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Abstract

A generalized, computationally tractable fluid model for capturing the effects of neutral particles in plas-

mas is derived. The model derivation begins with Boltzmann equations for singly-charged ions, electrons,

and a single neutral species. Electron-impact ionization, radiative recombination, and resonant charge ex-

change reactions are included. Moments of the reaction collision terms are detailed. Moments of the

Boltzmann equations for electron, ion, and neutral species are combined to yield a two-component plasma-

neutral fluid model. Separate density, momentum, and energy equations, each including reaction transfer

terms, are produced for the plasma and neutral equations. The required closures for the plasma-neutral

model are discussed.
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I. INTRODUCTION

A plasma-neutral model is developed in which, essentially, a single-fluid magnetohydrody-

namic (MHD) plasma reacts and interacts with a gasdynamic neutral fluid. The model accounts

for electron-impact ionization, radiative recombination, and resonant charge exchange (CX):

e− + n→ i+ + 2e− − φion

e− + i+ → n + hν

i+ + n→ n + i+ (1)

The plasma-neutral model is derived from the ion, electron, and neutral species Boltzmann equa-

tions using the same basic approach as Braginskii [1], except that a neutral species is included,

species conversion (due to ionization, recombination, and CX) is allowed, and related effects on

mass, momentum, and energy equations are captured. Single ionization and overall charge neu-

trality are assumed, and electron mass is neglected. Only one type of atom, along with its asso-

ciated ion, is considered. The model allows separate densities, temperatures, and velocities for

the plasma and neutral fluids. An optically thin plasma is assumed so that radiation energy due

to atomic physics effects, such as de-excitation energy associated with radiative recombination, is

lost from the system. To simplify the model, excited states are not tracked. Instead, an effective

ionization potential, φion, is assumed. This potential includes the electron binding energy plus the

excitation energy that is expended (on average) for each ionization event.

Background information and motivation for this research is presented in Section II. The model

derivation is given in Section III. The derivation is split into four subsections. Moments of the

collision operators are presented in Section III A. Mass, momentum, and energy equations are

derived for ion, electron and neutral fluids in Section III B. These equations are reduced to a two-

component plasma-neutral model in Section III C. Finally, in Section III D, the closures required

for the plasma-neutral model are discussed. Although some specific closure options are presented,

general closure remains a topic of future research. In Section IV, conclusions are drawn.

II. BACKGROUND AND MOTIVATION

In a seminal 1965 paper, Braginskii [1] derives plasma fluid equations by taking moments

of ion and electron Boltzmann equations and closes the model by using the Chapman-Enskog
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successive-approximation method to determine the local distribution function. Braginskii’s 1965

paper includes a “multicomponent plasma” model; his model treats the plasma and neutral as a

combined fluid, and does allow for reactions between species and associated species conversion.

For a strongly collisional plasma-neutral mixture, the combined-fluid approach of Braginskii is

convenient.

Several models have been developed to simulate the interaction of the solar wind with the local

interstellar medium, as discussed in the review by Zank [2]. Pauls et al. [3] describe a nonlinear

two-component hydrogen ion-neutral model that meticulously accounts for CX between hydrogen

ions and neutrals, but no other reactions are included. An electron species is not evolved, and

electromagnetic fields are neglected. Closure is handled by assuming Maxwellian fluids. Bara-

nov and Malama [4] present a steady state model that uses a Monte Carlo approach for handling

collision integrals. Recently, a linear two-component plasma-neutral model, but without reactions

and associated species conversion, is presented by Zaqarashvili et al. [5] for astrophysical plasma

applications.

A variety of simulation tools have been developed to understand and predict behavior of edge

plasmas in tokamaks and other fusion-grade plasmas. Two leading examples are UEDGE [6–8]

and B2 [9, 10]. These codes are based on a fluid description and are often coupled to Monte Carlo

neutral transport codes such as DEGAS 2 [11], and EIRENE [12]. Also, to determine turbulent

transport, these 2D codes are sometimes coupled to 3D fluid codes. For example, UEDGE has

been coupled to the turbulent transport code, BOUT [13]. Furthermore, these codes have been

developed to treat impurity effects. Izzo et al. [14, 15] have developed an extension of the 3D

NIMROD code called NIMRAD to model massive injection of impurity gas, which is used to

quench tokamak disruptions. 0D and 1D models have been developed by You [16] to model

refueling physics in tokamak-like devices.

A model proposed by Helander et al. [17], again aimed at magnetic fusion applications, uses a

fluid moment approach similar to Braginskii to derive a combined-fluid ion-neutral model. (The

electron fluid is not included in the analysis by Helander et al. In an implementation of this model,

an electron fluid equation would be either solved separately or included with the ion fluid.) The

neutral and ion distribution functions are assumed to be strongly coupled via CX, and a detailed

description of the related closures is given.

The development of models for partially ionized gas has primarily focused on specific problems

like tokamak edge physics or the interaction of the solar wind with the heliopause. A model
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suitable for capturing the primary fluid effects of ionization, recombination, and charge exchange

in a variety of plasma science problems is not described in literature. Such a model is the objective

of the research presented here.

III. PLASMA-NEUTRAL MODEL DERIVATION

This derivation is split into four parts: in Section III A, the required integrals of the colli-

sion operators are detailed; in Section III B, the three-component electron-ion-neutral model is

described; in Section III C, the three-component model is reduced to the two-component plasma-

neutral model; finally, in Section III D, closure of the plasma-neutral model is discussed.

