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Abstract

Enzymes catalyze biochemical reactions with remarkable specificity and efficiency, usu-

ally under physiological conditions. Computer simulation is a powerful tool for understanding

enzyme catalytic mechanisms, particularly in cases where standard experimental techniques

may be of limited utility. Here, we present an overview of the application of computer sim-

ulation techniques to understanding enzyme catalytic mechanisms. Examples using quantum

chemical methods, as well as combined quantum mechanical/classical mechanical approaches,

are provided.
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1 Introduction

Enzymes are proteins that catalyze biochemical reactions, often with high specificity and under

mild, physiological conditions.1,2 They are essential to life processes, participating, for example,

in signaling, metabolism, and detoxification. Enzymes are capable of increasing reaction rates by

many orders of magnitude relative to uncatalyzed reactions in solution. An often-cited example

is orotidine 5’-phosphate (OMP) decarboxylase, which yields a rate enhancement (kcat/kuncat) of

1017 relative to the uncatalyzed reaction in solution.3,4 Enzymes are key targets for drug discovery,

and they are increasingly used in industrial processes such as bioenergy production. Thus, it is

important to understand how they achieve their remarkable efficiency.

Enzymes catalyze numerous reactions including, but not limited to, oxidation, reduction, ad-

dition, elimination, phosphoryl transfer, hydrolysis, substitution, isomerization, (de)carboxylation,

(de)amination, and mono- and dioxygenation.2 Cofactors such as NADP(H), FAD(H), Fe-S clus-

ters, heme, or metal ions may be required for activity.

Enzymes may display high specificity for their substrates, for example, binding only one

stereoisomer of a chiral substrate. The catalytic power of an enzyme for its substrate derives

from its enhanced binding affinity for the altered substrate in the transition state.5 In other words,

enzymes bind the transition state of the reaction more tightly than the ground state.

A number of strategies are employed in enzymatic rate enhancement. Some of these strategies

include acid/base catalysis, covalent catalysis, hydrogen bonding, charge transfer, electrostatic sta-

bilization, hydrophobicity, open-shell radical chemistry, and tunneling.1,2 Among the many goals

of studying enzyme catalysis is to characterize and quantify the various effects that facilitate catal-

ysis.

Although experimental techniques such as X-ray crystallography, NMR, and other spectro-
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scopic methods are critical for studying enzyme structure, they are sometimes unable to answer

questions concerning detailed catalytic mechanisms. Computational approaches allow the direct

assessment and characterization of the enzyme-substrate (ES) and enzyme-product (EP) com-

plexes, as well as transient species such as metastable intermediates and transition states. Simula-

tion also enables enzyme reaction energetics to be dissected into individual contributions. Thus,

computer simulation can provide important information that is complementary to experiments.

The purpose of this article is to give an overview of some of the more common methods used

in simulating enzyme catalysis and to provide illustrative examples from our own work.

2 Enzyme kinetics

A basic understanding of experimental enzyme kinetics is a prerequisite for simulating enzyme

reactions. Here, we provide only a brief overview of the concepts we consider to be essential for

enzyme simulation studies. Interested readers should consult, e.g. Fersht, for further information.1

A simple kinetic scheme representing an enzymatic reaction under steady-state conditions is

often written as

E+S
k1−−⇀↽−−
k−1

ES kcat−−→ EP−−→ E+P

where E represents the enzyme, S is the substrate, ES is the enzyme-substrate complex, and P is the

product; k1 and k−1 are the rates of association and dissociation of the ES complex, respectively;

and kcat is the apparent first-order rate constant, also called the turnover number. Enzyme turnover

is defined as the number of moles of product produced per number of moles of enzyme per unit

time, and is expressed in units of inverse time (s−1). Catalase has one of the highest known

enzymatic turnover numbers, with kcat ≈ 106 s−1.

The Michaelis constant (Km = (k−1 + kcat)/k1) is a measure of the concentration of substrate

at which the rate of an enzymatic reaction is one half its maximum, Vmax. An important quantity

in enzyme kinetics is kcat/Km, which is an apparent second-order rate constant that describes the

specificity of an enzyme for a given substrate. However, kcat/Km is not typically computed because
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Km is more difficult to calculate than kcat.

It is common to compute relative free energies in simulations of enzyme catalysis. Computed

activation free energies are usually compared to experimental values derived from kcat using Eyring

Transition State Theory.6 Transition State Theory provides a connection between kcat and the free

energy of activation, ∆G‡:

kcat = κ
kBT

h
exp [−∆G‡/RT]

where κ is the transmission coefficient (usually set equal to 1), kB is Boltzmann’s constant, T is

the temperature in Kelvin, h is Planck’s constant, and R is the gas constant expressed in kcal/mol.

Transition State Theory is expected to be a good approximation for energy barriers above ~10

kcal/mol, which includes essentially all enzyme-catalyzed reactions.7

A plot of the rate of reaction as a function of pH, or pH-rate profile, provides valuable informa-

tion for understanding pH-dependence in enzyme-catalyzed reactions. The reaction rate may be

expressed in terms or kcat, kcat/Km, or both. A pH-rate profile reveals the pH at which an enzyme

has maximal activity, as well as the number of ionizable residues that participate in the rate-limiting

step of a reaction. For example, a so-called bell-shaped pH-rate profile with a slope of +1 on its

acidic side and -1 on its basic side indicates that one residue serves as a base and the other as

an acid, and they must both be in the proper ionization state for activity. Apparent pKas for the

ionizable residues may be obtained by fitting to an appropriate rate equation.

Site-directed mutagenesis is an indispensible technique for determining the effect of substitut-

ing a specific amino acid with another. For example, enzyme reaction rates can be measured for

both wild-type and mutant enzymes, and changes in enzyme kinetics can be monitored to assess

the possible catalytic role of a given residue. The complete absence of activity in a mutant enzyme

indicates that the mutated residue is essential for catalysis.

Isotope effect measurement is an important experimental technique aiding in the determination

of enzyme mechanisms.8 Mass differences between isotopes manifest themselves in equilibrium

constants and reaction rates. Kinetic isotope effects (KIEs) provide information about the amount
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of bonding between important atoms or groups during the rate-limiting step of a reaction.9,10 For

example, a proton transfer will proceed more rapidly than an analogous deuteron transfer, and

the kinetics of the process is detectable if the process is partially or fully rate-limiting. Isotope

effects are designated as primary, in which a bond involving an isotopically labeled atom is either

broken or formed, or secondary, in which the isotopically labeled atom is remote from the site that

undergoes a change in bond order. Isotope effects are also classified as normal ( kH
kD

> 1), or inverse

( kH
kD

< 1). KIEs of enzyme reactions are typically expressed as m(V/K), where m is the mass of the

heavier isotope of the labeled atom, V is the maximal rate of the reaction, and K is the Michaelis

constant.

