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Abstract. Many interesting divergence measures between conjugate ensembles
of nonequilibrium trajectories can be experimentally determined from the work
distribution of the process. Herein, we review the statistical and physical
significance of several of these measures, in particular the relative entropy
(dissipation), Jeffreys divergence (hysteresis), Jensen-Shannon divergence (time-
asymmetry), Chernoff divergence (work cumulant generating function), and Rényi
divergence. ‡
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1. Csiszár f-divergences and work measurements

Many interesting divergence measures between probability distributions can be written
as (or related to) an f -divergence (also know as Csiszár, Csiszár-Morimoto or Ali-
Silvey divergence) [1–6],

Cf (p; q) ≡
∑
i

pi f
( qi
pi

)
, (1)

where f is a function that takes the ratio of the probabilities as an argument. We will
discuss several examples, including the relative entropy, Eq. (6), Jeffreys divergence
(9), Jensen-Shannon divergence (11), Chernoff divergence (15), Bhattacharyya
distance (24), Rényi divergence (25) and Tsallis divergence (26). Typically, the
function f is convex and f(1) = 0, which implies that Cf (p; q) ≥ 0 from an application
of Jensen’s inequality. Note that the first argument to the f -divergence appears in the
denominator of the ratio and is the distribution to be averaged over. The opposite
convention is also common.

Several of these divergence measures have interesting physical interpretations
in equilibrium statistical mechanics. For instance, the relative entropy between the
nonequilibrium ensemble and the canonical ensemble of the same system relaxed to
thermal equilibrium is equal to the free energy difference [7]; the Rényi entropy (the
Rényi divergence with a uniform reference distribution) is proportional to the free
energy change due to a jump in temperature [8, 9]; and the Tsallis entropy [10] has
been advanced as an extension of Boltzmann-Gibbs-Shannon entropy to non-extensive
systems.

In this paper, we wish to consider the physical significance of f -divergences
applied to nonequilibrium dynamics. Consider a physical system driven from thermal
equilibrium by an external perturbation. For such an experimental protocol Λ denotes
the time course of a set of controllable parameters λ(t) for t ∈ [a, b] which describe
how the system is driven from the initial equilibrium at λ(a). In the conjugate,
time-reversed protocol Λ̃ the system begins in thermal equilibrium at λ(b) and the
controllable parameters retrace the same series of changes, in reverse, back to λ(a).
As a consequence of the time-reversal symmetry of the underlying dynamics, the
ratio of the probability of a trajectory during the forward protocol P [z|Λ] and the
probability of its conjugate trajectory during the reverse protocol P [z̃|Λ̃] is [11–15]

P [z|Λ]
P [z̃|Λ̃]

= eβW [z,Λ]−β∆FΛ , (2)

where z represents a trajectory through phase space, z̃ represents the conjugate, time-
reversed trajectory, β = 1/kBT , T is the temperature of the environment in natural
units (kB is the Boltzmann constant), W [z,Λ] is the work performed on the system
during the forward protocol Λ [11, 16, 17] and ∆FΛ = Fλ(b)−Fλ(a) is the difference in
free energy between the initial equilibrium and final equilibrium ensembles. We drop
the explicit dependence of work and free energy change on the protocol and trajectory
when these dependences are clear from the context. Note that both work and free
energy change are odd under time-reversal, W [z,Λ] = −W [z̃, Λ̃] and ∆FΛ = −∆FΛ̃.

For nonequilibrium systems, the key feature of the f -divergence is that, apart
from the overall average, the two probability distributions enter only as a ratio. As a
consequence, we can always relate the divergence between conjugate pairs of trajectory
ensembles to averages of the work measured under a protocol Λ,

Cf

(
P [z|Λ] ; P [z̃|Λ̃]

)
=

⟨
f(e−βW+β∆F )

⟩
Λ

. (3)
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Hence, if we can measure the work histogram for a process and its reversal, for example
in a computer simulation or single-molecule unfolding/refolding experiment [18–20],
then we can also measure the Csiszár f -divergences for that system.