The Boltzmann equation for species α is

∂ fα
∂t

+ v · ∇x fα +
qα
mα

(E + v × B) · ∇v fα =
∂ fα
∂t

∣∣∣∣∣
collisions

= C scat.,react.
α , (2)

where the subscript of the collision operators, C scat.,react.
α , refers to the species affected by the term,

and the superscript refers to the scattering or reacting collision type. The scattering collisions are

elastic. The reactions can be thought of as inelastic collisions (except for resonant CX, in which

case the initial and final quantum states are degenerate). All of the relevant collisions may be

summarized as ∑
α=i,e,n

( ∑
scat.=ii,ie,in,ee,en,nn

C scat.
α +

∑
react.=ion,rec,cx

Creact.
α

)
, (3)

where contributions are to ion, electron, and neutral (i, e, and n) species due to scattering colli-

sions — ion-ion, ion-electron, ion-neutral, electron-electron, electron-neutral, and neutral-neutral

(ii, ie, in, ee, en, nn) — and reacting collisions — ionization, recombination, and CX (ion, rec,

cx). The plasma-neutral model is derived from Eqn. (2) using the same basic approach as Bra-

ginskii [1], except that a neutral species is included, species conversion (due to ionization, recom-

bination, and CX) is allowed, and related effects on mass, momentum, and energy equations are

captured assuming reacting Maxwellian populations. As discussed in Section III D, closure of the

model is achieved by adopting the results of earlier work [1, 18] that applied the Chapman-Enskog

successive-approximation approach to determine local ion, electron, and neutral distribution func-

tions.
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A. Moments of collision operators

For the purposes of this derivation, specific forms of the scattering collision operators are not

needed. The electron-impact ionization, radiative recombination, and resonant CX collision oper-

ators are

Cion
n = − fn

∫
feσionvreldv, (4)

Cion
e = Cion

i = fn

∫
feσionvreldv, (5)

Crec
e = − fe

∫
fiσrecvreldv, (6)

Crec
i = − fi

∫
feσrecvreldv, (7)

Crec
n =

me

mn
fe

∫
fiσrecvreldv +

mi

mn
fi

∫
feσrecvreldv, (8)

Ccx
i = fn

∫
σcxvrel fidv − fi

∫
σcxvrel fndv, (9)

and

Ccx
n =

mi

mn
fi

∫
σcxvrel fndv −

mi

mn
fn

∫
σcxvrel fidv. (10)

Here, vrel is the relative speed of the colliding particles. The ionization and recombination cross-

sections are assumed to be functions of only the random component of the electron particle ve-

locity. As discussed by Ripken and Fahr [19], the form of the resonant CX collision operator is

attributable to the the fact that the initial and final quantum mechanical states have identical en-

ergy. The CX cross section is assumed to be a function of a representative collision velocity as

discussed below.

A Maxwellian form for fα is assumed — fα = nα
(
πv2

Tα

)−3/2
e−(v−vα)2/v2

Tα , where nα is the species

number density, v is the velocity, and vα is the species bulk velocity. The species thermal velocity

is vTα ≡
√

2kTα/mα, where Tα is the species temperature, and k is the Boltzmann constant. The

random velocity is defined as w ≡ v − vα.

0th, 1st, and 2nd moments of the reaction collision operators are derived next. A summary of

results is provided following the moment derivations.

As noted in Section II, Pauls et al. [3] describe these moments for resonant CX, but not for

electron-impact ionization and radiative recombination. In the model proposed by Helander et

al. [17], moments of the ionization and recombination collision operators are shown without sup-

porting details. Moments of the CX operator are not necessary in the combined-fluid formulation
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of Helander et al. The UEDGE [6–8] and B2 [9, 10] codes can rely on Monte Carlo calculations to

include the effects of reaction collisions, or use fluid models for flows parallel to the magnetic field

to account for momentum and energy exchange due to ionization, recombination, and CX (though,

for CX, only the direct transfer of momentum between ion and neutral fluids, as discussed below,

is included).

0th moments —
∫

Cscat.,react.
α dv

Scattering has no 0th moment effect.

For the 0th moment effect of ionization on the neutral species, the required integral of Eqn. (4)

is ∫
Cion

n dv = −

∫
fn(v′)

∫
fe(v)σion(vrel)vreldvdv′. (11)

Consider the inner integral over electron particle velocity space. The Maxwellian electron distri-

bution is a function of the random velocity, w ≡ v − ve. The relative velocity is vrel = |v − v′|. As-

suming that the electron thermal speed is high compared to the relative fluid flow speed, |ve − vn|,

and the neutral thermal speed, the relative velocity in the ionizing collisions is vrel ≈ w, where

w ≡ |w|. The inner integral is then∫
fe(v)σion(vrel)vreldv ≈

∫
fe(w)σion(w)wdw = ne〈σionve〉, (12)

where 〈·〉 refers to the statistical average over velocity space, and 〈σionve〉 is the ionization rate

parameter with units of volume per time. As discussed in Section III D, 〈σionve〉 is parameterized

in terms of Te. The entire integral is now∫
Cion

n dv ≈ Γion
n ≡ −

∫
fn(v′)ne〈σionve〉dv′ = −nenn〈σionve〉, (13)

where the notation, Γreact.
α , is introduced for source rates due to a given reaction collision (react.)

affecting species α. Using a similar procedure, the ionization contribution to the ion species is

found to be
∫

Cion
i dv ≈ Γion

i = −Γion
n . The ionization contribution to the electron species is identical,∫

Cion
e dv ≈ Γion

e = Γion
i . Only Γion

i will be used to refer to ionization source rates for the ion, neutral,

and electron species. Appropriate substitutions will be made based on Γion
e = −Γion

n = Γion
i .

For recombination, again assuming high electron thermal speed compared to the relative bulk

fluid flow speed, |ve − vi|, and the ion thermal speed,∫
Crec

i dv ≈ Γrec
i ≡ −nine〈σrecve〉. (14)
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The quantity 〈σrecve〉 is the recombination rate parameter. As discussed in Section III D, 〈σrecve〉

is parameterized in terms of Te. The 0th moment recombination contribution to the electron and

neutral species are
∫

Crec
e dv ≈ Γrec

e = Γrec
i and

∫
Crec

n dv ≈ Γrec
n = −Γrec

i . Substitutions will be made

so that only Γrec
n will be used to refer to recombination source rates.