3 Computer simulation of enzyme systems

One of the main benefits of computer simulation is that it provides information that is often com-

plementary to experiment. Simulation can provide molecular structures at atomic detail, reaction

energetics, and numerous ways to analyze the data. For example, energies obtained from a molec-

ular simulation may be decomposed into individual components such as per-residue electrostatic

contributions to catalysis. Both classical and quantum chemical methods are described in a recent

book.11

Molecular mechanics is a standard tool for simulating the dynamic properties of biomolecules,

including conformational changes and thermodynamic quantities. In molecular mechanics, there

is no explicit inclusion of the electronic degrees of freedom. Instead, harmonic or higher-order po-

tential terms are used to describe bonded interactions (bond distances, bond angles and dihedral an-

gles), and atom-centered Coulombic and van der Waals potentials are used to describe nonbonded

interactions. Several molecular mechanics, or force field, potentials12 have been developed, with

AMBER,13 CHARMM,14 GROMOS,15 and OPLS16 being among the more popular. Molecular

dynamics simulation (MD) involves propagating a system in time according to Newton’s equa-

tions of motion and enables efficient statistical sampling of phase space for dynamical processes
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on timescales in the range of ~10−12 to 10−6 s. MD is the most commonly applied method, but

Monte Carlo approaches are also frequently used and may provide unique advantages over MD in

some instances. Polarizable force fields12 such as AMOEBA17 and SIBFA18 allow explicit charge

polarization of MM atoms, and may well be very useful in classical and combined quantum me-

chanical and classical simulations. Although the standard, harmonic potential form of the bonded

parameters is sufficient to describe chemical bonds near their equilibrium distances, the major lim-

itation of standard MM force fields lies in their inability to describe bond breaking and forming in

chemical reactions.

Quantum chemistry is an enormous field of study that consists of three main approaches: ab

initio,19,20 density functional theory (DFT),21,22 and semi-empirical quantum mechanical (SQM)

methods23–25 The main strength of quantum chemistry lies in its ability to describe chemical struc-

tures, energetics, and reactions quantitatively.

4 Quantum chemical cluster approach

Although enzymes may consist of hundreds or even thousands of amino acids, and many of these

may comprise the binding site, in general only two or three residues are directly involved in catal-

ysis.2 In favorable cases it is possible to describe enzyme reactions accurately by modeling only

a few residues, typically between 30 and 200 atoms.26 A system of this type would consist of the

substrate, any required cofactors, the residues that participate directly in the reaction, and possi-

bly one or more explicit solvent molecules. The quantum chemical cluster approach has been the

subject of several informative reviews over the past decade.26–35

The basic procedure for the cluster approach is as follows. A model of an enzyme active site

is constructed by extracting the coordinates of a few important residues from an available X-ray

crystal structure. The entire system is described using a high-accuracy quantum chemical method,

most often with a hybrid DFT method such as B3LYP.36–38 The rest of the enzyme is not included

explicitly, but is modeled as a polarizable dielectric cavity using a continuum approach39 such
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as the COSMO Polarized Continuum Method (C-PCM).40–43 A dielectric constant of ε=4 is fre-

quently used, although this value may be adjusted to reflect the polarity of the active site. Geometry

optimizations of stationary points (energetic minima and maxima) are performed, and a series of

possible reaction paths are constructed. Often the geometries are optimized in the gas phase and

solvation corrections are added later, although care must be taken to ensure that the structures and

properties of the cluster are not adversely affected by this approximation. Methods for calculating

continuous, analytic energy derivatives within the PCM framework have been developed,44 result-

ing in significant improvements over other approaches for performing geometry optimizations and

calculating molecular properties. It is also common to compute the single-point energies of each

structure using a higher level of theory and/or larger basis set. Zero-point energy corrections may

be included to improve the accuracy of the calculations. The final energies are then compiled to

construct energetic profiles for possible pathways, which are then compared with each other and

with available experimental data to determine the most likely reaction mechanism.

Errors should be carefully assessed and understood for a given problem. For currently used hy-

brid DFT functionals, geometries are generally quite accurate, and energetic errors are typically in

the range of 3-5 kcal/mol.45–47 Thus, results are often of sufficient accuracy to distinguish between

likely and unlikely mechanisms and to assist in interpreting experimental data. One method for

ensuring the convergence of results with respect to system size in quantum chemical cluster calcu-

lations is known as “accretion”,26,31,35,48 which involves systematically increasing the number of

atoms in the cluster until PCM solvation corrections no longer significantly affect the result.

5 Combined QM/MM methods

Enzymes are large biomolecules consisting of thousands of atoms. However, the active site may

comprise only ~100 atoms. While quantum chemical calculations are nowadays affordable for up

to a few hundred atoms (depending on the level of accuracy), solving the Schrödinger equation for

an entire enzyme system is, in general, not feasible. In addition to the quantum cluster approach,
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another popular method is to describe the “region of interest” of an enzyme at the most accu-

rate level of theory possible while taking into account the surrounding protein environment (and

perhaps the solvent) with a molecular mechanics potential. This is the essence of the combined

quantum mechanical/molecular mechanical (QM/MM) method.49–51

Because of the number of different quantum chemical and molecular mechanical programs

that exist, there are countless conceivable combinations of QM and MM programs. As such,

there are nearly as many different “flavors”, or implementations, of QM/MM as there are research

groups performing such calculations. A number of reviews have been written on various aspects

of QM/MM simulation,51–63 the most comprehensive of which being two recent reviews by Senn

and Thiel.64,65

5.1 The QM/MM boundary

One aspect of QM/MM simulation that requires special attention is the interface between the quan-

tum mechanical and classical regions. Here, we refer to both the physical location of the boundary

(the size of the regions described at the different levels) and how the two regions interact with each

other across the boundary.

For a small-molecule solute in solution, a straightforward choice for partitioning the two re-

gions is to describe the solute quantum mechanically and use molecular mechanics for the solvent.