Many interesting instances of the f -divergence are symmetric under interchange
of the two distributions,

JCf (p; q) ≡
∑
i

pif
( qi
pi

)
+
∑
i

qif
(pi
qi

)
(4)

= Cg(p; q) , g(x) = f(x) + xf(x−1) .

In these cases, the conjugate trajectory f -divergences can be evaluated from averages
over each conjugate protocol,

JCf

(
P [z|Λ] ; P [z̃|Λ̃]

)
=

⟨
f(e−βW+β∆F )

⟩
Λ
+
⟨
f(e−βW+β∆F )

⟩
Λ̃

. (5)

In the following discussion, we examine various instances of Csiszár f -divergence
that have interesting statistical and physical interpretations when applied to conjugate
ensembles of nonequilibrium trajectories. In particular, we review the physical
significance of the relative entropy (dissipation), Jeffreys divergence (hysteresis), and
Jensen-Shannon divergence (time-asymmetry), and investigate the application of the
Chernoff divergence (work cumulant generating function).

2. Relative entropy and dissipation

The relative entropy (or Kullback-Leibler divergence) is defined as [21, 22]

D(p∥q) ≡
∑
i

pi ln
pi
qi

(6)

= Cf (p; q), f(x) = − lnx .

Roughly speaking, the relative entropy measures the difference between two
distributions, although it is not a metric since it is not symmetric [D(p∥q) ̸= D(q∥p)
in general], nor does it obey the triangle inequality. Recall that a metric provides a
measure of ‘distance’ between points: it is a real function g(a, b) such that (1) distances
are non-negative, g(a, b) ≥ 0 with equality if, and only if, a = b, (2) distances are
symmetric, g(a, b) = g(b, a), and (3) it is generally shorter to go directly from point a
to c than to go by way of b, g(a, b) + g(b, c) ≥ g(a, c) (the triangle inequality). One
interpretation of relative entropy is that it represents an encoding cost [22]: if we
encode messages using an optimal code for a probability distribution qi of messages
i, but the messages actually arrive with probabilities pi, then each message requires,
on average, an additional D(p∥q) nats (1 nat = ln 2 bits) to encode compared to the
optimal encoding.

For conjugate trajectory ensembles the relative entropy is equal to [14, 15, 23–28]

D
(
P [z|Λ]

∥∥ P [z̃|Λ̃]
)
= β⟨W ⟩Λ − β∆FΛ . (7)

Here, ⟨W ⟩Λ is the average work of the protocol and ∆F is the free energy change.
The free energy change is equal to the reversible work, the amount of work performed
on the system during a thermodynamically reversible transformation. The difference
⟨W ⟩Λ − ∆F is the average excess work performed on the system by an irreversible
protocol over and above the work performed during a reversible transformation. As
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the system relaxes back to equilibrium, any excess energy is dissipated as heat, raising
the entropy of the environment. Consequently,

β⟨W ⟩Λ − β∆FΛ = β⟨W ⟩Λ − β∆⟨E⟩Λ +∆Ssystem
Λ

= −β⟨Q⟩Λ +∆Ssystem
Λ

= ∆Senvironment
Λ +∆Ssystem

Λ

= ∆Stotal
Λ . (8)

Here, Q is the heat and ∆E = Q + W . Thus, the relative entropy of conjugate
trajectory ensembles is equal to the total dissipation, the total increase in entropy
due to the protocol, once the system has relaxed back to equilibrium. For conjugate
trajectory ensembles, the relative entropy also represents a thermodynamic cost, since
the dissipation is the average work irretrievably lost into the environment during
execution of the protocol.

3. Jeffreys divergence and hysteresis

The Jeffreys divergence (J-divergence or symmetrized Kullback-Leibler diver-
gence) [21, 29],

Jeffreys(p; q) ≡ D(p∥q) +D(q∥p) (9)

=
∑
i

pi ln
pi
qi

+
∑
i

qi ln
qi
pi

= Cf (p; q), f(x) = (x− 1) lnx ,

is a symmetrized relative entropy, Eq. (6). It is symmetric and non-negative, but not
a metric since it does not obey the triangle inequality. Note that some authors define
Jeffreys divergence as the symmetrized average of the relative entropy, half the value
defined by Jeffreys.