It is intuitively obvious that CX does not result in a net change of total electron, ion, or neutral

populations. However, understanding the details of the CX collision term is important for higher

moments and so the 0th moment is examined now. Following Paul et al. [3], Ccx
i , given by Eqn. (9),

can be accurately approximated as

Ccx
i ≈ σcx

(
v∗i ni fn − v∗nnn fi

)
, (15)

where v∗α ≡ vTα

√
4/π + x2. Here, x ≡ |v − vα|/vTα. After an additional approximation (resulting in

a total worst-case error on the order of a few percent), the 0th moment integration of the first term

of Eqn. (15) yields ∫
σcxv∗i ni fndv ≈ σcx(Vcx)ninnVcx, (16)

where a representative speed for the CX interaction, Vcx, is defined as

Vcx ≡

√
4
π

v2
Ti +

4
π

v2
Tn + v2

in, (17)

where v2
in ≡ |vi − vn|

2. Note that σcx is evaluated at Vcx. The steps required to arrive at Eqns. (15)

and (16) are detailed in the dissertation by Meier [20], which also discusses formulas for the

dependence of σcx on velocity for hydrogenic species. It is useful to define the quantity

Γcx ≡ σcx(Vcx)ninnVcx. (18)

Now it is clear that
∫

Ccx
i dv ≈ Γcx − Γcx = 0 and

∫
Ccx

n dv ≈ mi/mn(Γcx − Γcx) = 0.

1st moments —
∫

mαvCscat.,react.
α dv

For scattering collisions affecting species α, 1st moments are
∫

mαvC scat.
α dv. Splitting the parti-

cle velocity into bulk and random components, v = vα + w,∫
mαvC scat.

α dv = mαvα
∫

C scat.
α dv + mα

∫
wC scat.

α dv. (19)

The first term on the right is zero. The second term is the frictional force,

Rscat.
α = mα

∫
wC scat.

α dv. (20)
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Approximations of frictional forces between ions and electrons are presented by Braginskii [1].

Frictional forces between charged species (ions and electrons) and the neutral species are presented

in the three-component and two-component models of Sections III B and III C, but in the closures

discussed in Section III D, these terms are assumed to be negligible.

The effect of ionization on the ion species is found by taking the 1st moment of Eqn. (5),∫
mivCion

i dv =

∫
miv fn(v)

∫
fe(v′)σionvreldv′dv. (21)

Using the earlier result of Eqn. (12) for the inner integral, and splitting the neutral particle velocity

into bulk and random components, v = vn + w,∫
mivCion

i dv ≈ mivnΓ
ion
i . (22)

(Note that the integral of the odd function that arises in the preceding integral, and in several

following integrals, vanishes.) Similarly, the 1st moment contributions of ionization to the electron

and neutral species are
∫

mevCion
e dv ≈ mevnΓ

ion
i , and

∫
mnvCion

n dv ≈ −mnvnΓ
ion
i .

1st moment contributions of recombination to the ion, electron, and neutral species are
∫

mivCrec
i dv ≈

−miviΓ
rec
n ,

∫
mevCrec

e dv ≈ −meveΓ
rec
n , and

∫
mnvCrec

n dv ≈ (mivi + meve)Γrec
n .

For CX, the 1st moment contribution to the ion species is∫
mivCcx

i dv ≈ miσcx

∫
v
(
niv∗i fn − nnv∗n fi

)
dv

= miσcx

(
nivn

∫
v∗i fndv + ni

∫
wv∗i fndv − nnvi

∫
v∗n fidv − nn

∫
wv∗n fidv

)
= mi(vn − vi)Γcx + miσcx

(
ni

∫
wv∗i fndv − nn

∫
wv∗n fidv

)
. (23)

The final two terms in the last line of Eqn. (23) represent the frictional transfer of momentum,

Rcx
in ≡ miσcxni

∫
wv∗i fndv and Rcx

ni ≡ miσcxnn

∫
wv∗n fidv. As found by Pauls et al. [3] (and detailed

by Meier [20]), appropriate approximations for these frictional forces are

Rcx
in ≈ −miσcx(Vcx)ninnvinv2

Tn

[
4
(
4
π

v2
Ti + v2

in

)
+

9π
4

v2
Tn

]−1/2

, (24)

and

Rcx
ni ≈ miσcx(Vcx)ninnvinv2

Ti

[
4
(
4
π

v2
Tn + v2

in

)
+

9π
4

v2
Ti

]−1/2

. (25)

Thus, the 1st moment CX contribution to the ion species is∫
mivCcx

i dv ≈ mi(vn − vi)Γcx + Rcx
in − Rcx

ni . (26)
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The neutral species CX contribution has the same magnitude, but the opposite sign,
∫

mnvCcx
n dv =

−
∫

mivCcx
i dv ≈ mi (vi − vn) Γcx + Rcx

ni − Rcx
in .

The 1st moment terms involving reaction rates (Γrxn
α ) times velocities represent the direct trans-

fer of momentum due to bulk fluid effects. The terms Rcx
in and Rcx

ni represent the “frictional” drag

forces due to charge exchange, and are analogous to the frictional drag force acting on electrons

and represented by ηj in the generalized Ohm’s law (see Sections III C and III D). Such frictional

terms do not arise for ionization and recombination because, for those reactions, the electron ther-

mal speed is assumed to be much faster than the relative particle motion.

2nd moments —
∫

1
2 mαv2Cscat.,react.

α dv

For scattering collisions between species α and β, 2nd moments are
∫

1
2mαv2C scat.

α dv. Splitting

the particle velocity into bulk and random components, v = vα + w,∫
1
2

mαv2C scat.
α dv = mαvα · Rscat.

α +
1
2

mα

∫
w2C scat.

α dv, (27)

where the first term, involving the frictional force (already discussed), represents conversion of

kinetic to thermal energy, i.e., frictional heating. The second term,

Qscat.
α ≡

1
2

mα

∫
w2C scat.

