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ABSTRACT 
The need for a defensible and systematic uncertainty and sensitivity approach 

that conforms to the code scaling, applicability, and uncertainty (CSAU) process, 
and that could be used for a wide variety of software codes, was defined in 2008. 
The Gesellschaft für Anlagen und Reaktorsicherheit (GRS) company of Germany 
has developed one type of CSAU approach that is particularly well suited for 
legacy coupled core analysis codes, and a trial version of their Software for 
Uncertainty and Sensitivity Analyses (SUSA) was acquired on May 12, 2010. 
This report summarized the results of the initial investigations performed with 
SUSA, utilizing a typical High Temperature Reactor benchmark (the 
International Atomic Energy Agency CRP-5 Pebble Bed Modular Reactor 400 
MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following 
steps were performed as part of the uncertainty and sensitivity analysis: 

1. Eight PEBBED-THERMIX model input parameters were selected for 
inclusion in the uncertainty study: total reactor power, inlet gas temperature, 
decay heat, and the specific heat capability and thermal conductivity of the 
fuel, pebble bed, and reflector graphite.  

2. The input parameters variations and probability density functions were 
specified, and a total of 800 PEBBED-THERMIX model calculations were 
performed, divided into four sets of 100 and two sets of 200 steady-state and 
depressurized loss of forced cooling (DLOFC) transient calculations each. 

3. The steady-state and DLOFC maximum fuel temperature and the daily 
pebble fuel load rate data were supplied to SUSA as model output parameters 
of interest. The six data sets were statistically analyzed to determine the 5% 
and 95% percentile values for each of the three output parameters with a 95% 
confidence level, and typical statistical indictors were also generated (e.g., 
Kendall, Pearson, and Spearman coefficients).  

4. A SUSA sensitivity study was performed to obtain correlation data between 
the input and output parameters, and to identify the primary contributors to 
the output data uncertainties.  

It was found that the uncertainties in the decay heat, pebble bed, and reflector 
thermal conductivities were responsible for the bulk of the propagated 
uncertainty in the DLOFC maximum fuel temperature. It was also determined 
that the two standard deviation (2�) uncertainty on the maximum fuel 
temperature was between ±58°C (3.6%) and ±76°C (4.7%) on a mean value of 
1604°C. These values mostly depended on the selection of the distributions 
types, and not on the number of model calculations above the required Wilks’ 
criteria.  
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1. INTRODUCTION 
Title 10 Part 50 (10 CFR 50.46) of the United States Code of Federal Regulations first allowed “Best 

Estimate” calculations rather than conservative code models of safety parameters in nuclear power plants 
in the 1980s, stipulating, however, that uncertainties be identified and quantified (Anon 1996). Since then, 
various approaches to uncertainty analysis have been developed, accepted, and used for some light water 
reactor severe accidents. The simulation of the equilibrium neutronic and thermal-hydraulic 
characteristics of a reactor necessarily requires the application of a coupled-code system, such as 
PEBBED (Gougar 2010a) or CYNOD (Hiruta 2008), to capture all the relevant physics. Propagating the 
uncertainty in various input parameters, models, and assumptions through to the output figures of merit 
(for example fuel temperature) is a process that is still under development in many countries.  

1.1 Overview of General Uncertainty Analysis in Coupled Code 
Simulations 

In general, code uncertainty refers to uncertainty in the ability of a computer software product, 
coupled with a specific model, to accurately describe the actual physical system of interest. The computer 
model is an integration of the mathematical model, the numerical techniques used to solve those 
equations, and the representation of the physical model by the input geometry and material specifications. 
Each element contributes to the total uncertainty in the output parameter of interest, usually referred to as 
the Figure of Merit (FOM) in nuclear safety studies.  

The mathematical model consists of one or more governing equations that describe the balance 
between the creation, destruction, and flow of some quantity of interest (e.g., heat, coolant mass, or 
neutron flux) within a homogeneous control volume. It also consists of one or more subgrid equations that 
relate these gross phenomena to more complex physics that are neglected at the scale of the homogeneous 
control volume (e.g. neutron streaming between pebbles, heat conduction from the kernels to the pebble 
surface, etc.). The uncertainty associated with the mathematical model can be estimated by comparing the 
results with those generated using a different model that captures these phenomena more accurately or 
uses different governing equations or subgrid relations.  

A further complication is that very few computer codes solve the analytic form of its governing 
equations. Instead, the differential operators in these equations are expanded as a truncated series and cast 
as a set of difference equations solved over a discrete mesh. If the equations are well posed, the solution is 
unique and refining the mesh reduces the error between the solutions of the discretized equation and the 
original differential equation. Unfortunately, unlimited mesh refinement is not possible and one must 
tolerate some truncation error. Furthermore, in many complex fluid system simulation codes, the 
combination of governing equations and subgrid correlations yields ill-posed systems of differential 
equations that do not converge to the analytical solution upon refinement of the mesh. These errors can be 
shown to be minimal in codes like PEBBED and CYNOD, provided that the physical system is within the 
original range of applicability of the code. Nonetheless, in order to estimate the uncertainty introduced by 
the numerical approximations implemented in the code, direct comparisons to higher fidelity models can 
be performed.  

Another important source of uncertainty is that the input model is a simplification of the actual 
physical geometry. For example, the distribution of pebbles in the core is neither regular nor uniform, but 
to model it as anything else is computationally prohibitive. Complex geometrical detail in some of the 
prismatic designs can likewise be very difficult, if not impossible, to model accurately. In such cases, high 
fidelity models of only the core features in question can be constructed with reasonable boundary 
conditions provided by the larger core or system model. The results, in terms of the desired FOM, can be 
compared with its lower fidelity counterparts with uncertainty values derived from the differences. 
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The fourth major source of input uncertainty is the material neutronic and thermophysical properties. 
For core analysis, these include thermal properties such as conductivity and heat capacity, fluid properties 
such as density and viscosity, and neutronic properties such as cross sections. Knowledge of these 
parameters for each material of interest may be limited in the range of conditions found in a new type of 
reactor. Such uncertainty can be reduced through material testing and measurement, but the amount of 
testing is often limited by cost and schedule constraints and must be propagated through the calculations. 
In some cases, the natural variability of a given parameter under even the best experimental conditions 
may be large enough to inject uncertainty that cannot be ignored. Finally, when modeling of an actual 
operating reactor is considered, it is well known that the operational conditions (power level, inlet 
temperature, measured mass flow rates) can also have associated uncertainty ranges. 

(The sources of uncertainty discussed up to now are distinct from “human” errors in the code and 
model that usually arise from developer/user errors. These factors are usually addressed as part of the 
code development, calculation review, and quality assurance processes). 

1.2 Uncertainty Propagation Methodology 
Of the four types of uncertainty sources indicated here, the uncertainties in material properties can 

usually be addressed by relatively simple manipulation of the corresponding values in the input decks, 
and geometry simplifications can be benchmarked against higher fidelity codes (e.g., 2-D vs. 3-D effects). 
In contrast, variations in mathematical models and solver techniques are much more challenging, and in 
most cases not yet attempted in industry. Developments in uncertainty methodology are therefore 
currently focused on model and material input data uncertainties, and specifically on the propagation of 
uncertainties through coupled neutronic and thermal-fluid calculations. A recent example of a 
comprehensive thermal-fluid uncertainty propagation study is Phase 3 of the Organization for Economic 
Co-operation and Development/Nuclear Energy Agency BEMUSE program (De Crécy 2008), where 11 
participants calculated uncertainty and sensitivity data for a large break loss of cooling accident. An even 
larger international uncertainty and sensitivity quantification effort is also underway as part of the 
OECD’s Uncertainty in Analysis Modeling (UAM) program, where nine consecutive uncertainty estimate 
phases cover all aspects of a coupled boiling water reactor calculation (Ivanov 2007). This series of 
benchmark calculations will start with the propagation of uncertainties during the generation of the 
multigroup cross-section libraries, up to the final loss of forced cooling accident analysis that require time 
dependent coupled neutronics, thermal fluids and system response modeling.  