For conjugate trajectory ensembles, the Jeffreys divergence is twice the hysteresis,
the average dissipation of the forward and reverse protocols [26],

Jeffreys
(
P [z|Λ] ; P [z̃|Λ̃]

)
(10)

= β⟨W ⟩Λ − β∆FΛ + β⟨W ⟩Λ̃ − β∆FΛ̃

= β⟨W ⟩Λ + β⟨W ⟩Λ̃
= 2× hysteresis .

4. Jensen-Shannon divergence and time-asymmetry

The Jensen-Shannon divergence is defined as [30]

JS(p; q) ≡ 1

2
D
(
p ∥ 1

2
(p+ q)

)
+

1

2
D
(
q ∥ 1

2
(p+ q)

)
(11)

=
1

2

∑
i

pi ln
pi

1
2 (pi + qi)

+
1

2

∑
i

qi ln
qi

1
2 (pi + qi)

= Cf (p; q), f(x) =
1

2
ln

2

1 + x
+

1

2
x ln

2x

1 + x
.

Each of the two summands is the relative entropy between one of the distributions
and the mean of the two distributions.
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One interpretation of the Jensen-Shannon divergence is in terms of a Bayesian
inference problem [31]: given a sample taken from one of two probability distributions,
p or q, the Jensen-Shannon divergence is the average information the sample provides
about the identity of the distribution. The divergence is equal to zero only if the two
distributions are identical, and therefore indistinguishable, and reaches its maximum
value of ln 2 nats (i.e. 1 bit) if the two distributions do not overlap and therefore are
perfectly distinguishable from a single sample.

For conjugate trajectory ensembles, the Jensen-Shannon divergence measures the
distinguishability of conjugate forward and reverse experiments. In other words, given
a microscopic trajectory z, can we tell if it was generated by the protocol Λ, or if it
is the time-reversal of a trajectory generated by the reverse protocol Λ̃? The Jensen-
Shannon divergence measures the average gain in information about the orientation
of time’s arrow obtained from one realization of the experiment, essentially the time-
asymmetry A of a driven system [26],

JS
(
P [z|Λ] ; P [z̃|Λ̃]

)
= A[Λ; Λ̃] . (12)

As the square root of the Jensen-Shannon divergence is a metric between probability
distributions [31, 32], so too the square root of the time-asymmetry is a metric between
the forward and reverse protocols (i.e. between conjugate ensembles of trajectories),
the length of time’s arrow [26].

The time-asymmetry A equals a non-linear average of the work,

A[Λ; Λ̃] =
1

2

⟨
ln

2

1 + exp(−βW [z|Λ] + β∆F )

⟩
Λ

(13)

+
1

2

⟨
ln

2

1 + exp(−βW [z̃|Λ̃]− β∆F )

⟩
Λ̃

.

Note that the work distribution is a sufficient statistic for the time-asymmetry: all
other details of the microscopic trajectories are superfluous.

The Jensen-Shannon and Jeffreys divergences are related by the inequalities [5,
26],

JS(p; q) ≤ 1

8
Jeffreys(p; q) (14)

JS(p; q) ≤ ln
2

1 + exp
(
− 1

2 Jeffreys(p; q)
) .

These inequalities imply that a given time-asymmetry requires a certain minimum
hysteresis.

5. Chernoff divergence and work cumulant generating functions

The Chernoff divergence of order α is defined as [33, 34]

Chernoffα(p; q) ≡ − ln
∑
i

pi

(
pi
qi

)α−1

(15)

= − ln
[
Cf (p; q) + 1

]
, f(x) = x1−α − 1 .