α dv, (28)

is called “heat generation” by Braginskii (c f . discussion on p. 232 of Braginskii [1]). Because

Qscat.
α is more accurately described as an inter-species exchange of energy, this term will be referred

to as “heat exchange”. The approach of Braginskii [1] may be followed for the terms in Eqn. (27)

corresponding to ion-electron scattering. Eqn. (27) also describes charged-neutral (i.e., ion-neutral

and electron-neutral) scattering collisions. Ion-electron and charged-neutral 2nd moment terms are

presented in the three-component model of Section III B. The ion-electron terms cancel in the re-

duction of the three-component model to the two-component model of Section III C. As discussed

in Section III D, the charged-neutral terms can often (but certainly not always) be neglected.

The 2nd moment of Cion
i , after again using Eqn. (12) for the integral over electron velocity space,

is ∫
1
2

miv2Cion
i dv ≈ mine〈σionve〉

(
1
2

v2
n

∫
fndv +

1
2

∫
w2 fndv

)
. (29)

The first term on the right is related to the 0th moment. The second term is easily evaluated in
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spherical coordinates. Inserting the Maxwellian form for fn, the integral is∫
w2 fndv =

3
2

nnv2
Tn, (30)

Eqn. (29) is now ∫
1
2

miv2Cion
i dv ≈

mi

mn

Γion
i

2

(
mnv2

n +
3
2

mnv2
Tn

)
. (31)

Using the definition of vTn, the two terms on the right can be identified as transfer of kinetic

energy and internal energy. Defining Qion
n ≡ Γion

i
3
2kTn, the equation for the 2nd moment of Cion

i can

be expressed as ∫
1
2

miv2Cion
i dv ≈

mi

mn

(
Γion

i
1
2

mnv2
n + Qion

n

)
. (32)

Similarly, ∫
1
2

mev2Cion
e dv ≈

me

mn

(
Γion

i
1
2

mnv2
n + Qion

n

)
− Γion

i φion, (33)

where the effective ionization energy is extracted, and∫
1
2

mnv2Cion
n dv ≈ −

(
Γion

i
1
2

mnv2
n + Qion

n

)
. (34)

The 2nd moment of Crec
i is∫

1
2

miv2Crec
i dv ≈ −

(
Γrec

n
1
2

miv2
i + Qrec

i

)
, (35)

where Qrec
i ≡ Γrec

n
3
2kTi. The 2nd moment of Crec

e is∫
1
2

mev2Crec
e dv = −

1
2

meni

(
v2

e

∫
feσrecvreldv +

∫
w2 feσrecvreldv

)
. (36)

Here, the usual high electron thermal speed assumption is made. The product σrecvrel is assumed

to be independent of ion velocity, and is extracted from the inner integral of Eqn. (6). The inner

integral yields the ion density, ni, which is seen in Eqn. (36). The first term on the right side

of Eqn. (36) represents transfer of kinetic energy; the integral over electron velocity space gives

ne〈σrecve〉 just as seen for the 0th moment in Eqn. (14). The second term, representing conversion

of electron thermal energy, involves the integral
∫

feσrecw3dv. Whereas the 0th moment integral∫
feσrecwdv results in ne〈σrecve〉, where 〈σrecve〉 is parameterized in terms of Te, a convenient

parameterization for the integral
∫

feσrecw3dv in Eqn. (36) is not immediately available because

an additional factor of w2 is entangled in the integral. For further discussion, see Section III D.

Defining Qrec
e ≡ 1/2meni

∫
feσrecw3dv,∫

1
2

mev2Crec
e dv = −

(
Γrec

n
1
2

mev2
e + Qrec

e

)
. (37)
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The 2nd moment of Crec
n is∫

1
2

mnv2Crec
n dv ≈ Γrec

n

(
1
2

miv2
i +

1
2

mev2
e

)
+ Qrec

i + Qrec
e . (38)

The 2nd moment contribution of CX to the ion species is∫
1
2

miv2Ccx
i dv ≈

1
2

miσcx

∫
v2 (

v∗i ni fn − v∗nnn fi
)

dv, (39)

which, after expanding the velocities into fluid and random velocities, is∫
1
2

miv2Ccx
i dv ≈ miσcx

(
1
2

niv2
n

∫
v∗i fndv −

1
2

nnv2
i

∫
v∗n fidv + nivn ·

∫
wv∗i fndv

−nnvi ·

∫
wv∗n fidv +

1
2

∫
w2 (

niv∗i fn − nnv∗n fi
)

dv
)

= Γcx 1
2

mi(v2
n − v2

i ) + vn · Rcx
in − vi · Rcx

ni

+
1
2
σcxmi

∫
w2 (

niv∗i fn − nnv∗n fi
)

dv. (40)

The integral terms in the last line of Eqn. (40) represent the transfer of random thermal energy,

Qcx
in ≡

1
2σcxmi

∫
w2niv∗i fndv and Qcx

ni ≡
1
2σcxmi

∫
w2nnv∗n fidv. As found by Pauls et al. [3] (and

detailed by Meier [20]), appropriate approximations of these thermal energy transfers are

Qcx
in ≈ σcx(Vcx)mininn

3
4

v2
Tn

√
4
π

v2
Ti +

64
9π

v2
Tn + v2

in, (41)

and

Qcx
ni ≈ σcx(Vcx)mininn

3
4

v2
Ti

√
4
π

v2
Tn +

64
9π

v2
Ti + v2

in. (42)

Eqn. (39) can now be written∫
1
2

miv2Ccx
i dv ≈ Γcx 1

2
mi(v2

n − v2
i ) + vn · Rcx

in − vi · Rcx
ni + Qcx

in − Qcx
ni . (43)

The 2nd moment of Ccx
n is∫

1
2

mnv2Ccx
n dv ≈ Γcx 1

2
mi(v2

i − v2
n) − vn · Rcx

in + vi · Rcx
ni − Qcx

in + Qcx
ni . (44)