The need for a defensible and systematic uncertainty and sensitivity approach that conforms to the 
Nuclear Regulatory Commission’s Code Scaling, Applicability, and Uncertainty (CSAU) process, and 
that could be used for a wide variety of software codes, was defined in 2008 at Idaho National 
Laboratory’s (INL’s) Very High Temperature Reactor (VHTR) Technology Development Office. The 
GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of 
CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version 
of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) 
(Langebusch 2005) was acquired on May 12, 2010. Development of SUSA’s predecessors started in the 
mid eighties, and the code has been used extensively in uncertainty and sensitivity calculations (e.g., 
recently GRS teams used SUSA for the BEMUSE and UAM benchmarks). 

This report contains the results of the initial investigations performed with SUSA, utilizing the 
International Atomic Energy Agency (IAEA) CRP5 Pebble Bed Modular Reactor (PBMR) 400 MW 
benchmark (Reitsma 2010) model and the PEBBED-THERMIX suite of codes.  

A detailed discussion of the CSAU methodology can be found in the literature (e.g., see Boyack 
1990, and NUREG/CR-5249 1989). Figure 1 presents a diagram illustrating the CSAU methodology.  
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Figure 1. Illustration of the CSAU methodology. 
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Fourteen steps are incorporated into the three elements as indicated by the numbers on the figure. 
After specifying a scenario and nuclear power plant design for analysis (Steps 1 and 2), a Phenomena 
Identification and Ranking Table (PIRT) is generated by a panel of experts (Step 3) to identify important 
phenomena for subsequent evaluation. In the CSAU methodology, the PIRT is used to guide the 
uncertainty quantification. NUREG/CR-5249 (1989) identifies several techniques for accomplishing the 
ranking in a PIRT, including expert opinion, subjective decision-making methods, and scoping 
calculations. A PIRT was recently completed for the thermal fluid and neutronics phenomena of 
importance to the Next generation Nuclear Plant design (Ball et al. 2007), and the PEBBED-THERMIX 
codes typically include the modeling of most of these phenomena.  

 Steps 4 and 5 consist of selecting a documented computer code to be used for the analysis; the 
applicability of the code is evaluated in Step 6. This evaluation typically includes a review of the code 
capability to determine whether the code is suitable to be used for analyzing the transient of interest. The 
PEBBED-THERMIX methodology and solvers were evaluated to determine if the PBMR 400 MW CRP5 
steady-state and depressurized loss of forced cooling (DLOFC) can be treated, and it was found that 
although THERMIX is not capable of time dependent convective heat transfer, the DLOFC can be 
adequately represented with only conduction and radiation heat transfer taken into account (this can be 
shown with code-to-code comparisons, e.g., comparing the PEBBED-TEHRMIX DLOFC results with the 
TINTE (Time Dependent Neutronics and Temperatures) code results, as reported in Strydom 2004). 
These first six steps are included in the Requirements and Capabilities Element.  

Steps 7 to 10 are part of the Assessment and Ranging of Parameters Element. These steps are needed 
to quantify the effects of the individual contributors to uncertainty, and could include code limitations and 
scaling effects embedded in experimental data and code. Since the PBMR is not yet operational, only 
Step 8 was performed for this study, i.e., a PBMR model was developed using a nodalization that is 
sufficiently fine to capture important phenomena and plant design characteristics without being too 
penalizing from a computer execution time perspective.  

The remaining four steps are part of the Sensitivity and Uncertainty Analysis Element, and were the 
main focus of this study. The determination of the effect of the reactor input parameters and operating 
state on the output FOM occurs in Step 11, and non-parametric biases are determined (e.g., a typical 
thermocouple drift would not be included as a statistical variation, but as a constant off-set or bias). In 
Step 12 parametric sensitivity calculations are performed to evaluate the impact of inputs on the FOM, 
and the determination of the combined bias and uncertainty variations is performed in Step 13. The actual 
determination of the total uncertainty is performed in Step 14, and can be done in several ways, e.g. 
simple random (or Latin Hypercube) Monte Carlo sampling of the selected parameters’ distributions, 
response surface generation, etc. Two of these methods are discussed in some detail in the next section. 

Two major approaches to perform uncertainty propagation in a statistically rigorous manner can be 
identified (Salah 2006):  

1. Methods based on the propagation of input uncertainties (or statistical methods) as represented by the 
SUSA and DAKOTA (http://dakota.sandia.gov/index.html ) codes 

2. Methods based on the propagation of output uncertainties (or deterministic methods) of which the 
Capability of Internal Assessment of Uncertainty method (D’Auria, 2000).  

The two approaches can be summarized as follows: 

� Statistical methods (input uncertainty propagation) include: 

- Use of a reduced number of uncertain input parameters, i.e., non-significant parameters can be 
excluded. 

- Assign subjective probability ranges and distributions to these parameters. 
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- Propagate the combined uncertainty through the core models to determine the statistical 
properties of the FOM’s Probability Density Function (PDF). 

� Deterministic methods (output uncertainty propagation) include: 

- Use of a relevant set of experimental data to establish a database of uncertain data for a large 
number of input parameters. 

- Create hypercubes characterizing physical parameters for a wide variety of plant conditions, 
transients, etc.  

- Perform a single calculation utilizing all input parameters to determine the error bands enveloping 
the output FOM. 

Both methods have advantages and drawbacks as shown in Table 1. Typically, because of the 
deterministic method requirement to have a large and comprehensive experimental database available, 
light and boiling water reactor uncertainty studies can use this method (especially for thermal fluid 
uncertainty studies). However, in the high temperature reactor domain, very limited experimental and 
operational data exists, and the use of statistical uncertainty methods is currently the only viable approach 
for coupled uncertainty propagation.  

Table 1. Comparison between statistical and deterministic uncertainty assessment methodologies. 
Method Advantage Disadvantage 

Statistical � Possible to use reduced number of code 
calculations (Wilks’ formula) that is 
independent of number of uncertain inputs 

� Provides well-defined statistical data 
properties on output parameter’s PDF  

� Subjective selection of uncertain input 
parameters  

� Subjective selection of uncertainty 
distribution types and ranges 

� Requires significant number of model 
calculations (typically ~59–153) 

Deterministic � Requires only a single calculation to 
provide continuous error bands for any 
output variable of interest 

� Requires a relevant experimental/ 
operational data base to construct hyper-
cubes 

� Major contributors to uncertainty error 
bands not distinguishable 
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2. FEATURES OF THE GRS STATISTICAL UNCERTAINTY METHOD 
AND SUSA 

The first step in the GRS method is to select the set of uncertain input parameters that will be used to 
evaluate the desired FOM. Information from the manufacture of nuclear power plant components as well 
as from experiments and previous calculations are used to define the mean value and probability 
distribution or standard deviation of uncertain parameters. Uniform (and in some cases normal) 
distributions are used in the absence of more knowledge about the input parameters. Once these 
distributions and dependencies have been established, the analyst can: 

� Generate a random sample of size N (N = 93 for typical 5% lower and 95% upper percentile values), 
with a 95% confidence level (see Equations (1) and (2) below) for the input parameters from its 
probability distributions by a Monte Carlo module contained in the SUSA package.  

� Perform the corresponding N simulations with the codes. Each simulation generates one possible 
solution of the model. All solutions together represent a sample from the unknown probability 
distribution of the model results.  

� Calculate quantitative uncertainty statements, e.g., 5 and 95% quantiles or two-sided statistical 
tolerance limits like upper and lower limit values with 95% coverage and 95% confidence (denoted 
here as [95%,95%]). 