The Chernoff divergence is zero for α = 1 and α = 0, and reaches a maximum, the
Chernoff information [22, 33], for some intermediate value of alpha. The Chernoff
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divergence is well defined for α > 1 if qi > 0 whenever pi > 0, and for α < 0 if pi > 0
whenever qi > 0, and thus defined for all α if the distributions have the same support.

The Chernoff divergence of order α is related to the Chernoff divergence of order
1− α with the distributions interchanged [34],

Chernoffα(p; q) = Chernoff1−α(q; p) . (16)

This relation always holds for α ∈ [0, 1], and for all α when the distributions have the
same support.

For conjugate trajectory ensembles, the Chernoff divergence of order 1 − α is
proportional to the cumulant generating function for the excess work,

Chernoff1−α

(
P [z|Λ];P [z̃|Λ̃]

)
= − ln

⟨
e−α(βW−β∆F )

⟩
Λ

. (17)

Recall that a cumulant generating function has the form

ln
⟨
etz

⟩
=

∞∑
n=1

tn

n!
κn[z] , (18)

and that the kth-derivative of the cumulant generating function evaluated at zero is
the kth cumulant,

dk

dtk
ln
⟨
etz

⟩ ∣∣∣
t=0

= κn[z] . (19)

Cumulants of order n are functions of nth order and lower moments. The first
cumulant κ1 is the mean, the second κ2 is the variance, and the third κ3 is equal
to the third central moment.

The symmetry of Chernoff divergence under interchange of the distributions,
Eq. (16), implies that the excess work cumulant generating functions for the forward
and reverse protocols are related [35, 36],

ln
⟨
e−α(βW−β∆F )

⟩
Λ

= ln
⟨
e−(1−α)(βW−β∆F )

⟩
Λ̃

, (20)

or equivalently

ln
⟨
e−αβW

⟩
Λ

= ln
⟨
e−(1−α)βW

⟩
Λ̃
− β∆FΛ . (21)

Note that an additional minus sign enters into the right hand expression because
both the work and free energy change are odd under time-reversal, W [z,Λ] −
∆FΛ = −W [z̃, Λ̃] + ∆FΛ̃. If we set α = 1 or 0 we recover the Jarzynski identity,
ln⟨exp{−βW}⟩Λ = −β∆FΛ [16].

This symmetry between cumulant generating functions implies that the work
cumulants under a given protocol are related to the work cumulants of the conjugate
protocol [36],

κk

[
βW |Λ

]
=

∞∑
n=k

(−1)n

(n− k)!
κn

[
βW |Λ̃

]
. (22)

From this relation Hummer and Szabo [36, 37] derive optimal estimators of free energy,
given only the first m work cumulants. In a parallel development, this symmetry is
also exploited in the large deviation approach to steady state fluctuation theorems [35].

The case α = 1
2 is related to the Bhattacharyya distance, another measure of

probability distribution overlap [38],

Bhattacharyya(p; q) = − ln
∑
i

√
piqi (23)

= Chernoff 1
2
(p; q) .
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The Bhattacharyya distance is invariant to interchange of p and q. For conjugate
trajectory ensembles, this symmetry implies a relation between exponential averages
of work,

ln
⟨
e−

1
2 (βW−β∆F )

⟩
Λ

= ln
⟨
e−

1
2 (βW−β∆F )

⟩
Λ̃

. (24)

This relation has no immediately obvious utility, other than being attractively
symmetric.

6. Rényi divergence and the maximum work

The Chernoff divergence is closely related to the Rényi, Tsallis and Cressie-Read
divergences. The Rényi divergence (or relative Rényi entropy) of order α is a one-
parameter generalization of the relative entropy [39],

Rényiα(p; q) ≡
1

α− 1
ln
∑
i

pi

(
pi
qi

)α−1

(25)

=
1

1− α
Chernoffα(p; q)

=
1

α− 1
ln
[
Cf (p; q) + 1

]
, f(x) = x1−α − 1 .

Higher values of α give a Rényi divergence dominated by the greatest ratio between
the two distributions, whereas as α approaches zero the Rényi entropy weighs all
possibilities more equally, regardless of their dissimilarities. We recover the relative
entropy in the limit of α → 1.