The interaction between the two regions is then purely “non-bonded”. That is, the interaction

between the solute and solvent is limited to the electrostatic and van der Waals forces between

non-covalently bound atoms.

In other situations, when modeling larger enzymatic systems within a QM/MM framework,

the choice of the quantum mechanical region is less obvious. For reasons of computational cost,

the QM region should be as small as possible. A minimal QM region would typically include all

atoms that undergo a change in the number and/or type of bonds during the reaction, either by bond

breaking or forming, or by a change in hybridization, as in the transformation from a single to a

double bond. As a simple rule, those atoms that would otherwise require a change in atom type
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in an empirical force field must be included in the quantum mechanical subsystem. In addition,

groups for which a significant change in electron density is anticipated cannot easily be described

properly by an MM force field and may be included in the QM region. Alternatively, polarizable

force fields12,17,18 are likely to provide improvements in this regard. The effects of including or

excluding a particular group of atoms on properties that are strongly influenced by an electrostatic

field, such as pKa values, must be properly examined and evaluated. In other words, the QM/MM

boundary should be chosen so that it is far enough away from the reactive center to avoid artifactual

effects.

In many enzymes, a substantial part of the protein itself plays a significant role in the chem-

ical reaction. Along with the substrate, any required cofactors, and sometimes active-site water

molecules, certain amino acid residues must be described quantum mechanically. Inclusion of

residues in the QM subsystem requires one or more covalent bonds across the QM/MM boundary.

The bond between the Cα and Cβ atoms of an amino acid is a popular choice for the QM/MM

interface, as it is a reasonably well behaved, nonpolar bond, and it is often sufficiently far away

from the reactive center.

Partitioning a single bond into two parts involves dividing an electron pair, usually with the

QM boundary atom left in an open-shell configuration. Various schemes have been developed to

tackle this problem. A straightforward approach is to cap the unsaturated atom with a dummy or

so-called “link atom”, usually a hydrogen. To avoid steric and electrostatic conflicts with the MM

subsystem, some bonded parameters and partial charges of nearby MM atoms must be modified.

In a semi-empirical framework, the inclusion of extra hydrogen atoms can be avoided through

the use of the Adjusted Connection Atom (ACA) approach, in which a boundary atom is param-

eterized to mimic a methyl group.66 Alternative approaches do not involve addition or change of

atom types, but a special treatment of the electronic orbitals is employed for the QM/MM boundary

atoms. In the local frozen orbital approach,49,67 one singly occupied orbital is defined to be along

the truncated bond that is neglected (i.e., frozen) in the wavefunction calculation. It has been found

that if carried out carefully, the local orbital treatment and the link atom approach are of similar
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accuracy.68

A similar concept is used in the generalized hybrid-orbital (GHO) method.69–71 In this ap-

proach, the QM subsystem is augmented by an additional atom at the QM/MM boundary. All of

the orbitals of this atom remain frozen except the one forming the boundary bond.

Another QM/MM boundary approach is the pseudobond method,72–75 in which the molecular

mechanical boundary atom is replaced by a quantum mechanical, fluorine-like atom with a pa-

rameterized effective core potential (ECP) and basis set. This atom has 7 valence electrons, and

hence a single free valence with which to form a bond with the rest of the QM subsystem. The

ECP and basis set parameters are designed to make the bond to the boundary atom behave like the

bond being replaced (for example, a C(sp3)-C(sp3) or C(sp3)-N(sp3) bond), and to minimize the

perturbation on the rest of the QM subsystem. The main advantages of the pseudobond method are

that no additional degrees of freedom are introduced into the system (as in the link atom approach),

the parameters are transferable to various DFT and ab initio methods, no additional programming

is required when used with standard quantum chemistry software, and the method is independent

of the molecular mechanics force field.

Instead of atom-centered basis functions, plane waves are used in conjunction with Car-Parrinello

molecular dynamics,76 and pseudopotentials are applied to avoid the explicit calculation of core

electron effects. For combined QM/MM calculations, the pseudopotential of the boundary atom is

specially optimized so that it minimizes errors in the electronic structure arising from truncation

of the QM region.

5.2 Modeling solvation and electrostatic effects

Enzyme reactions usually take place in aqueous solution. Consequently, the solvent must be taken

into account in modeling such reactions. The most straightforward way to do this is through the

explicit inclusion of a number of water molecules in the model. One of the most commonly used

molecular mechanical water models is TIP3P,77 although others such as SPC78 and SPC/E79 are

also used. In order to mimic the behavior of the bulk solvent, the enzyme is “immersed” in either a
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box or a spherical “droplet” of water. A solvent box has the advantage that it is able to mimic bulk

effects through the application of periodic boundary conditions.

One of the most critical aspects of QM/MM simulation is an accurate, balanced description

of electrostatic effects. For large systems, the explicit calculation of all charge-charge interac-

tions is computationally quite expensive, but cutoff-based electrostatics schemes neglect important

long-range effects. A reliable and efficient treatment for describing the long-range characteristics

of electrostatic interactions in simulations performed under periodic boundary conditions is the

Particle-Mesh Ewald method,80 which has recently become popular in the framework of QM/MM

calculations.81,82 Alternatively, a system of interest may be surrounded by a sphere of explicit

solvent molecules and subjected to stochastic boundary conditions.83–85 The Generalized Solvent

Boundary Potential (GSBP) method86–90 has been found to be quite accurate and useful in non-

periodic QM/MM simulations of enzymes.

A simple, efficient approach for modeling electrostatic screening by the solvent is non-uniform

charge scaling (NUCS).91 In the NUCS approach, the charges of the solute atoms are scaled so

that the vacuum-calculated interaction energies reproduce the interaction energies computed for

unscaled but shielded charges in solution. Other charge scaling procedures combining explicit

and implicit solvation have also been developed.92,93 In the Variational Electrostatic Projection

method,94,95 the solvent-solute boundary surface is discretized and electrostatic interactions are

expanded in terms of Gaussian surface elements. Mixed explicit/implicit solvent approaches, in

which only a few solvent molecules are treated explicitly, have also been used.96,97 Other QM/MM

electrostatics methods have been reviewed comprehensively by Senn and Thiel.64,65