� Calculate quantitative sensitivity measures to identify those uncertain parameters that contribute most 
to the uncertainty of the results.  

The number of code calculations is determined by the requirement to estimate a tolerance and 
confidence interval for the quantity of interest. Wilks’ formulae (Wilks 1941) are used to determine the 
number of calculations required to obtain the desired uncertainty bands: 

� � �� � � (1) 

�� � ��	 � 
�� � �	���� � � (2) 

Equations (1) and (2) are used for one-sided and two-sided statistical tolerance intervals, where 
(b × 100) is the confidence level (%) that the maximum code result will not be exceeded with the 
probability (a × 100 [%]) (percentile) of the corresponding output distribution, and n the number of 
calculations required. For example, for a 95% probability that the peak fuel temperature lies below the 
maximum value of the (unknown) peak fuel temperature distribution, and given with a confidence level of 
95%, a total of n = 59 calculations need to be performed. Put another way, the one sided 95th percentile 
value of the (unknown) peak fuel temperature distribution is obtained with a confidence level of 95% by 
selecting n=59, and the same number of runs would be needed for the 5% percentile. If both percentiles 
are required, 93 runs would be required for the (95%,95%) two-sided tolerance limits.  

It is important to note that the GRS method does not generate the distributions of output parameters. 
Rather, it yields two-sided limit values (coverage) with a user-specified confidence. For example, a SUSA 
application may lead to the statement: “The analysis indicates with 95% confidence that in 95% of the 
cases the peak fuel temperature will be lower than 1600°C.” It also ranks the input parameters according 
to the effect that its uncertainties have on the uncertainty in the output parameter, as part of the sensitivity 
analyses. 
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In summary, SUSA is a program that performs a statistical analysis of uncertainty in the output of 
nuclear systems codes. Among its functions, SUSA:  

� Generates sets of input parameters given user-supplied distributions and input variable dependencies. 
The number of sets is a function of the confidence required in the uncertainty of the specified output 
parameters 

� Can be programmed to write system code input decks for these parameters sets 

� Can be programmed to execute the corresponding models using appropriate calls to the system code 

� Performs a statistical analysis of the specified output parameters, correlates the uncertainty in the 
output to each of the input variables, and ranks the importance of each input variable to the output 
uncertainty. 

The main advantage of the SUSA software is that is allows a core analyst to apply the sophisticated 
statistical techniques required of the GRS method without actually having to code them, i.e., SUSA can 
be used as a black-box wrapper. Because no code modifications are required, the method is entirely 
suitable for use with existing and older legacy codes. (A possible issue for regulatory acceptance could be 
the use of Microsoft Excel as the chosen SUSA interface. However, since Excel is just used as a user 
interface - the statistical engine is coded in Visual Basic - verification and validation of SUSA’s methods 
can still easily be performed, if required).  
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3. SUSA TEST CASE: PEBBED-THERMIX DLOFC 
The following target objectives were proposed for this study: 

1. Obtain and install SUSA, and perform tutorial test cases and verify the installation 

2. Define and execute an INL-specific test case using the PEBBED code to calculate the PBMR 400 
Exercise 2 benchmark steady-state and DLOFC transient 

3. Use SUSA to generate the statistical input data variations needed to produce a (95%,95%) statement 
for the peak fuel temperature as the FOM 

4. Perform the required 93 PEBBED runs 

5. Perform an uncertainty analysis with SUSA to obtain the (95%,95%) two-sided tolerance limits 

6. Perform a sensitivity study with SUSA to obtain correlation data between the input and output 
parameters 

7. Objectives 1 and 2 were discussed in the first revision of this report (INL-EXT-10-19023, June 2010), 
and a detailed discussion of the remaining five objectives are provided here.  

Table 2 provides an overview of the test platform and software details utilized for this study.  

Table 2. Test platform and SUSA code details. 
Description Platform/code details Remarks 

Hardware DELL laptop, Intel duo CPU @ 2.66 GHz, 
3.5 GB RAM 

 

Operating system Windows XP Professional, version 2002, 
Service pack 3 

 

SUSA software Version 3.6 There is no indication in the code release 
documentation that the SUSA “evaluation” 
or “trial” version released to INL actually 
differs from the “commercial” version 3.6. 
All the available functionalities described in 
the commercial code’s user manual are 
active for testing.  

Additional required 
software (1) 

SUSA uses a macro graphical user interface 
(GUI) through MS Excel, and both 2007 and 
2003 versions are supported. Excel 2007 
versions do however need additional .dll 
patches from the Microsoft website.  

For this report, MS Excel 2003 Professional 
build (11.8320.38221) SP3 was used. 

Additional required 
software (2) 

SUSA provides a FORTRAN 90 “wrapper” or 
shell as part of the software package. This shell 
enables internal calls to the user code, which 
can then be complied as a single executable. A 
FORTRAN compiler is then required. No 
FOTRAN prescriptions are provided from 
SUSA’s side, but it is known that GRS uses 
COMPAQ Visual FORTRAN version 6.6 for 
their development testing.  

The internal coupling approach (i.e., calling 
PEBBED internally with SUSA controlling 
the serial runs) was not tested at INL. The 
external model runs method was used for 
this study (see Figure 2).  

 
Figure 2 presents a simplified flow diagram of the methodology followed for the PBMR 400 

Exercise 2 benchmark test case.  
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Figure 2. Example of the GRS methodology applied to the PEBBED CRP-5 PBMR 400 Exercise 2 benchmark 
calculation. 

The results of PEBBED-THERMIX uncertainty and sensitivity analysis are presented in the 
following six subsections based on the sequence shown in Figure 2.  

3.1 Code, Model, and FOM Selection 
As already indicated earlier, the capabilities of the PEBBED-THERMIX code suite was investigated 

to determine if the codes can be used for a typical DLOFC transient. After this was confirmed, an existing 
model of the CRP-5 PBMR400 (Gougar 2010b) was used as the starting point of the uncertainty study.  

The typical FOM for a DLOFC event is the peak fuel temperature, i.e., the maximum spatial and 
temporal temperature reached in the fuel spheres. This will usually be the time dependent behavior of a 
single region in the core (except for the first 24 hours of the transient, when this location is not fixed and 
still moving upwards in the core). The normal operation (or steady state) maximum fuel temperature and 
the daily fuel loading rate were also tracked as secondary FOMs, since these two parameters were also 
influenced to a lesser degree by the variances in the input data. 

3.2 Input Parameters, Distribution Types and Variations 
As an illustration of SUSA’s capabilities, eight input parameters were selected for this study, as 

shown in Table 3. Since the selection of the input parameters to be perturbed is one of the potential weak 
points of the statistical uncertainty methodology, the results of a separate TINTE study (performed for the 
PBMR design [Strydom 2004]) was used to determine which eight parameters to include for this 
PEBBED DLOFC case.  
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Table 3. PEBBED CRP-5 DLOFC uncertainty study input parameters. 

Parameter Mean value 
2 Standard deviations 

(2�) value PDF Type 
Reactor power  400 MW ±8 MW (2%) Normal & Uniform 
Reactor inlet gas temperature (RIT)  500°C ±10°C (2%) Normal & Uniform 
Decay heat multiplication factor 1.0  ±0.057 (5.7%) Normal & Uniform 
Fuel specific heat multiplication 
factor 

1.0 ±0.06 (6%) Normal & Uniform 

Reflector specific heat multiplication 
factor 

1.0 ±0.10 (10%) Normal & Uniform 

Fuel conductivity multiplication 
factor 

1.0 ±0.14 (14%) Normal & Uniform 

Pebble bed effective conductivity 
multiplication factor 

1.0 ±0.08 (8%) Normal & Uniform 

Reflector conductivity multiplication 
factor 

1.0 ±0.10 (10%) Normal & Uniform 

 

This study indicated that metal and graphite emissivity only influenced the metal component 
temperatures, and uncertainties in the helium thermal physical properties also did not result in any 
changes in the FOM. Out of 19 input parameters investigated in the TINTE study, six had no effect on the 
steady-state and DLOFC maximum fuel temperatures, eight had less than 10°C (0.6%) effect, and only 
five factors resulted in changes larger than 10°C in the DLOFC FOM. These five input variables, together 
with three more that had a larger than 1% influence on the steady-state temperature, were selected for 
inclusion in this study.  