Summary of reaction collision operator integrals

Summarizing for the 0th moment,∫
Cion

e dv ≈ Γion
i ,

∫
Cion

i dv ≈ Γion
i ,

∫
Cion

n dv ≈ −Γion
i∫

Crec
e dv ≈ −Γrec

n ,

∫
Crec

i dv ≈ −Γrec
n ,

∫
Crec

n dv ≈ Γrec
n∫

Ccx
i dv ≈ Γcx − Γcx = 0,

∫
Ccx

n dv ≈ Γcx − Γcx = 0. (45)
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Summarizing for the 1st moment,

∫
mevCion

e dv ≈ mevnΓ
ion
i ,

∫
mivCion

i dv ≈ mivnΓ
ion
i ,

∫
mnvCion

n dv ≈ −mnvnΓ
ion
i∫

mevCrec
e dv ≈ −meveΓ

rec
n ,

∫
mivCrec

i dv ≈ −miviΓ
rec
n ,

∫
mnvCrec

n dv ≈ (mivi + meve)Γrec
n∫

mivCcx
i dv ≈ mi (vn − vi) Γcx + Rcx

in − Rcx
ni∫

mnvCcx
n dv ≈ mi (vi − vn) Γcx + Rcx

ni − Rcx
in . (46)

Summarizing for the 2nd moment,

∫
1
2

mev2Cion
e dv ≈

me

mn

(
Γion

i
1
2

mnv2
n + Qion

n

)
− Γion

i φion∫
1
2

miv2Cion
i dv ≈

mi

mn

(
Γion

i
1
2

mnv2
n + Qion

n

)
∫

1
2

mnv2Cion
n dv ≈ −

(
Γion

i
1
2

mnv2
n + Qion

n

)
∫

1
2

mev2Crec
e dv ≈ −

(
Γrec

n
1
2

mev2
e + Qrec

e

)
∫

1
2

miv2Crec
i dv ≈ −

(
Γrec

n
1
2

miv2
i + Qrec

i

)
∫

1
2

mnv2Crec
n dv ≈ Γrec

n

(
1
2

miv2
i +

1
2

mev2
e

)
+ Qrec

i + Qrec
e∫

1
2

miv2Ccx
i dv ≈ Γcx 1

2
mi

(
v2

n − v2
i

)
+ vn · Rcx

in − vi · Rcx
ni + Qcx

in − Qcx
ni∫

1
2

mnv2Ccx
n dv ≈ Γcx 1

2
mi

(
v2

i − v2
n

)
+ vi · Rcx

ni − vn · Rcx
in + Qcx

ni − Qcx
in . (47)

B. Three-component electron-ion-neutral model

The next step toward the two-component plasma-neutral equations is to compose the three-

fluid electron-ion-neutral model, which is a generalization of the two-fluid plasma model [21, 22]

to include reacting neutrals. Using the expressions for moments of the reaction collision operators

summarized in Section III A, and taking moments of Eqn. (2) (closely following the approach of

Braginskii [1]), the following continuity, momentum, and energy equations are derived for the ion,

electron, and neutral species.

12



Continuity

∂ni

∂t
+ ∇ · (nivi) = Γion

i − Γrec
n , (48)

∂ne

∂t
+ ∇ · (neve) = Γion

i − Γrec
n , (49)

∂nn

∂t
+ ∇ · (nnvn) = Γrec

n − Γion
i . (50)

Momentum

∂

∂t
(minivi) + ∇ · (minivivi + Pi) = qini(E + vi × B)

+Rie
i + Rin

i + Γion
i mivn − Γrec

n mivi + Γcxmi(vn − vi) + Rcx
in − Rcx

ni , (51)

∂

∂t
(meneve) + ∇ · (meneveve + Pe) = −qene(E + ve × B)

−Rie
i + Ren

e + Γion
i mevn − Γrec

n meve, (52)

∂

∂t
(mnnnvn) + ∇ · (mnnnvnvn + Pn) =

−Rin
i − Ren

e + Γrec
n (mivi + meve) − Γion

i mnvn + Γcxmi(vi − vn)

−Rcx
in + Rcx

ni , (53)

where qi and qe are the ion and electron charge magnitudes, respectively, and Rie
i is the usual

scattering collisional transfer of momentum to the ion species presented by Braginskii [1] as Rie.

Rin
i is a similar scattering collisional momentum transfer to the ion species, but for ion-neutral

collisions. Ren
e is a similar momentum transfer for electron-neutral collisions. The species pressure

tensor, Pα, can be decomposed as Pα = pαI + Πα, where pα is the scalar pressure and Πα is the

stress tensor.

Energy

∂εi

∂t
+ ∇ · (εivi + vi · Pi + hi) = vi · (qiniE + Rie

i + Rin
i )

13



+Qie
i + Qin

i +
mi

mn
(Γion

i
1
2

mnv2
n + Qion

n ) − Γrec
n

1
2

miv2
i − Qrec

i

+Γcx 1
2

mi

(
v2

n − v2
i

)
+ vn · Rcx

in − vi · Rcx
ni + Qcx

in − Qcx
ni , (54)

∂εe

∂t
+ ∇ · (εeve + ve · Pe + he) = ve · (−qeneE − Rie

i + Ren
e )

+Qie
e + Qen

e +
me

mn
(Γion

i
1
2

mnv2
n + Qion

n ) − Γion
i φion − Γrec

n
1
2

mev2
e − Qrec

e , (55)

∂εn

∂t
+ ∇ · (εnvn + vn · Pn + hn) = −vn · (Rin

i + Ren
e )

+Qin
n + Qen

n + Γrec
n (

1
2

miv2
i +

1
2

mev2
e) + Qrec

i + Qrec
e − (Γion

i
1
2

mnv2
n + Qion

n )

+Γcx 1
2

mi(v2
i − v2

n) + vi · Rcx
ni − vn · Rcx

in + Qcx
ni − Qcx

in , (56)

where εα ≡ mαnαv2
α/2 + pα/(γ − 1) is the total fluid energy density, and Qie

i and Qie
e are the

usual scattering collisional heat exchange presented by Braginskii [1] as Qie and Qei, respectively.

