Ion trapping study in eRHIC

PDF Version Also Available for Download.

Description

The ion trapping effect is an important beam dynamics issue in energy recovery linac (ERL). The ionized residue gas molecules can accumulate at the vicinity of the electron beam path and deteriorate the quality of the electron beam. In this paper, we present calculation results to address this issue in eRHIC and find best beam pattern to eliminate this effect. eRHIC is the future electron ion collider(EIC), which collides 5GeV to 30GeV electron beam from a new electron accelerator with the ion beam from existing RHIC ring. The electron accelerator adopts a multi-pass ERL, which contains 6 passes with 2 ... continued below

Creation Information

Hao, Y. March 28, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The ion trapping effect is an important beam dynamics issue in energy recovery linac (ERL). The ionized residue gas molecules can accumulate at the vicinity of the electron beam path and deteriorate the quality of the electron beam. In this paper, we present calculation results to address this issue in eRHIC and find best beam pattern to eliminate this effect. eRHIC is the future electron ion collider(EIC), which collides 5GeV to 30GeV electron beam from a new electron accelerator with the ion beam from existing RHIC ring. The electron accelerator adopts a multi-pass ERL, which contains 6 passes with 2 linacs per pass. The electron impacted ionization effect needs attention to ensure the quality of the electron beam. The high energy electrons ionize the residue gas in beam pipe. These ions may accumulate and are 'trapped' near the axis of the pipe where the electron beam passes, due to the interaction with the electron beam. The concentration of the ion may produce noticeable space charge field that affects the electron beam and neutralize the electron beam in the linacs. In the paper, we start with cross section of the ionization process and calculate the accumulation time, which are followed by the modeling to determine the criteria of the ion trapping. The ion trapping effect is determined by the longitudinal configuration of the electron bunches. The effect can be reduced or mitigate by some proper electron beam patterns. We will present these patterns with a linearized model. We present the linearized calculation on the ion motion in the cavity of multi-pass ERL and determine the stability of the ion motion from the results. We conclude that the ionized molecules won't accumulated in eRHIC linacs except both 40m ends. Electro-static clearing electrodes should be installed in those regions to remove the ions from accumulation.

Source

  • 2011 Particle Accelerator Conference (PAC'11); New York, NY; 20110328 through 20110401

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--95063-2011-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 1018306
  • Archival Resource Key: ark:/67531/metadc839680

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 28, 2011

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Aug. 30, 2016, 3:01 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hao, Y. Ion trapping study in eRHIC, article, March 28, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc839680/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.