The variations on the power and reactor inlet gas temperature were applied directly on the absolute 
value of the input variable itself (e.g., 2% on 400 MW), in contrast to the decay heat, specific heat, and 
thermal capacity variations where the variations were applied as multiplication factors on the complex 
correlations that are used to calculate these variables. For example, the specific heat capacity of the 
reflector graphite material is a third-order polynomial function of temperature T and the density � where  

� � �������� � ������ � �������
� � ��������	 (3) 

The sampled multiplicative factor cp_mod is then applied to the interim value to determine the final 
specific heat value in 

� � �� !" # $�������� � ������ � �������
� � ��������	% (4) 

The mean and two standard deviations (2�) values shown in Table 3 were obtained from material 
manufacturers (specific heat and conductivity data), expert engineering judgment (power and inlet 
temperature), and from established industry standards (decay heat).  

The GRS methodology and, specifically, the use of Wilks’ method does not require the use of a 
limited number of perturbed input parameters; if required, all possible input variations can be taken into 
account without an additional calculational burden. (In the BEMUSE benchmark, the various participants 
selected between 11 and 64 input parameters to vary, and all but one participant performed only 93 model 
calculations). A large number of input parameters do, however, imply a significant effort to quantify the 
distribution type and variances for each of these parameters. Since the intention of this study is only to 
demonstrate the capabilities of SUSA, as opposed to a safety case study by a reactor vendor, it was 
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decided that the eight most influential parameters, as determined by the TINTE study, will be included 
here.  

A second potential weak point of the statistical method is the justification for the selection of the PDF 
types. Typical thermal physical properties, such as specific heat and thermal conductivity, can be obtained 
from the manufacturers, and are usually specified as normal PDFs with mean standard deviation values. 
More complex variable PDFs (e.g., variations in the core bypass flows) can be biased/skewed to one side, 
as when gap widths grow larger or shrink over time or a preferred direction of thermocouple measurement 
drifts as it ages. In cases where no definitive uncertainty information exists, a simple uniform PDF can be 
assigned (all values within a certain range are equally probable, as indicted by Glaeser [2008]), or a 
standard/Gaussian PDF can be used with or without truncated tails. For this study, both normal and 
uniform PDFs were selected to assess if this factor plays a significant role in the DLOFC maximum fuel 
temperature uncertainty (see Table 4). 

3.3 SUSA Statistical Input Data Generation 
The information required by the SUSA code is entered via a Microsoft Excel Graphical User Interface 

(GUI). The process starts at the definition of the variable names and PDF information, as shown in the 
SUSA GUI dialogue at this point (Figure 3).  

 
Figure 3. SUSA input parameters distribution information entry screen. 

The next step provided detailed information for each of the input parameters. Figure 4 presents the 
data for the Total Power input variation, with a normal distribution selected and the mean and standard 
deviation values specified. Note that infinite tails of the normal distributions were all truncated at their 2� 
values (at the 95.5% percentiles) to enable direct comparison with the uniform distributions’ minima and 
maxima. A visual check on the calculated PDFs and cumulative distribution functions are provided by 
selecting the “plot” option, as shown in Figure 5 to Figure 7.  
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Figure 4. SUSA entry screen for “Total Power” distribution information. 

 

 
Figure 5. PDF for the total power input parameter. 
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Figure 6. PDFs for the specific heat and thermal conductivity correlation input parameters. 

 
Figure 7. Cumulative density function for the total power. 
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A total of six SUSA case sets were performed for this study as described below and summarized in 
Table 4:  

� The number of model runs were varied between 100 and 200 to investigate if double the required 
model runs (93) produced a smaller or larger DLOFC maximum fuel temperature uncertainty 
estimate.  

� SUSA is capable of using either the simple random sampling (SRS) (Yates 2008) or the Latin 
hypercube sampling (LHS) method (McKay 1979) for generating the values of the input variables 
from their specified distributions. A final set of 200 model runs was performed to compare the FOM 
uncertainty estimates generated by these two sampling methods. 

� As indicated in Section 4.2, both the 100 and 200 model run sets were repeated with uniform and 
normal distribution types.  

� A final point of interest was the uncertainty contribution of a few dominant input parameters 
compared to the combination of all eight input parameters. To this end, two sets of 100 model runs 
each were performed, varying only the material correlations and only the power, RIT, and decay heat 
correlation, respectively.  

Table 4. PEBBED-THERMIX CRP-5 DLOFC uncertainty study cases. 
Number of 

Model Runs 
Input Parameter 
Sampling Method 

Input Parameter 
Distribution Type Model Input Parameters Varied 

100 Latin Hypercube Uniform Power, RIT, decay heat only 
100 Latin Hypercube Uniform Specific heat and thermal conductivity only 
100 Latin Hypercube Uniform All 
100 Latin Hypercube Gaussian/Normal All 
200 Latin Hypercube Gaussian/Normal All 
200 Simple Random Gaussian/Normal All 
 

In the discussions that follow, the notation will be of the format “number, sampling method, 
distribution type”; for example, the first and last entries in Table 4 will be referred to as 100 LHS Uniform 
and 200 SRS Normal. 

In the SUSA application, both the SRS and LHS methods use a random six-digit number as “seed” 
for the generation of random numbers between 0.0 and 1.0, which are then used to sample parameter 
values from their respective PDFs as shown in Figure 8. The user can also request several statistical 
indicators on the correlations between the input parameters, for example the Pearson (Rogers 1988) and 
Spearman (Maritz 1981) coefficients, to confirm that unintended dependencies between the random input 
sample sets did not occur. 
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Figure 8. SUSA random generator GUI dialogue. 

An example of the final outcome of this input preparation phase is shown in Table 5, where the values 
of the eight input parameters are presented for the first 10 of the 200 LHS Normal set model runs.  

Table 5. PEBBED-THERMIX input data for the first 10 model runs of the 200 LHS Normal set. 
Reactor 
Power 
(MW) 

Inlet gas 
Temperature 

(°C) 
Decay heat 
multiplier 

Fuel specific 
heat 

multiplier 

Reflector 
specific heat 
multiplier 

Fuel 
conductivity 

multiplier 

Bed 
conductivity 
multiplier 

Reflector 
conductivity 
multiplier 

393.9 497.5 0.995 0.977 1.023 0.976 1.029 1.064 
400.2 501.1 0.977 1.006 0.998 1.004 0.987 1.012 
397.6 507.0 1.040 0.947 0.948 0.945 1.011 1.055 
393.6 498.4 1.048 0.974 1.029 0.955 1.016 1.035 
401.9 496.8 1.002 0.951 1.004 0.947 1.024 1.080 
403.6 499.6 0.969 1.018 0.996 1.092 1.054 1.039 
398.2 505.0 0.973 0.980 0.962 0.912 0.999 0.964 
399.3 499.8 0.958 0.987 0.928 1.095 0.975 1.028 
405.6 503.8 0.981 0.979 0.984 0.958 0.964 0.903 
400.4 500.6 0.984 0.966 0.954 1.020 1.025 1.085 
398.5 494.1 0.956 1.013 0.946 1.013 0.995 0.947 

 
The SUSA generated input data can also be verified for conformance to the user’s specifications 

using scatter plots. Two sample scatter plots are shown in Figure 9 (total power) and Figure 10 (reflector 
conductivity multiplication factor) for the 200 LHS Normal set. 
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Figure 9. Sampled values of the total power (MW) for the 200 LHS Normal set. 