Qin
i/n and Qen

e/n represent the same type of heat exchange due to ion-neutral and electron-neutral

collisions, respectively. The species heat fluxes are represented by hα. Maxwell’s equations couple

the fluid dynamics to the electric and magnetic field evolution. The heat fluxes (hα), and the stress

tensors (Πα) must be specified to close the model. This closure is often accomplished by using a

Chapman-Enskog-like determination of the local distribution functions. These terms are further

addressed in Section III D.

To compare to the well-known two-fluid transport equations presented by Braginskii [1], it is

useful to identify temperature evolution equations for this three-component ion-electron-neutral

model. Beginning with the fluid energy evolution equations above, kinetic energy evolution is

subtracted to find pressure evolution. For each species, kinetic energy evolution is found by taking

the scalar product of the fluid velocity with the momentum equation. The species continuity

equations are used to simplify the results. (This procedure is outlined by Braginskii [1], and is

described in some detail by Meier [20].) Next, temperature evolution is isolated. For the ion

species, for example, the ion continuity equation is used to find the relationship

1
γ − 1

∂pi

∂t
+ ∇ ·

(
1

γ − 1
pivi

)
=

kni

γ − 1

(
∂Ti

∂t
+ vi · ∇Ti

)
+

kTi

γ − 1

(
Γion

i − Γrec
n

)
. (57)

Similar relationships for electron and neutral temperature evolution are easily found. The resulting

temperature evolution equations are

kni

γ − 1

(
∂Ti

∂t
+ vi · ∇Ti

)
+ pi∇ · vi = −∇ · qi − Πi : ∇vi −

kTi

γ − 1

(
Γion

i − Γrec
n

)
14



+Qie
i + Qin

i +
(
Γion

i + Γcx
) mi

2
(vi − vn)2 +

mi

mn
Qion

n − Qrec
i

+Rcx
in · (vn − vi) + Qcx

in − Qcx
ni , (58)

kne

γ − 1

(
∂Te

∂t
+ ve · ∇Te

)
+ pe∇ · ve = −∇ · qe − Πe : ∇ve −

kTe

γ − 1

(
Γion

i − Γrec
n

)
+Qie

e + Qen
e + Γion

i

[me

2
(ve − vn)2

− φion

]
+

me

mn
Qion

n − Qrec
e , (59)

knn

γ − 1

(
∂Tn

∂t
+ vn · ∇Tn

)
+ pn∇ · vn = −∇ · qn − Πn : ∇vn −

kTn

γ − 1

(
Γrec

n − Γion
i

)
+Qin

n + Qen
n + Γrec

n

(mi

2
v2

i +
mn

2
v2

n +
me

2
v2

e − mevn · ve − mivn · vi

)
+Qrec

i + Qrec
e − Qion

n + Γcx mi

2
(vn − vi)2 + Rcx

ni · (vi − vn)

+Qcx
ni − Qcx

in . (60)

C. Two-component plasma-neutral model

To reach a two-component model, the electron and ion fluids are treated as a single fluid. The

MHD approximations are made, such that n = ni = ne, me → 0, and v = vi. It is further assumed

that q = qi = qe and mi = mn. Current density, j = qn(vi − ve), is introduced.

Continuity

Along with the neutral continuity equation, only a single plasma continuity equation is needed.

∂n
∂t

+ ∇ · (nv) = Γion
i − Γrec

n , (61)

∂nn

∂t
+ ∇ · (nnvn) = Γrec

n − Γion
i . (62)

Momentum

The ion and electron momentum equations are summed to yield the plasma momentum equa-

tion.

∂

∂t
(minv) + ∇ · (minvv + pI + Π) = j × B

+Rin
i + Ren

e + Γion
i mivn − Γrec

n miv + Γcxmi(vn − v) + Rcx
in − Rcx

ni , (63)
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∂

∂t
(minnvn) + ∇ · (minnvnvn + pnI + Πn) =

−Rin
i − Ren

e + Γrec
n miv − Γion

i mivn + Γcxmi(v − vn) + Rcx
ni − Rcx

in . (64)

To arrive at Eqn. (63) for plasma momentum evolution, the relationship [1, 23, 24]

minvv + P =
∑
α=i,e

(mαnvαvα + Pα)

is used. The total scalar plasma pressure is p = pi + pe, and the total plasma stress tensor is

Π = Πi +Πe. Assuming the same density and temperature for ions and electrons, for magnetized or

unmagnetized plasma, the components of the electron stress tensor, Πe, are all much smaller than

the corresponding components in the ion stress tensor, Πi, essentially because of the much larger

momentum carried by ions [1]. Components of Πe are smaller than the corresponding components

of Πi by a factor of
√

mi/me or greate r. The factor
√

mi/me is approximately 43 for protons and is

larger for species with higher atomic numbers, so the approximation Π ≈ Πi is appropriate.

Generalized Ohm’s law

The generalized Ohm’s law is found from the electron momentum equation after letting me →

0, and using ve = vi − j/qn, where j is defined in terms of B via the low-frequency Ampère’s law.

E + v × B =
1

qn

(
j × B − ∇ · Pe − Rie

i + Ren
e

)
.