5.3 Kinetic isotope effects

Kinetic isotope effects result from the mass-dependence on the zero-point energy and the con-

tributions from the translational, rotational and vibrational partition functions.11 Thus, rate con-

stants and corresponding activation free energies exhibit different values when various isotopes
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are present in a system. In the case of hydrogen transfer reactions, tunneling effects may be im-

portant because of the light mass of the hydrogen nucleus.98 One approach for including nuclear

quantum effects is the quantized classical path (QCP) approach,99 which uses a Feynman path

integral formulation to calculate deuterium isotope effects. In the context of QM/MM calcula-

tions, ensemble-averaged variational transition-state theory with multidimensional tunneling (EA-

VTST/MT) has been used to determine tunneling contributions to lowering free energy barriers

in enzyme-catalyzed reactions.100,101 Another innovative QM/MM approach for including tunnel-

ing effects involves treating the catalytic hydrogen nucleus as a vibrational wavefunction while all

other nuclei are described classically.102,103

5.4 Minimum-Energy Reaction Paths

Reaction pathways for enzyme-catalyzed reactions can be obtained in many different ways. All

methods begin with one or more energy-minimized structures corresponding to the end state(s). A

straightforward approach is to define a reaction coordinate and then “drive” the system from the

reactant state, over the transition state barrier, to the product state in several small steps. For a sim-

ple reaction involving the breaking of one bond and formation of another, the reaction coordinate

might be defined as the difference in the length of the bond to be broken and the one to be formed.

The reaction coordinate is then constrained to a specific value while all other degrees of freedom

are optimized. Upon convergence the reaction is incremented; this process is repeated until the

reaction is driven to completion at the product state. The reaction coordinate driving approach pro-

vides only an estimate of the actual reaction pathway and may in some cases fail completely.104 To

overcome this shortcoming, several methods have been developed to determine pathways between

a pair of given end states. Examples include the Self-Penalty Walk method,105,106 the Nudged Elas-

tic Band (NEB) method,107 the Conjugate Peak Refinement (CPR) method,108 and the Quadratic

String Method (QSM).109 In each of these “chain-of-states” methods, the reaction path is opti-

mized beginning with an initial guess or interpolated path. The number of states can be constant

(NEB and QSM) or dynamic (CPR). Usually only an approximation of the true minimum energy

path is obtained, but the optimized pathway provides a “trajectory” of configurations along the re-
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action coordinate. Approximate transition states can be further optimized to true first-order saddle

points if higher accuracy is desired.

An alternative approach to chain-of-states methods is the Discrete Path Sampling method.110

This method explores the potential energy landscape by optimizing local minima and transition

states and connecting them to give different reaction pathways leading from the reactant state to

the product state. In the same spirit, the Transition Network approach111 allows uniform sampling

of energy minima and transitions connecting them. Determination of the most probable reaction

pathway and several alternative mechanisms is performed simultaneously.

5.5 Potential of Mean Force/Free Energy Calculations

Minimum (potential) energy pathways can in favorable cases provide a reasonably accurate picture

of the chemical processes in enzymatic reactions, specifically for enthalpically driven processes.

However, it is desirable, and often necessary, to compute free energy pathways to understand these

complex processes in more realistic detail. Free energy simulations based on statistical sampling

can help determine, or provide reasonable estimates of, the free energy changes associated with a

chemical reaction. The free energy change along a given reaction coordinate is called the poten-

tial of mean force (PMF), and can in principle be generated from molecular dynamics simulations

(assuming quantum mechanics is used). However, especially when high-barrier processes are con-

sidered, direct simulation will result in getting stuck in the low energy regimes of the end states and

it is unlikely that the transition of interest would ever be observed in the limited simulation time.

Several approaches have been developed in order to address the sampling problem, such as using

biasing potentials or reducing the phase space to sample the relevant degrees of freedom.112,113

Comparisons of various approaches for calculating QM/MM free energies can be found in e.g.,

refs 62,64,65,114,115. Only some of the most common approaches are described here.
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5.5.1 Umbrella Sampling

The key idea of the Umbrella Sampling method116 is to modify the potential energy function so

that otherwise unfavorable states are sampled sufficiently. Similar to the constraints imposed in the

Reaction Coordinate Driving approach, a restraint or biasing potential is applied to force the system

to sample high-energy regions of the reaction path. The reaction path is split into several (perhaps

10-20) sequential intervals or windows along the desired reaction coorinate, and (non-Boltzmann)

molecular dynamics or Monte Carlo simulations are performed for each window. The bias is

subsequently removed to obtain the free energy profile, using for example, the Weighted Histogram

Analysis Method (WHAM).117 Another promising new method for obtaining free energy profiles

is the Multistate Bennett Acceptance Ratio (MBAR) estimator.118 An ideal biasing potential would

be the negative of the potential of mean force, which is not known a priori. This problem is tackled

in adaptive Umbrella Sampling methods, in which an updating algorithm is applied to adjust the

biasing potential on the fly.119,120 Because molecular dynamics is involved, umbrella sampling is

generally limited to QM/MM simulations in which the QM subsystem is described using SQM

methods.

5.5.2 Free Energy Perturbation

Free energy perturbation (FEP) involves describing a target system as a reference system plus

a perturbation.121 The free energy differnce between two systems is calculated as the ensemble

average of the perturation, sampled over the reference system. Calculation of free energies for

chemical reactions is carried out by calculating free energy changes between points along a reaction

pathway, which then sum up to the total free energy difference.122 In QM/MM simulations, the

reference system consists of the full QM/MM system with the QM held at fixed positions, and

the perturbation is the geometric displacement of the QM subsystem from point n to point n + 1

along the reaction pathway. Dynamic sampling is then carried out only for the MM atoms.123 To

increase the sampling efficiency, the electron density of the QM subsystem can be approximated by

partial charges obtained from fitting to the molecular electrostatic potential (ESP charges).124–126
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The FEP method requires the definition of the reaction pathway on the potential energy surface, as

in the minimum energy pathway methods described above.

The QM/MM Minimum Free Energy Path (QM/MM-MFEP) method122,127,128 is a free-energy

extension to the QM/MM Free Energy Perturbation (QM/MM-FEP) method.123 In the QM/MM-

MFEP method, a sequential sampling and optimization procedure is employed in which molecular

dynamics simulations are performed for the MM subsystem and geometry optimizations are per-

formed for the QM subsystem. The QM subsystem is optimized on the PMF surface for the system

obtained during molecular dynamics simulations. Upon completion of the QM optimization, ad-

ditional sampling is performed with the improved QM geometry and charges. The process is

repeated until convergence. As in other reaction path methods, a chain of replicas is generated and

subsequently optimized to obtain the final reaction path. Free energy perturbation is performed on-

the-fly to obtain the PMF for the entire reaction path. The major strengths of the QM/MM-MFEP

method are the well-defined PMF surface for efficient geometry optimization, and the elimination

of the dependence of reaction paths on the initial geometries.