 
Figure 10. Sampled values of the reflector conductivity multiplication factor for the 200 LHS Normal set. 
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3.4 PEBBED-THERMIX Calculation Results 
During the next step of the procedure, the SUSA-generated data for the eight input parameters were 

used to create model input files for the PEBBED-THERMIX steady-state and DLOFC calculations. The 
six sets (Table 4) required 800 PEBBED calculations at an average run time of 35 minutes each on a 
single processor. While it is possible to assign the model runs to a multiprocessor system for a significant 
decrease in calculation times, the calculations were performed sequentially on a single machine. Because 
of the large volume of data generated by the 800 model calculations, only summarized comparative 
results are presented for most of the sets. 

The time behavior of the maximum fuel temperature during the DLOFC transient is shown in  
Figure 11 to Figure 13 for the first 30 cases of the 100 SRS Uniform, 100 LHS Normal, and 200 LHS 
Normal data sets, respectively. (Note that the maximum fuel temperature is a spatial function, since the 
PEBBED-THERMIX model calculates temperatures in 110 core zones/meshes. The temporal maximum 
of this maximum fuel temperature during the DLOFC is defined as the peak fuel temperature. This spatial 
location moves upwards in the core by more than 5 meters in the first 15 hours, and as such the curves 
shown here do not represent the same location at all times - simply the highest fuel temperature at any 
given moment in any location.)  

A few observations on the general trends can be made from this data: 

� The PBMR core design leads to the typical high temperature reactor slow increase in the maximum 
fuel temperature over several hours, with the peak fuel temperatures reaching between 40 to 60 hours 
into the transient.  

� The shapes of the curves in the first 30 cases are similar but the gradients are not. Although the same 
physical phenomena are present in all the DLOFC events, the rate of energy deposition (correlated to 
the decay heat) and energy removal (correlated to the fuel and reflector specific heat and thermal 
conductivities) differ for each of these cases, according to the sampled input values.  

� Changes in the eight input parameters have opposite effects on the maximum fuel temperature; an 
increase in the decay heat will increase the fuel temperature, but an increase in the fuel graphite 
conductivity will remove heat faster from the core, and therefore lead to a lower fuel temperature (see 
also the Sensitivity Study, Section 4.6). Since each DLOFC case consists of a random sampled set of 
the eight input parameters, the low fuel temperature curves can be the result of a few parameters 
sampled low (or high) simultaneously, and an average fuel temperature curve could be caused by a 
cancellation of effects. This effect is also the cause of the shift in time when the peak fuel temperature 
values are reached.  

� The spread in maximum fuel temperatures between the first 30 cases is not constant with time. For 
example, it starts off with less than 5°C in the first hour and increases to 98°C for the 200 LHS 
Normal set, as shown in Figure 13. This divergence over time is a direct result of the sampled input 
parameter values, as explained above. For a time dependent event such as this DLOFC, a single and 
constant fuel temperature uncertainty result can therefore not be expected - it will be a function of 
time as well. It can be seen in Figure 11 to Figure 13 that the temperature spread between the cases 
continue to increase after the peak values have been reached, and a full uncertainty study should take 
this effect into account if it is required to determine what the maximum uncertainty bandwidth is.  

� Examples of the (95%,95%) two-sided tolerance limits are not provided at a fixed time point, but 
rather at the varying time point where a specific case reaches its peak DLOFC fuel temperature. The 
arrows in Figure 14 show that this time point occurs between 45 and 54 hours. This study therefore 
compares the bounding value fuel temperature uncertainty for the DLOFC event, regardless of when 
this point is reached, since the DLOFC peak fuel temperature is of major interest in reactor design 
safety studies.  
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Figure 11. DLOFC maximum fuel temperature vs. time for the first 30 cases of the 100 SRS Uniform set. 

 
Figure 12. DLOFC maximum fuel temperature vs. time for the first 30 cases of the 100 LHS Normal set. 

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Time (h)

M
ax

im
um

 fu
el

 te
m

pe
ra

tu
re

 (C
)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10
Case 11 Case 12 Case 13 Case 14 Case 15 Case 16 Case 17 Case 18 Case 19 Case 20
Case 21 Case 22 Case 23 Case 24 Case 25 Case 26 Case 27 Case 28 Case 29 Case 30

spread = 121oC

spread = 141oC

spread = 153oC

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Time (h)

M
ax

im
um

 fu
el

 te
m

pe
ra

tu
re

 (C
)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 Case 16
Case 17 Case 18 Case 19 Case 20 Case 21 Case 22 Case 23 Case 24
Case 25 Case 26 Case 27 Case 28 Case 29 Case 30

spread = 87oC

spread = 131oC

spread = 139oC



 

 19

 
Figure 13. DLOFC maximum fuel temperature vs. time for the first 30 cases of the 200 LHS Normal set. 

 
Figure 14. DLOFC maximum fuel temperature vs. time for the first 30 cases of the 200 LHS Normal set: detail 
of the peak temperature turning points. 
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� The temperature variation bandwidth for the 3 cases shown here is quite different. The two sets that 
consisted of 100 runs each produced significantly larger variations than the 200 LHS Normal set (e.g. 
141°C vs. 94°C), and there is also a smaller difference between the 100 LHS Normal and 100 SRS 
Uniform sets (131°C vs. 141°C). This is caused by the random statistical sampling of the sets, and it 
is important to note that the figures just show the first 30 model runs of each set for clarity sake. For 
the 200 LHS Normal set, the remaining 170 model runs populates the final distribution further as 
shown in Figure 15, while Section 4.5 (Table 8) shows that the uncertainty estimates for the 6 full sets 
are very similar. This principle is illustrated by comparing Figure 12 and Figure 16, where a subset of 
8 cases from the same SUSA set (100 LHS Normal) produces a much smaller variation compared to a 
subset of 30 cases.  

� The primary FOM (DLOFC peak fuel temperature) and the two secondary FOMs (steady state 
maximum fuel temperature and the daily fuel loading rate) results are presented in Figure 17 to  
Figure 19 for the 200 LHS Normal set. The mean and ±2� values are also indicated in two of the 
figures. Table 8 shows that the (95%,95%) two-sided tolerance limits are almost identical to the ±2� 
values, since 2� = 95.5%. The peak DLOFC fuel temperature and pebble load rate data for the 200 
runs show a random behavior (no discernable pattern is seen between the various runs), but the 
steady-state fuel temperature seems to be clustered together in discrete bands. This is caused by 
integer rounding and the small scale of the variations: the (95%,95%) two-sided tolerance limits for 
the 200 runs differ only by 7°C around a mean value of 1082°C. Since PEBBED adjusts the fuel 
loading rate for each of these steady-state calculations to a targeted k-eff value of 1.0000, the steady- 
state temperatures will not vary significantly. The only output variables amenable to a statistical 
analysis are therefore the peak DLOFC fuel temperature and pebble load rates.  

 
Figure 15. DLOFC maximum fuel temperature vs. time for all 200 cases of the 200 LHS Normal set. 
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Figure 16. DLOFC maximum fuel temperature vs. time for eight cases of the 100 LHS Normal set. 

 
Figure 17. Maximum DLOFC fuel temperature of the 200 LHS Normal set at 50 hours. 
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Figure 18. Maximum steady-state fuel temperature of the 200 LHS Normal set at 0 hours. 