Applying Faraday’s law, this can be written as

∂B
∂t

= ∇ ×

[
v × B −

1
qn

(
j × B − ∇ · Pe − Rie

i + Ren
e

)]
. (65)

Energy

Again adding the electron and ion equations and letting me → 0,

∂ε

∂t
+ ∇ · (εv + v · (pI + Π) + h) =

j · E + v · Rin
i + ve · Ren

e + Qin
i + Qen

e

+Γion
i

(
1
2

miv2
n − φion

)
+ Qion

n − Γrec
n

1
2

miv2 − Qrec
i − Qrec

e

+Γcx 1
2

mi

(
v2

n − v2
)

+ vn · Rcx
in − v · Rcx

ni + Qcx
in − Qcx

ni , (66)
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∂εn

∂t
+ ∇ · (εnvn + vn · (pnI + Πn) + hn) = −vn · (Rin

i + Ren
e )

+Qin
n + Qen

n + Γrec
n

1
2

miv2 + Qrec
i + Qrec

e − Γion
i

1
2

miv2
n − Qion

n

+Γcx 1
2

mi(v2 − v2
n) + v · Rcx

ni − vn · Rcx
in + Qcx

ni − Qcx
in . (67)

To arrive at Eqn. (66) for plasma fluid energy evolution, Rie
i ·(v−ve) has cancelled with Qie

i +Qie
e

as discussed by Braginskii [1]. The relationship [1, 23, 24]

εv + v · P + h =
∑
α=i,e

(εαvα + vα · Pα + hα)

is used in adding the ion and electron flux terms. Here, ε = (pi + pe)/(γ − 1) + ρv2/2, and

h = hi + he − γpej/[ne(γ − 1)]. (The electron stress tensor is neglected in defining h.)

Alternative formulations of the energy equations may be desired. For example, Meier [20]

derives equations for plasma and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equations to generate fluid moment equations,

each moment produces terms that depend on the next higher moment of the distribution func-

tion. The fluid moment procedure must be “closed” by using a limited set of fluid equations to

approximately determine each species distribution function. For the three-component electron-

ion-neutral and two-component plasma-neutral models derived above, the moment procedure is

truncated after the second moment. Closure is established by applying the Chapman-Enskog ap-

proach as discussed in detail by Braginskii [1]. The species distribution functions are expanded

as fα = f 0
α + f 1

α + f 2
α + · · ·, where f 0

α is Maxwellian, and the additional terms represent higher-

order perturbations. Typically, only the first-order perturbations ( f 1
α ) are retained. Braginskii [1]

describes the closure of his plasma models under the assumption that the lowest-order terms in the

ion and electron Boltzmann equations are the scattering collision terms and the magnetic terms.

The same assumption is adopted for the closures suggested here for the plasma-neutral model.

Other researchers have assumed different orderings. For example, Helander et al. [17] assume

that CX collision terms are dominant in the neutral species Boltzmann equation. As discussed by

Meier [20], a generalization that allows scattering, CX, ionization, and recombination reactions to

share the dominant role is an objective of future research.
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The higher-order terms generated by the moment procedure are the heat fluxes (hα) and stress

tensors (Πα). Once the distribution functions have been approximated, these terms can be quanti-

fied. The presence of non-Maxwellian perturbations to the distribution functions also has implica-

tions for moments of the collision operators. For example, Braginskii [1] discusses and quantifies

the thermal gradient force that contributes to the ion-electron frictional force, Rie
i , and associated

heat exchange terms, Qie
i and Qie

e , which appear in the three-component ion-electron-neutral model

of Section III B. (Note that the ion-electron frictional force and heat exchange terms cancel when

the two-component plasma-neutral model is formulated.) Purely Maxwellian reacting distribution

functions (i.e., fα = f 0
α ) are assumed when taking moments of reaction collision operators. Thus,

the non-Maxwellian effects due to thermal gradients in the CX friction terms Rcx
in and Rcx

in and

associated thermal energy exchange terms are neglected in the present derivation.

Specific closures for each equation of the plasma-neutral model of Section III C are now dis-

cussed. The reaction-related terms, i.e., Γreact.
α , Rreact.

α , and Qreact.
α , do not technically fall into the

“closure” category — non-Maxwellian effects are not included in those terms. However, discus-

sion of their quantification is included below and relevant references are supplied.

Closure of continuity equations

To compute Γion
i and Γrec

n , the ionization and recombination rate parameters arising in Eqns. (13)

and (14) must be specified. For hydrogenic atoms, an approximation for the ionization rate pa-

rameter in terms of electron temperature (which may be assumed, e.g., to be equal to the ion

temperature) is supplied by McWhirter [25]. As discussed by Meier [20], 〈σionve〉 for the first 28

elements can be determined with the fitting formula and associated data given by Voronov [26]. An

approximation for the radiative recombination rate parameter in terms of electron temperature is

presented by McWhirter [25]. Goldston [27] provides a useful discussion of these rate parameters.

Closure of momentum equations

In Section III A, the resonant CX-related terms are defined, but the functional dependence

of σcx(Vcx) on Vcx is not specified. An appropriate form for the hydrogenic CX cross-section,

based on CX data from Barnett [28], is σcx,H = 1.09 × 10−18 − 7.15 × 10−20 ln(Vcx) m2. This

formula matches the Barnett data to within 10% for relative ion-neutral particle speeds between
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4.8 × 103 m/s and 1.4 × 106 m/s (i.e., between 0.12 eV and 10 keV for hydrogen).

The stress tensors Π and Πn may be replaced with standard formulas. For example, assuming

isotropic unmagnetized plasma viscosity and neglecting compressibility effects, Π = −ξ[∇v +

(∇v)ᵀ], where ξ is the isotropic dynamic viscosity coefficient given by Braginskii [1]. Similarly,

the neutral fluid stress tensor may be approximated as Πn = −ξn[∇vn + (∇vn)ᵀ]. The neutral

dynamic viscosity coefficient may be calculated using a rigid elastic sphere model as presented in

Chapman and Cowling [18].

In many cases, the terms Rin
i and Ren

e are negligible. Goldston [27] shows that neutral-charged

particle collisions are unimportant compared to Coulomb collisions for plasmas that are “even a

few percent ionized”. If the model is applied to a problem in which interesting physics occurs in

regions of very low ionization, these terms should be addressed and included. Schunk and Nagy

[29] propose treating neutral-charged particle interactions as Maxwell molecule collisions. See

also the related astrophysical work of Leake et al. [30], in which the plasma-neutral model of

Section III C is employed to simulate the weakly ionized solar chromosphere.

