DESIGN OF THE ITER IN-VESSEL COILS

PDF Version Also Available for Download.

Description

The ITER project is considering the inclusion of two sets of in-vessel coils, one to mitigate the effect of Edge Localized Modes (ELMs) and another to provide vertical stabilization (VS). The in-vessel location (behind the blanket shield modules, mounted to the vacuum vessel inner wall) presents special challenges in terms of nuclear radiation (~3000 MGy) and temperature (100oC vessel during operations, 200oC during bakeout). Mineral insulated conductors are well suited to this environment but are not commercially available in the large cross section required. An R&D program is underway to demonstrate the production of mineral insulated (MgO or Spinel) hollow ... continued below

Creation Information

Neumeyer, C; Bryant, L; Chrzanowski, J; Feder, R; Gomez, M; Heitzenroeder, P et al. November 27, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The ITER project is considering the inclusion of two sets of in-vessel coils, one to mitigate the effect of Edge Localized Modes (ELMs) and another to provide vertical stabilization (VS). The in-vessel location (behind the blanket shield modules, mounted to the vacuum vessel inner wall) presents special challenges in terms of nuclear radiation (~3000 MGy) and temperature (100oC vessel during operations, 200oC during bakeout). Mineral insulated conductors are well suited to this environment but are not commercially available in the large cross section required. An R&D program is underway to demonstrate the production of mineral insulated (MgO or Spinel) hollow copper conductor with stainless steel jacketing needed for these coils. A preliminary design based on this conductor technology has been developed and is presented herein.

Source

  • 19th Topical Meeting on the Technology of Fusion - ANS Nov. 7-11, 2010, Las Vegas.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: PPPL-4576
  • Grant Number: DE-ACO2-09CH11466
  • Office of Scientific & Technical Information Report Number: 1001665
  • Archival Resource Key: ark:/67531/metadc839783

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 27, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 3, 2016, 3:05 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Neumeyer, C; Bryant, L; Chrzanowski, J; Feder, R; Gomez, M; Heitzenroeder, P et al. DESIGN OF THE ITER IN-VESSEL COILS, article, November 27, 2010; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc839783/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.