 
Figure 19. Daily fuel loading rate of the 200 LHS Normal set. 
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3.5 SUSA Uncertainty Analysis 
For the uncertainty quantification step, SUSA can perform several statistical correlation fitness tests 

on the output data to determine the properties of the unknown statistical distributions. For example, the 
Kolmogorov-Smirnov (K-S) test (Chakravarti et al. 1967) quantifies the distance between the empirical 
distribution function of the sample and the cumulative distribution function of a reference distribution, 
and can be used to compare a population sample with a specific distribution (normal, log-normal, 
Weibull, uniform, Beta or Gamma). SUSA can also perform the Lilliefors test (Lilliefors 1967), which is 
a modification of the K-S test that tests for the normal, exponential or log-normal distribution types. Once 
a statistically significant distribution match has been found, the mean, standard deviation, and other 
indicators of the population can be determined.  

An illustration of the K-S test application is shown in Figure 20 to Figure 22, where the peak DLOFC 
fuel temperature results of the 100 LHS Normal set is compared with SUSA fits of three possible 
distributions: Normal (Figure 20), Weibull (Figure 21), and Uniform (Figure 22). The quality of the fit 
can be visually assessed and the K-S values (0.9919, 0.2231, and 0.0026) confirm that a normal 
distribution is the closest match to the peak DLOFC fuel temperature data set.  

 
Figure 20. PDF and fitted normal distribution results for the 100 LHS Normal set: K-S level of significance = 
0.9919. 
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Figure 21. PDF and fitted Weibull distribution results for the 100 LHS Normal set: K-S level of significance = 
0.2231. 

 
Figure 22. PDF and fitted uniform distribution results for the 100 LHS Normal set: K-S Level of Significance = 
0.0026. 
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A second example of the Lilliefors and K-S test results for the 100 LHS Uniform set is presented in 
Table 6 and Table 7. Both tests confirm that for this Uniform sampled set, log-normal distribution fits 
provide the best match for the pebble load rate and the peak fuel temperature. 

Table 6. Lilliefors test results for the 200 LHS Normal set. 

Figure of Merit 
Lilliefors Test: Level of Significance for Distribution Type 

Normal Lognormal Exponential 
DLOFC Maximum Fuel Temperature 0.64 0.79 0.01 
Pebble Load Rate  0.08 0.1 0.01 
 

Table 7: K-S test results for the 200 LHS Normal set. 

Figure of Merit 
K-S Test: Level of Significance for Goodness of Fit 

Normal Lognormal Weibull Uniform Gamma Beta 
DLOFC Maximum 
Fuel Temperature 0.924 0.966 0.117 0.002 0.954 0.713 

Pebble Load Rate  0.477 0.513 0.019 0 0.502 0.333 
 

A summary of the mean and (95%,95%) two-sided tolerance limits (at the time when the peak fuel 
temperature are reached) are shown in Table 8 for all six SUSA sets. The actual number of model 
calculations is also indicated. For three of the sets, one calculation each did not complete successfully, but 
the remaining 99 and 199 model runs were still an adequate sample size for the statistical analysis. The 
following observations can be made: 

� Mean values: The mean values for all six data sets are almost identical (2°C variation on 1604°C, for 
example), i.e., regardless of the sampling method, parameters included, or distribution types, these six 
independent random sets predict the same mean DLOFC maximum fuel temperature (1604°C) and 
pebble load rate (2,793/day). 

Table 8: PEBBED CRP-5 DLOFC uncertainty study results. 

Number 
of Model 

Runs 

Input Data 
Mean and (95%,95%) Two-

Sided Tolerance Limits 

Input Parameter 
Sampling 
Method 

Input Parameter 
Distribution 

Type 

Model Input 
Parameters 

Varied 

DLOFC 
Maximum Fuel 
Temperature 

(°C) 

Pebble Load 
Rate (Per 

Day) 

99 Latin Hypercube Uniform Power, RIT, decay 
heat only 1,603 ± 61 2,793 ± 72 

100 Latin Hypercube Uniform 
Specific heat and 
thermal 
conductivity only 

1,605 ± 45 2,790* 

100 Latin Hypercube Uniform All 1,605 ± 76 2,794 ± 72 
99 Latin Hypercube Gaussian/Normal All 1,604 ± 59 2,793 ± 55 
200 Latin Hypercube Gaussian/Normal All 1,604 ± 59 2,793 ± 55 
199 Simple Random Gaussian/Normal All 1,604 ± 58 2,790 ± 57 

* No variations in the fuel load rate occurred, since only changes in reactor power result in new fuel load rates.  
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� Distribution type: Using a uniform distribution could be expected to result in the sampling of high 
and low values more frequently, compared to a normal distribution, since the probability of sampling 
a high, mean, or low value is identical for a uniform distribution, but there is a lower probability to 
sample from the low and high tails of the normal distribution. This effect is responsible for the 
slightly larger uncertainty band (±76°C, or 4.7%) for the 100 LHS Uniform set, compared to the 100 
and 200 LHS Normal set values (±59°C, or 3.7%). The difference is however still minimal: only  
17°C on 1604°C. 

� Sampling method: The mean and (95%,95%) two-sided tolerance limits are identical for the two sets 
that used the SRS and LHS methods. It does not seem to matter which statistical random generator 
algorithm is used. This observation is in agreement with the conclusion reached by Helton (2005), 
where the properties of the SRS and LHS methods were compared and also found to be very similar. 
This study did, however, recommend using LHS because of its enforced stratification over the sample 
range, and one participant in the BEMUSE benchmark (De Crécy 2008) pointed out that the SRS 
approach might not be optimal for sensitivity studies.  

� Number of model calculations: Model calculations are crucial time-consuming factors for the 
statistical uncertainty method. This small set (800 model runs is still a relatively small population 
number in typical statistical analysis – a few 1,000 is typically recommended) did not lead to 
significant differences between sets consisting of 100 or 200 model runs. As pointed out earlier 
(Section 3.4, and Figure 16), a low number of runs (10 or 30) will definitely lead to partially 
populated distributions and erroneous conclusions. The Wilks’ formula recommendation (93 
calculations) therefore seems to be sufficient for this model and transient. This conclusion is 
supported by the ATHLET PWR study (Glaeser 2008) where 100 model runs were performed for 56 
uncertain input parameters, and most of the participants in the BEMUSE benchmark study (De Crecy 
2008) did between 93 and 150 model runs for 13 to 49 input parameters. Four of the BEMUSE 
benchmark participants found that the 95th percentile can typically be directly obtained from a 
converged PDF after 400 to 500 model runs, if parallel resources are available, or if the model run 
times are not significant. The final recommendation was that Wilks’ formula should be applied at the 
third or fourth order (between 124 and 153 model runs).  

� Dominant input factors: Even before an analytical sensitivity study is performed to determine which 
of the factors are responsible for most of the variations in the output data, the first two data sets 
shown here already show that the power, inlet gas temperature, and decay heat variations contribute 
significantly to the variation seen in the DLOFC peak fuel temperature. On its own, these three small 
input variations produced an uncertainty band of ±61°C, while the much larger uncertainty variations 
in the five material correlations only lead to a value of ±45°C. Note that both these sets can be 
compared with the 100 LHS Uniform set where all eight input variables were included, and 
(95%,95%) two-sided tolerance limits of ±76°C were obtained.  

A single example of the time dependent nature of the data shown in Table 8 is provided in Figure 23, 
which shows the data for the 200 LHS Normal set. As indicated earlier, the minima and maxima (which is 
the upper and lower bounds of the model calculations in Figure 15) vary with time, and the resultant 
distribution properties show similar variations. The uncertainty bandwidth increases with time beyond the 
time point where the peak fuel temperature is reached, i.e., in this example the highest fuel temperatures 
and the largest uncertainty variations do not occur at the same time point.  

