M. Radosavljević, J. Knoch, and P. Avouris, "Tunneling Versus Thermionic Emission in One-Dimensional Semiconductors," *Physical Review Letters*, vol. 92, p. 048301, 2004.
- [33] E. H. Rhoderick, *Metal-semiconductor contacts*, 2nd ed. ed. Oxford [England] :: Claredon Press ;, 1988.
- [34] F. A. Padovani and R. Stratton, "Field and thermionic-field emission in Schottky barriers," *Solid-State Electronics*, vol. 9, pp. 695-707, 1966.
- [35] C. Y. Chang and S. M. Sze, "Carrier transport across metal-semiconductor barriers," *Solid-State Electronics*, vol. 13, pp. 727-740, 1970.
- [36] S. E. Mohney, Y. Wang, M. A. Cabassi, K. K. Lew, S. Dey, J. M. Redwing, and T. S. Mayer, "Measuring the specific contact resistance of contacts to semiconductor nanowires," *Solid-State Electronics*, vol. 49, pp. 227-232, 2005.

- [37] H. H. Berger, "Models for contacts to planar devices," *Solid-State Electronics*, vol. 15, pp. 145-158, 1972.
- [38] L. M. Mansfield, K. a. Bertness, P. T. Blanchard, T. E. Harvey, a. W. Sanders, and N. a. Sanford, "GaN Nanowire Carrier Concentration Calculated from Light and Dark Resistance Measurements," *Journal of Electronic Materials*, vol. 38, pp. 495-504, 2009.
- [39] B. S. Simpkins, M. A. Mastro, C. R. Eddy, and P. E. Pehrsson, "Surface depletion effects in semiconducting nanowires," *Journal of Applied Physics*, vol. 103, 2008.
- [40] S. A. Phadke, Y. Park, F. B. Prinz, and A. Salleo, "A study of the cause of high nanowire to nanowire junction resistance in conducting ZnO nanowire mats," 2012.
- [41] K. L. Grosse, M.-H. Bae, F. Lian, E. Pop, and W. P. King, "Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts," *Nature Nanotechnology*, vol. 6, 2011.
- [42] H. Fritzsche, "A general expression for the thermoelectric power," *Solid State Communications*, vol. 9, pp. 1813-1815, 1971.
- [43] E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Golzhauser, H. H. Wehmann, and A. Waag, "On the difficulties in characterizing ZnO nanowires," *Nanotechnology*, vol. 19, p. 365707, Sep 10 2008.
- [44] I. Park, Z. Li, A. P. Pisano, and R. S. Williams, "Top-down fabricated silicon nanowire sensors for real-time chemical detection.," *Nanotechnology*, vol. 21, p. 015501, 2010.
- [45] M. T. Björk, H. Schmid, J. Knoch, H. Riel, and W. Riess, "Donor deactivation in silicon nanostructures.," *Nature nanotechnology*, vol. 4, pp. 103-7, 2009.
- [46] H. D. Tong, S. Chen, W. G. van der Wiel, E. T. Carlen, and A. van den Berg, "Novel topdown wafer-scale fabrication of single crystal silicon nanowires.," *Nano letters*, vol. 9, pp. 1015-22, 2009.
- [47] K.-K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, and S. W. Novak, "Structural and electrical properties of trimethylboron-doped silicon nanowires," *Applied Physics Letters*, vol. 85, p. 3101, 2004.
- [48] S. Habicht, Q. T. Zhao, S. F. Feste, L. Knoll, S. Trellenkamp, B. Ghyselen, and S. Mantl, "Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.," *Nanotechnology*, vol. 21, p. 105701, 2010.
- [49] E. Stern, G. Cheng, M. P. Young, and M. a. Reed, "Specific contact resistivity of nanowire devices," *Applied Physics Letters*, vol. 88, p. 053106, 2006.
- [50] A. Motayed, A. V. Davydov, S. N. Mohammad, and J. Melngailis, "Experimental investigation of electron transport properties of gallium nitride nanowires," *Journal of Applied Physics*, vol. 104, p. 024302, 2008.
- [51] G. Ye, K. Shi, R. Burke, J. M. Redwing, and S. E. Mohney, "Ti/Al Ohmic Contacts to n-Type GaN Nanowires," *Journal of Nanomaterials*, vol. 2011, 2011.
- [52] C. Hwang, J.-H. Hyung, S.-Y. Lee, C.-O. Jang, T.-H. Kim, P. Choi, and S.-K. Lee, "The formation and characterization of electrical contacts (Schottky and Ohmic) on gallium nitride nanowires," *Journal of Physics D: Applied Physics*, vol. 41, pp. 159802-159802, 2008.
- [53] T. Weimann, P. Hinze, E. Schlenker, a. Bakin, a. C. Mofor, a. Behrends, and a. Waag, "Electrical and structural characterisation of single ZnO nanorods," *Microelectronic Engineering*, vol. 85, pp. 1248-1252, 2008.

- [54] J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, "Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt.," *Nanotechnology*, vol. 20, p. 135701, 2009.
- [55] G.-D. Yuan, W.-J. Zhang, J.-S. Jie, X. Fan, J.-X. Tang, I. Shafiq, Z.-Z. Ye, C.-S. Lee, and S.-T. Lee, "Tunable n-Type Conductivity and Transport Properties of Ga-doped ZnO Nanowire Arrays," *Advanced Materials*, vol. 20, pp. 168-173, 2008.

DISTRIBUTION

4 Lawrence Livermore National Laboratory Attn: N. Dunipace (1)
P.O. Box 808, MS L-795
Livermore, CA 94551-0808

1 1 1	MS0359 MS9161 MS9161	Yolanda V. Moreno Douglas Medlin Sarah Allendorf	1911 8656 8650
1	MS0899	Technical Library	9536 (electronic copy)
1	MS0359	D. Chavez, LDRD Office	1911

Sandia National Laboratories