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This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.
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Final Report—Summer Visit 2011

During my visit to LLNL during the summer of 2011, I worked on algebraic multilevel solvers
for large sparse systems of linear equations arising from discretizations of partial differential
equations. The particular emphasis this year was on finite elements matrices arising from
hp-adaptive finite element computations. Such matrices are interesting in several respects.
First, higher order polynomials give rise to dense blocks within the sparse matrix. For this
reason I implemented a general sparse block data structure, in which the elements are blocks
of arbitrary size and shape. The blocks are referenced via a ja array (pointers and block
column indices) similar to a standard sparse matrix. However, dense matrix operations
(matrix multiplies, I LU factorizations) can now be done more efficiently using dense matrix
techniques with no indirect addressing.

Within this new data structure, I implemented several solvers. The first was a block I LU
factorization using (block) minimum degree orderings, and a block version of drop tolerance.
This was a generalization of a similar method I implemented for standard sparse matrices.
The second basic method was a two-level iteration. The smoother in this scheme is a simple
block symmetric Gauss-Seidel iteration. The coarse space is hierarchical in nature. For
each vertex in the mesh, we associate the linear nodal basis function. For each edge in the
mesh with degree p > 2, we associate a quadratic bump function. For each element with
interior degree p > 3, we associate a cubic bubble function. If all basis functions are present,
the maximum degree of this coarse space is approximately 6N, where N is the number of
vertices in the triangulation (2D). While this hierarchical coarse space cannot be sufficient
to achieve convergence rates independent of both NV and p as p — oo, p < 9 in my finite
element program (due to availability of quadrature rules), so as a practical matter this is
not an issue.

In addition to the work on sparse block solvers, we had several discussions related to
the algebraic domain decomposition solver project. The idea here is to give each processor
some portion of the fine matrix, and a coarse description of the remaining matrix. In this
sense it is an algebraic version of the (geometric grid based) DD solver in PLTMG.