It has been shown in this section that the input uncertainties in only eight parameters already lead to 
(95%,95%) two-sided tolerance limits of ±59°C (or 3.7%) around the mean value of 1604°C for the peak 
fuel temperature during a DLOFC transient in the PBMR design. A more complete study, taking into 
account all known input uncertainties could possibly lead to a larger uncertainty bandwidth. These 
uncertainties need to be taken into account during the reactor safety margin design process.  
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Figure 23. Time dependent minima, maxima, means and 5/95 percentiles for the 200 LHS Normal set 
maximum fuel temperature. 

3.6 Sensitivity Analysis  
Selected results of two sensitivity studies are presented in this section: a simple parametric variation 

of the eight input variables between their minimum and maximum values, and the SUSA analysis of the 
same six data sets that were produced in Section 4.5.  

3.6.1 Parametric Variation Study Results 

In the PIRT process, a simple parametric sensitivity study can be performed to aid with the selection 
of a smaller set of uncertain input parameters. The input parameters are varied one by one in sequential 
model calculations using their minimum and maximum values in order to isolate their effect on the output 
parameters of interest. The magnitudes of the variations were obtained from the TINTE study (Strydom 
2004), and are identical to the values used in the uncertainty study (Table 3). The results from the simple 
parametric variation study are presented in Table 9, and can be summarized as follows: 

� The ranked entries show that a small variation of ±2� = 5.7% in the decay heat correlation is 
responsible for the largest change of ±50°C (3.1%) in the DLOFC peak fuel temperature. (Note that 
the 5.7% uncertainty is prescribed by the DIN standard because of the error in the fitted correlation). 
This effect is almost twice as large as the second most influential input parameter (pebble bed 
effective conductivity), which was varied by ±2� = 8%.  
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Table 9: Parametric variation study results. 

Input Parameter Varied ±2� Values 

Difference between Reference and Varied 
Cases' Maximum Fuel Temperatures (°C) 

Steady State DLOFC 
- Case + Case - Case + Case 

Decay heat multiplication factor 0.943 and 1.057 0 0 -50 50 
Pebble bed effective conductivity 
multiplication factor 0.86 and 1.14 0 0 31 -25 

Reflector conductivity 
multiplication factor 0.90 and 1.10 0 0 25 -22 

Reactor power  392 and 408 MW -12 12 -19 19 
Fuel specific heat multiplication 
factor 0.94 and 1.06 0 0 10 -10 

Reflector specific heat 
multiplication factor 0.90 and 1.10 0 0 8 -7 

RIT  490 and 510°C  -10 10 -4 4 
Fuel conductivity multiplication 
factor 0.92 and 1.08 5 -3 1 0 

 

� Only three parameters had a non-zero effect on the steady-state fuel temperature: total power, inlet 
gas temperature, and fuel conductivity. The effect of the uncertainties in these parameters also did not 
all propagate through to the DLOFC phase—only the total power had a similar or stronger effect 
during the DLOFC.  

� Uncertainties in the measured mass flow rate (shown here as power variations) and inlet gas 
temperatures (both examples of measurement uncertainties or long-term instrumentation drift errors) 
have similar levels of influence.  

� Uncertainties in the reflector and pebble bed graphite conductivity also produced variations in the 
DLOFC peak fuel temperature of more than ±1%.  

� The TINTE and PEBBED sensitivity study results and conclusions are almost identical. The small 
differences that exist between the TINTE and PEBBED studies are the result of model differences, 
e.g., the use of virgin graphite versus 36 full-power years.  

3.6.2 SUSA Sensitivity Study Results 

This section presents selected results from the SUSA sensitivity study. An overview of the 
definitions, uses, and advantages of typical sensitivity parameters (regression coefficients, correlation 
measurements, partial and empirical coefficients, etc.) can be found in Helton (2006). As indicated 
previously, SUSA can calculate several quantitative measures of correlation between the uncertainties in 
input parameters and the subsequent variations in the output data. Since the model calculations are usually 
expensive in terms of computational requirements, it is accepted practice to use the same data sets for the 
sensitivity and uncertainty analyses. The Kendall rank correlation coefficients and the empirical 
correlations ratios shown in Figure 24 to Figure 29 can therefore be generated for any of the six data sets 
used in Section 4.5. (The indexes of the parameters from Nos. 1to 8 in the figures are: power, inlet 
temperature, decay heat, fuel specific heat, reflector specific heat, fuel conductivity, bed conductivity, and 
reflector conductivity, and all data shown here is for their effects on the maximum fuel temperature).  
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Figure 24. Kendall rank correlation coefficients (peak fuel temperature) for the 100 LHS Uniform set.  

 
Figure 25. Kendall rank correlation coefficients (peak fuel temperature) for the 200 LHS Normal set.  
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Figure 26. Empirical correlation ratios (peak fuel temperature) for the 100 LHS Uniform set. 

 
Figure 27. Empirical correlation ratios (peak fuel temperature) for the 200 LHS Normal set. 
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Figure 28. Empirical correlation ratios (pebble load rate) for the 200 LHS Normal set. 

 
Figure 29. Empirical correlation ratios (peak fuel temperature) variations vs. time for the 200 LHS Normal set. 
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The magnitude of the coefficients provides insight into the degree which a specific input parameter 
influences the output parameter values (zero values imply almost no link between the input and output 
uncertainty variations), while the sign of the Kendall coefficient indicate a positive or negative 
relationship (e.g., an increase in decay heat will lead to an increase in fuel temperature). This information 
can be used to confirm the effect of known physical phenomena or to highlight the primary drivers behind 
the output uncertainty variations.  

Apart from a change in order between input Parameters 7 and 8, the results of the 100 LHS Uniform 
set shown in Figure 24 and 200 LHS Normal set shown in Figure 25 are very similar. According to the 
SUSA analysis, the three primary drivers of uncertainty in the fuel temperature are the decay heat and the 
reflector and pebble bed conductivity. This finding is in agreement with the parametric sensitivity study 
results (Section 4.6.1), where these three factors were also identified as being responsible for the largest 
changes in the output fuel temperature.  

The empirical correlation ratios shown in Figure 26 and Figure 27 do not show a directional influence 
(all values are positive), but the three primary drivers can still be readily identified. This indicator is 
known to be more sensitive to the number of model calculations performed; when the data for the 
100 LHS Uniform set shown in Figure 26 and 200 LHS Normal set shown in Figure 27 are compared, it 
can be seen that the three primary parameters’ amplitudes (3, 7, and 8) remained similar, but the values of 
the lesser contributors decreased for the 200 model calculations set. The need for a higher number of 
model runs to distinguish low-level contributions in sensitivity studies is also identified in the literature 
(De Crécy 2008 and Helton 2006), and should be kept in mind when a low number of model runs are used 
for sensitivity conclusions. (Note that the Wilks criteria on the validity of using a limited number of 
model runs only applies to uncertainty studies, and cannot be extended to sensitivity studies).  

A good example of spurious correlations is shown in Figure 28, where a value of 1.0 is calculated for 
the empirical correlation ratio of the total power and the pebble load rate, and values of 0.2 to 0.3 for the 
other seven input parameters. The correlation ratios of Parameters 2 through 8 are noise data caused by 
the statistical nature of a small sample set, and should, in principle, have had zero values, since the pebble 
load rate in the PEBBED code can only be influenced by variations in the power.  

As a final example, the time dependent empirical correlation ratios for the 200 LHS Normal data set 
(Figure 29) illustrate the principle that the rank of the input parameters is not constant over time (e.g., 
compare the correlation ratios at 5 and 100 hours).  
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4. CONCLUSIONS 
This report summarizes the results of the initial investigations performed with SUSA, utilizing a 

typical high temperature reactor benchmark (the IAEA CRP-5 PBMR 400 MW Exercise 2) and the 
PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and 
sensitivity analysis: 

1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty 
study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and 
thermal conductivity of the fuel, pebble bed, and reflector graphite.  