5.5.3 Metadynamics

Metadynamics and related approaches such as the Local Elevation Method129 and Conformational

Flooding130 enable systems to escape free energy minima in MD simulations.131–133 Instead of

calculating free energy changes along a single reaction coordinate, in metadynamics the free energy

surface is explored as a function of a few collective variables. In a history-dependent manner, the

explored surface is “filled” with repulsive Gaussian potentials to prevent the system from visiting

regions that have already been explored. The resulting sum of all Gaussian terms is the negative of

the free energy surface.

5.5.4 Transition Path Sampling

Transition path sampling is an iterative simulation scheme which, starting from an initial first tra-

jectory connecting reactant and product states, additional trajectories, i.e. reaction pathways,134,135
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are generated. A snapshot is taken from the initial pathway and its geometry is changed slightly in

a Monte Carlo step. This configuration is then propagated forward and backward in time, and the

resulting trajectory is checked to see if the transition of interest has taken place. When a successful

pathway is obtained, further trajectories are generated starting from this new one, so as to produce

a manifold of pathways. This method does not rely on the predefinition of a reaction coordinate but

requires a reasonable descriptor for the transition of interest in order to judge whether a trajectory

is productive or not.

6 A brief guide to enzyme simulation

At the beginning of a modeling study, one should first decide upon the specific catalytic process to

model. This decision may sound simple, but it includes the nontrivial task of exhaustively search-

ing the literature to determine what is already known about the system (or a related one), either

from experiments or from previous modeling studies, and what questions remain to be answered.

The three-dimensional structure of the enzyme, preferably with a bound substrate analog, reaction

product or inhibitor, is among the most critical sources of information. Kinetics studies provide

information about reaction mechanisms by revealing, for example, the pH dependence of the reac-

tion, the number of elementary steps in the reaction, the rate acceleration by the enzyme, and the

turnover number. Considerable kinetic isotope effects indicate a catalytically important role of the

radiolabeled atoms in the reaction. Site-directed mutagenesis can confirm the importance of spe-

cific amino acid residues. Reaction mechanisms may have already been proposed in the literature,

and thus provide a logical starting point for modeling studies.

Depending on whether or not the protein environment is anticipated to play a crucial role in

catalysis, either an active site QM cluster model or an all-enzyme QM/MM protocol–or both–is

chosen. In both cases, the QM level of theory must be chosen appropriately. In the case of an

all-enzyme model a computationally less demanding, and potentially less accurate, method may

have to be applied. Because of the large number of degrees of freedom in a QM/MM system,

16



geometry optimizations are more difficult, and dynamic sampling may be required to prevent it

from becoming trapped in local minima and to provide meaningful statistics.

In QM/MM simulations, semi-empirical methods23 such as AM1,136 OMx,137–140 PM3,141

PM6,142 PDDG/PM3143–145 and the DFT-based SCC-DFTB approach146–149 are widely used.

These methods are computationally efficient, enabling extensive statistical sampling. Among the

more accurate of the SQM methods, PDDG/PM3 was recently compared to dispersion-corrected

B3LYP for computing heats of formation and isomerization energies and was found to perform

quite similarly and at a fraction of the computational cost.150 Other SQM methods, tuned for

the system under investigation using specific reaction parameterization,151 can also reach high

accuracy, as in the case of AM1/d152,153 and other Hamiltonians.154 Another promising method

for improving accuracy is to augment standard SQM methods with empirical correction terms for

dispersion, hydrogen bonding, or both.155,156 Recent work aimed at improving SCC-DFTB meth-

ods includes extending the DFT energy expansion from second to third order and improving the

Coulomb term,157 and a parameterization for improving the description of phosphate hydrolysis

reactions.158

Because of its relative efficiency and accuracy, DFT remains popular for modeling systems

up to a few hundred atoms.65 Correlated ab initio methods are also used, and may offer higher

accuracy than DFT methods.159 The choice of the QM method will of course also be influenced

by the size of the QM system. As stated above, the QM subsystem should be selected with care,

comprising all reactive groups.

The actual enzyme model is then built starting from an available X-ray (or NMR) structure.

Construction of the initial enzyme-substrate complex may require in silico back-mutation of some

residues, and/or replacement of an inhibitor by the actual substrate. Missing heavy atoms and

hydrogen atoms absent from X-ray structures must be added. With the addition of the hydrogen

atoms comes the choice of the protonation state for titratable groups. Whereas most amino acids

are predominantly in their standard protonation states (i.e. the side chain of Glu is a carboxylate,

Lys is an ammonium, and Ser is a hydroxyl), the local environment of the enzyme active site
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is likely to induce pKa shifts that result in nonstandard protonation states that are relevant for

catalysis. Special care must be taken for systems with nearby metal ions, which can significantly

influence the proton affinities of surrounding amino acids. After inclusion of the solvent, either

explicit or implicit, energy minimization of the system, possibly followed by a short molecular

dynamics simulation, must be performed to remove any local strain. Snapshots from molecular

dynamics trajectories are sometimes used to generate different initial geometries for subsequent

modeling of reaction pathways.

From the computation of different reaction pathways, potential or free energies for various

mechanisms are compared with each other and the most likely mechanism is identified based on

energetic considerations. Comparison with experimental data is then used to substantiate or inval-

idate the proposed mechanism, as it has to agree with and/or explain experimental findings such as

the importance of a certain residue, the dependence of a metal cofactor, the preference for certain

substrates, etc. Once a likely mechanism is determined, the structural and energetic contributions

to catalysis are determined using a variety of methods.

In the following sections, some of the approaches and applications described in this article are

illustrated using three case studies from our own work. We begin with a mechanistic study of the

bacterial organomercurial lyase, MerB, using a quantum chemical cluster method, followed by a

QM/MM free energy simulation of the dual-specificity phosphatase, Cdc25B, and a dual QM and

QM/MM study of the restriction enzyme EcoRV.