Closure of generalized Ohm’s law

The electron-neutral scattering term Ren
e should be treated appropriately, as discussed in the

previous section on the momentum equation closures. The terms j × B/(en) (the Hall term) and

∇ · Pe/(en) (the diamagnetic term) may be retained if electron fluid effects are of interest. Several

sources [1, 31, 32] provide detailed discussion of the range of validity for these assumptions. A

particularly important requirement is that length scales of interest should be much larger than the

ion gyroradius.

The frictional drag term, −Rie
i /(en) is generally anisotropic with drag forces perpendicular to

the magnetic field being a factor of two stronger than those parallel to the field. Braginskii [1]

provides details for computing this drag term with anisotropic resistivity (e.g., η̂ · j, where η̂ is a

tensor resistivity) or with isotropic resistivity (e.g., ηj, where η is a scalar resistivity). In some

cases, it may be appropriate to include anomalous effects in resistivity, e.g., Chodura resistivity;

see the dissertation by Meier [20].
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Closure of energy equations

Several reaction-related terms in the energy equations are as yet unspecified. The resonant CX-

related terms in the energy equations are defined in Section III A. The resonant CX cross-section,

σcx(Vcx), can be specified as discussed in the preceding discussion regarding closure of momentum

equations. Formulas for Qion
n and Qrec

i are defined in composing Eqns. (32) and (35), respectively.

As discussed with regard to Eqn. (36), the conversion of electron thermal energy is defined as

Qrec
e ≡ 1/2meni

∫
feσrecw3dv. Parameterization of this integral in terms of Te seems feasible, but

Qrec
e can be neglected if electron thermal energy loss in radiative recombination is not expected

to play an important role in the energy balance. (Note that in formulating Eqn. (66), the electron

kinetic energy transfer due to recombination is dropped in the me → 0 limit. Because Qrec
e involves

thermal energy, however, it should be evaluated prior to applying the me → 0 limit.)

The terms containing factors of Rin
i and Ren

e are neglected here for the same reasons that these

charged-neutral friction forces are neglected in the momentum equations. The charged-neutral

particle scattering terms, Qin
i and Qen

e , are dropped for the same reasons. The stress tensors, Π and

Πn, can be approximated as discussed for the momentum equations.

Under the assumption that scattering collisions dominate the species Boltzmann equations, heat

flux closures can be taken from prior work, specifically Braginskii [1] (for the plasma heat flux),

and Chapman and Cowling [18] (for the neutral heat flux). The plasma-neutral heat fluxes are

h = −
[
κ‖b̂b̂ + κ⊥

(
I − b̂b̂

)]
· ∇T −

γpej
nqe(γ − 1)

, (68)

and

hn = −κn∇Tn. (69)

In the plasma heat flux, h, the κ‖ and κ⊥ account for the effects of ion and electron thermal con-

ductivity parallel and perpendicular, respectively, to the magnetic field direction which is given by

the unit vector b̂ ≡ B/|B|. The part of the plasma heat flux proportional to the electron pressure,

pe, accounts for the convection of electron thermal energy. In the neutral heat flux, hn, κn is the

thermal conductivity. The conductivities κ‖ and κ⊥ are given by Braginskii [1]. The neutral heat

flux is derived by Chapman and Cowling [18] using a rigid elastic sphere model.

If the CX collision frequency is higher than the neutral-neutral scattering frequency, it can

be desirable to adopt a different closure for neutral heat flux. The form of the neutral thermal
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conductivity under the assumption of strong scattering is

κn,hs ∝
nnTn

νhs
, (70)

where νhs is the neutral-neutral scattering frequency, defined as νhs ≡ C̄πd2nn, where C̄ is the mean

neutral velocity defined by (C̄)2 ≡ 8kbTn/(πmn), and d is the diameter of a hard sphere representing

the relevant atom. An alternative form is

κn,cx−hs ∝
nnTn

νcx−hs
, (71)

where νcx−hs ≡ νcx+νhs. The CX frequency is defined as νcx ≡ C̄nσcx, where n is the plasma number

density and σcx is the CX cross section. While this approximation is ad hoc, it approximates the

perpendicular thermal transport intuitively expected in regions where CX competes with scattering

to determine the neutral mean free path, such as, for example, the edge of a magnetically confined

plasma. As discussed by Meier [20], when CX dominates scattering, the conductivity given by

Eqn. (71) closely resembles the heat flux derived by Helander et al. [17].

IV. CONCLUSIONS

The derivation of Section III offers an extension of the derivations by Braginskii [1] of two-fluid

and single-fluid plasma models to include a reacting neutral species. In Section III B, a reacting

and interacting three-component electron-ion-neutral model is derived from Boltzmann equations

with elastic scattering collisions and three inelastic reacting collisions: resonant charge exchange,

electron-impact ionization, and radiative recombination. Moments of the reaction collision terms

are described in detail. The three-component model is then reduced to a two-component plasma-

neutral model in Section III C. Suggested closures are discussed for the plasma-neutral model in

Section III D.

In future work, the plasma-neutral model could be extended to a general multi-fluid plasma

model: multiple plasma and neutral species could be accommodated; multiply-charged ions could

be allowed; excited states could be tracked; radiation effects could be included; as discussed in

Section III D, the successive approximation technique employed to determine the local distribution

functions could be generalized to more accurately close the plasma-neutral model; charged-neutral

elastic collisions could be included, and should be included in problems where the ionization frac-

tion is low; and additional reactions could be included such as non-resonant charge, three-body
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recombination, polarization ionization, etc. With so many possibilities, future model develop-

ment efforts should target the extensions that are most important and useful for the anticipated

applications.
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