2. The input parameters variations and probability density functions were specified, and a total of 800 
PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 
steady-state and DLOFC transient calculations each. 

3. The steady-state and DLOFC maximum fuel temperature and the daily pebble fuel load rate data were 
supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed 
to determine the 5 and 95% values for each of the three output parameters with a 95% confidence 
level, and typical statistical indictors were also generated (e.g., Kendall, Pearson, and Spearman 
coefficients).  

4. A SUSA sensitivity study was performed to obtain correlation data between the input and output 
parameters, and to identify the primary contributors to the output data uncertainties.  

It was found that the uncertainties in the decay heat, pebble bed, and reflector thermal conductivities 
were responsible for most of the propagated uncertainty in the DLOFC maximum fuel temperature. It was 
also determined that the two standard deviation (2�) uncertainty on the maximum fuel temperature was 
between ±58°C (3.6%) and ±76°C (4.7%) on a mean value of 1604°C. These values mostly depended on 
the selection of the distribution types, rather than the number of model calculations above the required 
Wilks criteria (a (95%,95%) statement would usually require 93 model runs).  

Possible future investigations could include the following: 

� Clarify the approach on complex non-statistical uncertainties: bypass flows, core thermal dispersion, 
radial/axial power peaking, Control Rod worths, etc. 

� A comparison of the results obtained with SUSA and the Sandia National Laboratory code 
DAKOTA.  

� The propagation of the uncertainties in the cross section data from the basic nuclear ENDF libraries to 
the PEBBED steady-state represents a longer term challenge. In this regard, promising results have 
been produced in 2010 with a special version of SUSA developed for this task as part of the UAM 
benchmark (XSUSA). The implementation of XSUSA at INL’s VHTR group is planned for 2011, as 
part of the forthcoming Prismatic VHTR Benchmark activities.  
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APPENDIX A 
Summary of Changes Made to the PEBBED and 

THERMIX Codes for SUSA Implementation 
Source Code Changes 

The SUSA uncertainty study required a number of minor changes to the THERMIX source code to 
allow the use of multiplication factors for the decay heat, specific heat and thermal conductivity 
correlations, as indicated in Table A-1 (no changes were needed for the PEBBED source code). In total 
less than 200 lines of code were changed. A sequential test approach was followed during the 
development phase, consisting of: 

� Backward compatibility tests to ensure that 0.0 input values in older input decks were converted to 
multipliers values of 1.0. 

� Multiplier input values equal to 1.0 produced identical results compared to the original source. 

� Multiplier input values not equal to 0.0 or 1.0 produced physically consistent results, when compared 
to the TINTE (Time Dependent Neutronics and Temperatures) study (Strydom 2004). This step 
consisted of simple up and down variations in the multiplier input values (e.g. 0.9 and 1.1), and 
confirming the direction and magnitude of the changes on the output data. 

In addition to these changes, a set of data input and output reading/writing tools were also created 
using the same Fortran 90 compiler that was used for the compilation of the PEBBED-THERMIX source 
(Compaq Visual Fortran, version 6.6a). These routines can also easily be integrated in the SUSA Fortran 
shell for complete SUSA control over all aspects of the uncertainty calculations (instead of performing 
the PEBBED-THERMIX calculations off-line, as was done for this study).  

The changes were all performed on a released version of PEBBED-THERMIX dated July 9, 2010, 
that also included the latest COMBINE 7 upgrades. The THERMIX User Manual will also be revised at a 
later stage to include a description of these changes.  
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Table A-1. Summary of THERMIX source code changes. 
Subroutine Line No. Description 

xlamt.f90 10–22, 279–291, 351–
356, 543–548, 557–
563, 605–611 

Use of module SUSA added. 
Setting of local variables, and modification of fuel, reflector 
and pebble bed thermal conductivity formulas to account for 
addition of multiplication factors. 

xlam.f90 9–13, 58–64 Use of module SUSA added. 
Setting of local variables for use in xlamt.f90. 

wkptkbb.f90 5–14, 22–29, 106–112, 
156–160  

Use of module SUSA added. 
Setting of local variables, and modification of fuel and 
reflector specific heat formulas to account for addition of 
multiplication factor. 

wkpt.f90 5–14, 23–31, 79–86, 
115–121, 164–175 

Use of module SUSA added. 
Setting of local variables, and modification of fuel and 
reflector specific heat formulas to account for addition of 
multiplication factors. 

wkap.f90 11–15, 74–79, 123–
129 

Use of module SUSA added. 
Setting of local variables, and modification of fuel specific 
heat formula to account for addition of multiplication factor.

tproz.f90 12 Use of module SUSA added. 
steuer.f90 11–17, 384–389, 535, 

680–685 
Use of module SUSA added. 
Calls to wkap.f90 and reduz.f90 updated with additional 
passed variables. 

reduz.f90 10, 62, 85–99 Inclusion of global routine tmxglobals.h added. 
Modification of decay heat formulas to account for addition 
of multiplication factor. 

maithx.f90 50–54, 435–440, 453–
459 

Use of module SUSA added. 
Call to xlam.f90 updated with additional passed variables. 

konst1.f90 96–101 Call to xlam.f90 updated with additional passed variables. 
einl1.f90 10–14, 228–240, 653–

691, 839–844 
Use of module SUSA added. 
Read & write format of input card TX11 modified to include 
multiplication factors for fuel and reflector specific heat, as 
well as reflector, fuel and bed thermal conductivities, as 
entries on positions #4–9. 
Call to wkptkbb.f90 updated with additional passed 
variables. 

calt2h.f90 12–16 Use of module SUSA added. 
caltah.f90 12–16 Use of module SUSA added. 
writetmxdlofc.f90 172–177 Read & write format of input card TX3 modified to include 

“decay_mod” factor as entry on position #11. 
susa.f90 1–16 New module that contains commonly used variables names 

and definitions. 
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Input File Changes 
The power and inlet gas temperature input specifications were not modified, since these parameters 

were already part of the required input data for PEBBED and THERMIX. The five correlation 
multiplication factors for the decay heat, specific heat and thermal conductivities were therefore the only 
new additions to the THERMIX input file (the PEBBED file required no changes), as listed in Table A-2. 
Note that backwards compatibility was achieved by setting missing or zero values to the default multiplier 
value of 1.0.  

Table A-2. Summary of THERMIX input file changes. 

Card 
Entry No. 
on card Variable name Value and Description 

TX3 11 decay_mod >1.0: Decay heat multiplication factor.  
< = 0.0: Zero value modified to default value of 1.0. 

TX11 4 c_fuel_mod >1.0: Fuel graphite specific heat multiplication factor, implemented 
for material function number 17 and a constant value. 
< =0.0: Zero value modified to default value of 1.0. 

TX11 5 c_refl_mod >1.0: Reflector graphite specific heat multiplication factor, 
implemented for material function numbers 7, 13, 14 and 15 and a 
constant value. 
 < =0.0: Zero value modified to default value of 1.0. 

TX11 6 cond_refl_mod >1.0: Reflector thermal conductivity multiplication factor, 
implemented for material function number 3 and a constant value. 
< =0.0: Zero value modified to default value of 1.0. 

TX11 7 cond_fuel_mod >1.0: Fuel thermal conductivity multiplication factor, implemented 
for material function numbers 2, 7 and 24 and a constant value.  
< =0.0: Zero value modified to default value of 1.0. 

TX11 8 cond_bed_mod >1.0: Effective pebble bed thermal conductivity multiplication 
factor, implemented for material function numbers 25-27 and a 
constant value. 
< =0.0: Zero value modified to default value of 1.0. 

 