Case study 1: Organomercurial lyase, MerB

In recent work, the mechanism of Hg–C bond cleavage by the bacterial enzyme organomercurial

lyase (MerB) was examined using a quantum chemical cluster model.160

Mercury is toxic to living organisms and has no known biological function. Organomercu-

rial species such as methylmercury, [CH3Hg(II)]+, bioaccumulate in living organisms due to their

high affinity for thiols and other functional groups in vivo. The bacterial enzyme organomercu-
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rial lyase (MerB) catalyzes a key step in degrading toxic mercury-containing compounds, specif-

ically by cleaving mercury–carbon bonds in methylmercury and other organomercurials (Scheme

Scheme 1).

The quantum chemical cluster approach was used to study the Hg–C cleavage, or protonolysis,

reaction catalyzed by MerB in ref 160. In particular, the aim was to determine which, if any,

of the mechanisms proposed previously in the literature was correct, and also to determine how

MerB achieves its rate enhancement. Two previously proposed mechanisms were considered in

the calculations. In both mechanisms, a covalent Cys-methylmercury adduct was designated as

the reactant state, and only the Hg–C cleavage step was considered in the calculations. In the first

mechanism, one of the Cys residues in the active site provides a proton directly to the hydrocarbon

leaving group. In the second mechanism, Asp99 serves as a proton shuttle to deliver the catalytic

proton from Cys to the leaving group.

Included in the active site model were the methylmercury substrate, the side chains of three

residues, and a single explicit water molecule (Figure 1). Using site-directed mutagenesis experi-

ments, these three residues, Cys96 and Cys159,161 and Asp99 (S. Miller, unpublished data), were

previously shown to be required for catalysis. The Cα atoms were constrained to their crystal-

lographic positions to maintain the correct active site geometry. Hybrid DFT calculations were

performed for a number of possible reactant, intermediate, transition state, and product structures,

and several reaction paths were constructed.

The computed activation energy for the direct proton transfer mechanism was 35.9 kcal/mol,

significantly higher than the experimental free energy of activation of 20.1 kcal/mol obtained us-

ing TST. In contrast, the computed activation energies for the Asp99-mediated proton transfer

mechanism (20.4 or 22.4 kcal/mol, depending on which Cys residue was chosen to form the ini-

tial covalent adduct with methylmercury) were both found to be within about 2 kcal/mol of the

experimental value. Because experimental kinetics data is available for several organomercurial

substrates,162 similar calculations were performed for two additional substrates, vinylmercury and

cis-2-butenylmercury. Again, good agreement between theory and experiment was obtained. On
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average, the error with respect to the experimental data for the three substrates was around 1

kcal/mol, suggesting that the Asp99-mediated mechanism is likely to be correct.

Although the charge on an atom in a molecule is neither well-defined nor an observable quan-

tity, atomic partial charges are readily computed and can provide valuable information about the

localization of electron density in a molecular system. One method for calculating atomic charges

involves performing a Natural Population Analysis (NPA),163,164 in which the molecular orbitals

obtained from a quantum chemistry calculation are transformed into orthonormal, “natural” atomic

orbitals. The electron populations on each atomic center are summed up, along with the nuclear

charges, to yield the NPA charges. A major advantage of NPA charges over other methods, such

as a Mulliken Population Analysis,165 is that they are largely unaffected by basis set dependence

effects.163

To understand how MerB achieves its catalytic power, the transition state structures for the

two mechanisms were investigated using NPA charges. It was found that participation of Asp as

a proton mediator enables both Cys residues to coordinate with methylmercury at the transition

state (Figure 2), which is not the case for the direct protonation mechanism. Coordination of

methylmercury by two Cys thiolates weakens the Hg–C bond, increases the negative charge on the

methyl carbon atom, and increases the positive charge on the catalytic proton, thus enabling the

electrophilic proton on Asp99 to attack the leaving group. For the direct protonation mechanism,

only one Cys is coordinated with Hg at the transition state, and the catalytic proton is significantly

less electrophilic than in the Asp-mediated mechanism.

Case study 2: Cdc25B Phosphatase

The following is a synopsis of Parks et al. (2009) ‘Mechanism of Cdc25B Phosphatase with the

Small Molecule Substrate p-Nitrophenyl Phosphate from QM/MM-MFEP Calculations’.166 Here,

the emphasis is on using experimental data from site-directed mutagenesis, kinetics measurements,

pH-rate profiles, and isotope effects measurements in conjunction with a QM/MM free energy
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simulation to provide insight into an enzymatic reaction mechanism.

Cdc25B is a phosphatase enzyme that dephosphorylates two residues on the Cdk2/CycA pro-

tein complex, and in so doing regulates the human cell cycle.167 In general, protein tyrosine phos-

phatases (PTPases) are thought to bind phosphate dianions and use a general acid to facilitate P–O

bond cleavage.168 However, Cdc25 phosphatases lack the conserved Asp residue believed to serve

as the catalytic acid in other PTPases. Computer simulation may provide useful insight into how

Cdc25B achieves catalysis without this seemingly important residue.

Cdc25B cleaves P–O bonds in phosphate monoesters via two separate chemical steps (Scheme 2).

In the first step, a deprotonated Cys attacks the scissile P–O bond and forms a covalent phosphocys-

teine intermediate. In the second step, the phosphocysteine is hydrolyzed and inorganic phosphate

is released.

The nucleophilic cysteine, Cys473 in Cdc25B, is deprotonated and has a pKa of 5.9.169 Muta-

tion studies showed previously that Cys473 and Arg479 are required for enzyme activity.170 Two

active site residues, Glu474 and Glu478, have been considered as possible catalytic acids, but the

pH-rate profiles for the Glu474Gln and Glu478Gln mutants remained unchanged relative to the

wild-type enzyme, demonstrating that neither is the catalytic acid.171

The small-molecule substrate p-nitrophenylphosphate (pNPP) was chosen for the simulations

because its dephosphorylation reaction is well characterized experimentally and its reaction with

Cdc25B has been shown to proceed without acid catalysis.172 Because the formation of the phos-

phocysteine intermediate is known to be rate-limiting,171 only the P–O cleavage step (Scheme 2)

was considered in the calculations. The experimental kcat for Cdc25B with pNPP substrate is 0.17

s−1,171 which corresponds to an activation free energy of ∆G‡ = 18.5 kcal/mol at 298 K using TST.