Other closely related divergences include the relative Tsallis entropy [10],

Tsallisα(p; q) ≡
1

α− 1

∑
i

pi

[(
pi
qi

)α−1

− 1

]
(26)

=
1

α− 1

[
e(α−1)Rényiα(p;q) − 1

]
= Cf (p; q), f(x) =

x1−α − 1

α− 1
,

and the equivalent, but less well known, Cressie-Read divergence [40],

CressieReadα(p; q) ≡
1

α(α+ 1)

∑
i

pi

[(
pi
qi

)α

− 1

]
(27)

=
1

α(α+ 1)

[
eαRényiα+1(p;q) − 1

]
=

1

α+ 1
Tsallisα+1(p; q)

= Cf (p; q), f(x) =
x−α − 1

α(α+ 1)
.

Interesting special cases of the Rényi divergence occur for α = 0, 1
2 , 1 and ∞.

As previously mentioned, α = 1 gives the relative entropy (6), and α = 1
2 gives the

Bhattacharyya distance (24). In the limit α → 0, the Rényi divergence slides to the
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negative log probability under q that p is non-zero,

lim
α→0

Rényiα(p; q) = − ln
∑
i

lim
α→0

pαi q
1−α
i (28)

= − ln
∑
i

qi[pi > 0] .

Here we have used the Iverson bracket, which evaluates to one if the condition inside
the bracket is true, and zero otherwise. For conjugate trajectory ensembles, the two
distributions have the same support and thus in the limit α → 0 the Rényi divergence
is zero.

In the limit α → ∞ the Rényi divergence picks out the maximum divergence, the
log maximum ratio of the probabilities,

Rényi∞(p; q) = lnmax
i

pi
qi

. (29)

For conjugate trajectory ensembles, the maximum divergence reflects the maximum
possible work during a single realization of the protocol,

Rényi∞

(
P [z|Λ];P [z̃|Λ̃]

)
= max

z

(
βW [z,Λ]− β∆FΛ

)
. (30)

In a thermodynamic context, the maximum work represents the worst case scenario
under a particular protocol, the single realization that creates the largest increase in
entropy.

7. Illustrative analytic example

To make these relations more concrete, we consider a system consisting of a micron-
sized bead suspended in water at inverse temperature β by an initially stationary
optical laser trap, with spring constant k. The trap is then translated at a constant
velocity v, dragging the bead through the fluid with friction coefficient γ for a
time t. This system can be modeled by a single particle undergoing overdamped
Langevin dynamics in a one dimensional moving harmonic potential, and the pertinent
properties of the model have been analyzed [27, 41]. The free energy change is zero
and the work distribution is Gaussian with mean

W0 ≡ γv2 [t− (1− e−kt/γ) γ/k] , (31)

and variance 2W0.
The relative entropy, Jeffreys divergence and Chernoff divergence for this model

are all simple functions of βW0:

D
(
P [z|Λ]

∥∥ P [z̃|Λ̃]
)

= βW0 (32)

Jeffreys
(
P [z|Λ] ; P [z̃|Λ̃]

)
= 2βW0

Chernoff1−α

(
P [z|Λ];P [z̃|Λ̃]

)
= α(α− 1)βW0 .

The Jensen-Shannon divergence does not appear to have a simple closed-form solution
for this system.
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8. Epilogue

As we have seen, a number of f -divergences have both interesting statistical and
physical interpretations for conjugate ensembles of nonequilibrium trajectories, and
can be measured in computer simulation and real world experiments. This allows
us to exploit the statistical machinery of information theory to gain physical insights
into the behavior of nonequilibrium systems. It is an open problem whether any
other f -divergences (such as the arithmetic-geometric mean divergence, the triangular
discrimination, the symmetric chi-square divergence, the variational distance, and the
Pearson divergence [1, 2, 5]) have interesting physical applications.
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[8] Beck C and Schlögl F 1995 Thermodynamics of chaotic systems (Cambridge
University Press)
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