CdTeSe Crystals for Gamma-Ray Detectors

Utpal Roy

Presented at the WMS2013
April 9-11, 2013

May 2013

Nonproliferation and National Security Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, New York 11973
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
CdTeSe Crystals for Gamma-Ray Detectors

U. N. Roy
Brookhaven National Laboratory, Upton, NY 11973
9th April, 2013
• Brookhaven National Laboratory (BNL)
• Co-PIs: U.N. Roy and R. B. James
• BNL Supporting Researchers: A. E. Bolotnikov, G. Camarda, G. Yang, A. Hossain and Y. Cui
• External collaborators:
 - K. H. Kim, Korea University, South Korea
 - M. Fiederle and A. Fauler, Freiburger Materialforschungszentrum FMF, University of Freiburg, Germany
 - M. Sowinska, G. Hennard and P. Siffert, Eurorad Strasbourg, France
• CdTeSe (CTS) is expected to be an excellent candidate for gamma-ray detectors
• Density is \(\sim 5.8 \, \text{gm/cc} \) (nearly the same as CZT and CdTe)
• Band gap is little less than CdTe, and the effective mass of the electron is less than CdTe. Thus, a higher electron mobility and \(\mu \tau \) product are expected for CdTeSe. Hence, enhanced charge transport properties are possible.
• The segregation coefficient of Se in the CdTe host is nearly unity, ensuring the compositional uniformity throughout the whole ingot, both in the axial and radial directions resulting in reduced cost of production.

Project Goal and Deliverables

• Growth of detector-grade CTS by THM technique for room-temperature radiation detector applications.
• Motivation for pursuing the growth by THM technique. Advantages include:
 i) Low-temperature growth
 ii) Less chance of incorporation of impurities from the crucible during growth
 iii) Less/no chance of ampoule explosion
 iv) Enhanced purity of the ingot
 v) Less defects due to the lower growth temperature
• Growth of as-grown detector grade CdTeSe (CTS).
• Growth of large ingots with uniform composition throughout the whole ingot, hence drastic reduction of production cost.
• Characterization of the grown ingots through X-ray topography, IR microscopy, compositional uniformity by X-ray fluorescence mapping, photoluminescence (PL), high resolution X-ray response mapping, I-V, and charge-transport characterization.
• Detector fabrication and investigations of the device performance.
• Cadmium Telluride Selenide crystals (CTS) were grown using the THM.

• Indium was used as the dopant.

• Crystals were cut and polished for characterization.

• Detectors were fabricated and tested.
IR Imaging of CdTe$_{0.9}$Se$_{0.1}$

Photograph of CdTe$_{0.9}$Se$_{0.1}$ sample

IR transmission image

Photograph of CdTe$_{0.9}$Se$_{0.1}$ sample and IR transmission image of dimension 10x10x5 mm3

Unclassified
X-Ray Response Mapping and Topography

X-ray response mapping of CdTe\textsubscript{0.9}Se\textsubscript{0.1} sample, dimension 10x10x5 mm3

- 10 x 10 mm2 area; V = 15V; 50 µm step
- 1.5 x 1.5 mm2 area; V = 15V; 10 µm step
- 0.9 x 0.9 mm2 area; V = 15V; 3 µm step

1.5 x 1.5 mm2 area; V = 15V; 10 µm step

10 x 10 mm2 area; V = 15V; 50 µm step

Unclassified
3D maps of inclusions reconstructed for 4 locations. The volume dimensions are 1.1x1.5x 5 mm³.
All inclusions within a 1.1x1.5x5 mm³ projected on a single 1.5x2 mm² plane

Distribution of the inclusions averaged over 4 locations

Total: 7×10^4 cm⁻³
Low-Temperature PL

PL spectrum of a CTS sample at 4.2 K

T=4.2K

1.547 eV

1.530 eV

1.510 eV

1.551 eV
Uniformity of composition

4.2K PL spectra from different sampling points across the surface show uniform Se content.
X-ray Fluorescence Mapping

Mapping of Cd La1 line

Mapping of Se Kα line

Mapping of Te La1 line
I-V at room temperature

Charge collection efficiency vs. voltage
Room-temperature detector response for ^{241}Am under applied bias: a) 5 V and b) 25 V. Sample dimension: 10x10x1 mm3.
Ongoing Experiments

• Growth of two ingots is in progress (finished by the end of April 2013).

• Fabrication of detectors including surface passivation for enhanced applied bias and detector performance.
Technical Challenges

• Increase the resistivity and $\mu\tau$ by optimization of the dopant concentration and growth process
• Growth of large ingots with uniform composition throughout the whole ingot
• Reduce the size and concentration of secondary phases

Future Work

• Growth of one- and two-inch diameter ingots of CTS.
• Characterization of the as-grown ingots.
• Fabrication of large detectors ($>1\, \text{cm}^3$) with enhanced charge-transport properties.

Acknowledgments

We would like to thank the Office of Defense Nuclear Nonproliferation Research & Development (DNN R&D) for supporting this work.