The QM/MM Minimum Free Energy Path (QM/MM-MFEP) method122 was used to simulate

the Cdc25B-catalyzed cleavage of the scissile P–O bond of the pNPP substrate. Two reaction

mechanisms were simulated, with the pNPP substrate being modeled as a phosphate dianion in

the first mechanism and a monoanion in the second. The QM subsystem, which consisted of the

sidechains of Cys473 and Arg 479, the pNPP substrate, and one water molecule, was described
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using the B3LYP/6-31G(d) level of theory. The pseudobond method73 was used to cap the free

valences at the QM/MM interface.

For the first mechanism, the dianionic pNPP substrate underwent P–O cleavage with an unex-

pectedly low computed activation free energy of ~1 kcal/mol in which the reactant state was found

to be quite high in energy and only marginally more stable that the transition state (not shown).

Although a low activation free energy seems to suggest efficient catalysis, the disparity between

the computed and experimental barriers suggested that the mechanism is not likely to be correct.

Additionally, classical molecular dynamics simulations of the Cdc25B-pNPP dianion system re-

vealed that the substrate did not remain bound in the active site, but dissociated due to electrostatic

repulsion. Taken together, these results suggest that the dianionic form of pNPP is not in the correct

ionization state to bind to Cdc25B.

For the second mechanism, a free energy of activation of ~23 kcal/mol was obtained, in rea-

sonable agreement with the experimental value of 18.5 kcal/mol. The calculated structure for the

monoanionic pNPP substrate was characterized as a dissociative, metaphosphate with a scissile

P–O bond distance of 2.12 Å and a P-S(Cys473) distance of 2.82 Å (Figure 3). This structure is

consistent with experimental (V/K) values of 15N and 18Oscissile, which suggested a dissociative

transition state without leaving group protonation. However, if the phosphate is monoprotic, the

18Onon−scissile KIE would be ~1.014, suggesting that deprotonation of the phosphate group occurs

at the transition state. The B3LYP/6-31G(d)/CHARMM22 QM/MM-MFEP calculations predicted

the phosphoryl proton transfer after the transition state, in contrast with the experimental data.

Although the overall agreement between theory and experiment is good, there are important

differences that may be due to the chosen level of theory, the simulation protocol, or both. Nev-

ertheless, the QM/MM-MFEP simulations used in the study provided evidence that Cdc25 phos-

phatases may be unique in their preference for monoanionic rather than dianion phosphate sub-

strates.
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Case Study 3: The Restriction Enzyme, EcoRV

The following is a synopsis of Imhof et al. (2009) ‘Catalytic Mechanism of DNA Backbone

Cleavage by the Restriction Enzyme EcoRV’.173 Here, the emphasis is on the exploration of many

different pathways at a relatively low level of theory in QM/MM calculations. The chosen level of

theory was first validated by using calculations of model systems and comparing them to high-level

density functional theory results.

EcoRV is an endonuclease that cleaves the DNA backbone at a specific recognition sequence

by hydrolyzing the phosphodiester bond. A magnesium cofactor is essential for enzyme activity.

Extensive crystallographic studies of wild-type and various mutants of EcoRV in complex with

different metal ions, and/or its substrate DNA, have led to a number of proposals of how catalysis

is achieved. However, neither the precise roles of the active site residues and the metal cofactor,

nor the number of metal ions required for catalysis, are clear from experimental characterization.

The two extreme cases of phosphate hydrolysis mechanisms are the dissociative and associa-

tive pathways. In a dissociative mechanism, the leaving group OR’ departs before nucleophilic

attack occurs, leading to the formation of a trigonal planar metaphosphate. In contrast, the associa-

tive pathway exhibits a pentavalent, trigonal bipyramidal transition state or intermediate structure,

resulting from nucleophilic attack prior to P–O bond cleavage. For the associative pathway, the

seemingly clear catalytic role of the metal cofactor is the stabilization of the transition state by

compensating for the accumulated negative charge of -2 (phosphate and hydroxyl), whereas the

metal would seem to play a less direct role in the dissociative case.

To discern the structural and energetic differences between dissociative and associative phos-

phate hydrolysis mechanisms catalyzed by EcoRV, a computational study was performed by ap-

plying QM-only (AM1/d and B3LYP/6-31++G**) calculations to the uncatalyzed hydrolysis of

Mg-bound dimethylphosphate, and hybrid QM/MM (AM1/d/CHARMM22) calculations to the

enzymatic reaction. Model calculations demonstrated that reaction-specific AM1/d parameters

developed for phosphorus153 and magnesium152 used in this study were sufficiently accurate to

reproduce the reaction energetics computed using high-level DFT.
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Using a QM/MM (AM1/d/CHARMM22) approach, a network of minimum energy pathways

was generated. Because a semi-empirical QM method was used, it was possible to consider a

large number of possible reaction pathways. Several intermediate structures were generated by

varying the P–O distances, placing protons at different sites, and performing QM/MM geometry

optimizations. The pathways for the transition between two intermediates (or intermediate and

end state) were computed using the conjugate peak refinement (CPR) algorithm,108 which does not

require a predefined reaction coordinate but determines a transition pathway between two given end

states by a series of line maximizations and conjugate minimizations. In this manner, dissociative

and associative pathways with different proton transfer steps involved were examined.

QM/MM calculations predicted that the dissociative pathway was energetically most favorable

(Fig. Figure 4). The reaction is initiated by a Mg-bound water molecule (w1) leaving the metal

coordination sphere and aligning with the scissile P–O bond. Then the leaving group, which is

protonated by another Hg-activated water molecule (w2), departs. The inline-positioned water

molecule transfers a proton to Asp90 and attacks the phosphorous atom. Re-protonation of the

deprotonated Hg-bound water molecule w2 is achieved by proton transfer from Asp90 to w2 via

protonation of the scissile phosphate group.

The two energetically most favorable associative mechanisms differ mainly in the generation

of the nucleophile. In the more likely pathway based on energetic considerations, the Mg-bound

water molecule w1 transfers a proton to Asp90. The proton is then further transferred to the

phosphate group, and subsequently the nucleophile attacks, whereas the alternative is a proton

relay from w1 via Lys92 to the phosphate group prior to nucleophilic attack. The decay of the

associative intermediate is in both cases the departure of the leaving group, again protonated by

the Hg-activated water molecule w2.

