The fundamental power coupler and pick-up of the 56 MHz SRF cavity for RHIC

PDF Version Also Available for Download.

Description

A fundamental power coupler (FPC) is designed to provide fast tuning the 56MHz SRF cavity in RHIC. The FPC will be inserted from one of the chemical cleaning ports at the rear end of the cavity with magnetic coupling to the RF field. The size and the location of the FPC are decided based on the required operational external Q of the cavity. The cavity is beam driven, and the FPC is designed with variable coupling that would cover a range of power levels. It is thermally isolated from the base temperature of the cavity, which is 4.2K. A 1kW ... continued below

Creation Information

Wu, Q.; Bellavia, S.; Ben-Zvi, I. & Pai, C. March 28, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A fundamental power coupler (FPC) is designed to provide fast tuning the 56MHz SRF cavity in RHIC. The FPC will be inserted from one of the chemical cleaning ports at the rear end of the cavity with magnetic coupling to the RF field. The size and the location of the FPC are decided based on the required operational external Q of the cavity. The cavity is beam driven, and the FPC is designed with variable coupling that would cover a range of power levels. It is thermally isolated from the base temperature of the cavity, which is 4.2K. A 1kW power amplifier will be used to close an amplitude control feedback loop. In this paper, we discuss the coupling factor of the FPC with the chosen design.

Source

  • 2011 Particle Accelerator Conference (PAC'11); New York, NY; 20110328 through 20110401

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--94128-2011-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1020919
  • Archival Resource Key: ark:/67531/metadc839716

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 28, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 29, 2016, 8:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wu, Q.; Bellavia, S.; Ben-Zvi, I. & Pai, C. The fundamental power coupler and pick-up of the 56 MHz SRF cavity for RHIC, article, March 28, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc839716/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.