3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods

PDF Version Also Available for Download.

Description

The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these ... continued below

Creation Information

Spencer, B.W.; Hales, J.D.; Novascone, S.R. & Williamson, R.L. September 1, 2012.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 27 times , with 6 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the local defect to be coupled with the global fuel rod model. This approach for modeling fuel with MPS defects is demonstrated and compared with alternative techniques. The effects of varying parameters of the MPS defect are studied using this technique and presented here.

Source

  • TopFuel Reactor Fuel Performance 2012,Manchester, UK,09/02/2012,09/06/2012

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: INL/CON-12-24745
  • Grant Number: DE-AC07-05ID14517
  • Office of Scientific & Technical Information Report Number: 1058084
  • Archival Resource Key: ark:/67531/metadc839241

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 2012

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 20, 2016, 1:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 6
Total Uses: 27

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Spencer, B.W.; Hales, J.D.; Novascone, S.R. & Williamson, R.L. 3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods, article, September 1, 2012; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc839241/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.