The computation of an extensive network of reaction pathways for the hydrolysis of the phos-

phodiester in the DNA backbone allowed the identification of the most probable reaction mech-

anism, as well as possible alternative mechanisms. Moreover, inclusion of additional pathways

in the network, such as the nucleophilic attack of an alternative water molecule or dissociation of
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other, non-scissile P–O bonds in the phosphodiester, explains the preference for the actual nucle-

ophile and the specificity for the cleavage of P–O3’ over the P–O5’ bond. The network approach

further enabled the determination of steps in the reaction that are common to several mechanisms.

For example, in all pathways a change of the metal coordination number from 6 to 4 takes place,

explaining why larger ions such as calcium, which are unlikely to have coordination numbers be-

low six, are catalytically inactive.

A comparison of the associative pathways in the enzyme and model systems shows similar

mechanisms and similar barriers for the enzymatic and the uncatalyzed reaction. The following

effects were found to contribute to catalysis in EcoRV: proper alignment of the scissile P–O bond in

the enzyme active site, activation of a nucleophilic water molecule by Mg, participation of an Asp

residue as a general base to accept a proton from the nucleophilic water molecule, and electrostatic

stabilization of the transition state by the enzyme active site.

By applying a computationally less demanding SQM method, the computation of many possi-

ble pathways was affordable. Moreover, competing mechanisms were able to be explored and the

preference for the native reaction was explained based on energetic considerations. The compari-

son with model systems served not only to validate the applied method but also to reveal that the

catalytic reaction in the enzyme is qualitatively different from the one in small molecule systems.

7 Common pitfalls

Care must be taken to ensure that simulations of enzyme catalysis are set up and performed cor-

rectly. The following list is by no means exhaustive, but it serves to point out a few of the more

common mistakes likely to be encountered in computational studies. First, detailed knowledge of

the existing experimental and computational data for a given system of interested must be obtained.

For example, it is essential to ensure that the protonation states of all ionizable residues are assigned

correctly in accord with experimental or predicted pKa data. Second, the chosen level of approx-

imation must be carefully tested and validated with appropriate model calculations. This step
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should not be overlooked; a given of theory may perform well for a particular class of molecules

or reactions, but may produce completely wrong results for other systems. In the quantum cluster

approach, gas phase calculations are likely to yield erroneous protonation states relative to the true

system.174 In other words, the electrostatic environment in the protein is most likely quite different

from an isolated gas-phase system. Thus, it must be decided whether or not environmental effects

should be included either explicitly or implicitly during geometry optimizations. Another common

mistake involves a poorly chosen system size, either in the cluster approach or in partitioning of

the QM subsystem in QM/MM calculations. Neglect of key residues or groups will undoubtedly

result in significant errors.

An inadequate level of quantum mechanical theory will result in qualitatively or quantitatively

incorrect results. For example, standard SQM methods generally have difficulty in describing tran-

sition metals, hydrogen bonds, and dispersion interactions24 unless corrections are applied155,156

and DFT may perform poorly in computing reaction barriers for chemical systems that exhibit

significant static correlation effects.175 In QM/MM simulations employing potential energies (as

opposed to free energies) it is quite common for structures to become trapped in local minima,

which will result in discontinuous reaction paths. One remedy is to “drive” the reaction coordinate

forward and backward between the reactant and product states multiple times until a smooth, con-

tinous reaction path is obtained. However, this approach can be quite time-consuming, particularly

when a computationally intensive quantum chemical method is used. It is also possible to ob-

tain activation energies that differ by many kcal/mol when potential energy surfaces are generated

using different initial enzyme configurations,176,177 and methods have been developed to circum-

vent these difficulties.96,122 In free energy simulations, insufficient sampling will adversely affect

the quality of the results. Thus adequate sampling is required, although it remains particularly

challenging for QM/MM MD simulations because of the computational cost.65
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8 Summary and outlook

Simulations of enzyme catalysis are not black-box calculations. Expertise is required to understand

the detailed biochemistry involved, as well as the underlying methods and approximations used.

Potential areas for progress in simulating enzyme reactions include developing more accurate and

efficient quantum chemical methods such as improved DFT functionals175,178 and semi-empirical

methods, polarizable force fields,17 robust methods for determining reaction paths, and improved

descriptions of electrostatics and free energy sampling methods.174

Furthermore, chemomechanical coupling,179–183 in which a chemical reaction precedes or

is the result of a mechanical (conformational) change, will be a fruitful field of investigation.

Dynamic effects on catalysis also remain a topic of intense debate.184–192 Computer simulation

will continue to play an increasingly important role in understanding how enzymes achieve their

tremendous catalytic power.
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[R-Hg(II)]+ MerB−−−→ [Hg(II)]2+ + R-H

Scheme 1: Reaction catalyzed by MerB (R = alkyl or aryl). Reprinted with permission from J. Am.
Chem. Soc. 131, 13278-13285 (2009). Copyright 2009 American Chemical Society.

40



Figure 1: Active site of MerB (PDB ID 3F2F). Reprinted with permission from J. Am. Chem. Soc.,
131, 13278-13285 (2009). Copyright 2009 American Chemical Society.
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(a) Mechanism I (b) Mechanism II

Figure 2: Transition state structures and NPA charges for Mechanisms 1 and 2. The activation
energies for the two mechanisms are 35.9 and 20.4 kcal/mol, respectively, compared with the
experimentally measured value of 20.1 kcal/mol. Reprinted with permission from J. Am. Chem.
Soc., 131, 13278-13285 (2009). Copyright 2009 American Chemical Society.
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Scheme 2: Reaction catalyzed by protein tyrosine phosphatases. Reprinted with permission from
J. Phys. Chem. B, 113, 5217-5224 (2009). Copyright 2009 American Chemical Society.
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Figure 3: Computed transition state structure for the hydrolysis of the pNPP monoanion by
Cdc25B. Selected bond distances (in Å) are labeled. Only the atoms in the QM subsystem are
shown for clarity. Reprinted with permission from J. Phys. Chem. B, 113, 5217-5224 (2009).
Copyright 2009 American Chemical Society.
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Figure 4: Energetically most favorable pathways for the phosphate hydrolysis reaction catalyzed
by the restriction enzyme EcoRV. Energies (in kcal/mol) of intermediate states are given in blue
and transition state energies are shown in red. The three different pathways are distinguished by
colored arrows, and the corresponding atom movements are indicated with arrows of the respective
color. The most likely pathway is the dissociative route R-a0-d1-d2Asp-d2O2-P, labeled in light
blue and shown in the center. Reprinted with permission from Biochem., 48, 9061-9075 (2009).
Copyright 2009 American Chemical Society.
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