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Executive Summary

Several numerical methods were produced and analyzed. The main thrust of
the work relates to inexact Krylov subspace methods for the solution of linear
systems of equations arising from the discretization of partial differential equa-
tions. These are iterative methods, i.e., where an approximation is obtained
and at each step. Usually, a matrix-vector product is needed at each iteration.
In the inexact methods, this product (or the application of a preconditioner)
can be done inexactly. Schwarz methods, based on domain decompositions, are
excellent preconditioners for thise systems. We contributed towards their under-
standing from an algebraic point of view, developed new ones, and studied their
performance in the inexact setting. We also worked on combinatorial problems
to help define the algebraic partition of the domains, with the needed overlap, as
well as PDE-constraint optimization using the above-mentioned inexact Krylov
subspace methods.

Work supported by this grant, and earlier work
related to the DOE mission

During the six-and-a-half years of support under this grant, we have been very
productive and have written numerous papers which directly or indirectly con-
tribute to the mission of DOE. We obtain good results in all areas of the pro-
posed work (inexact Krylov subspace methods, Schwarz preconditioners, com-
binatorial graph partitions with overlap, applications in control).

Both before and during this period of DOE funding, we have worked in
the area of Inexact and Flexible state-of-the-art iterative methods for the solu-
tion of linear systems of equations [50], [41], [42], [45], [43], [44], [39]; see also
[46]. These methods and their analyses are fundamental for high-performance
computing in modern architectures, including those with multicore nodes. Suc-
cinctly, these methods consider inexact and variable matrix-vector products or
inexact preconditioners which reduce computational costs considerably with-
out any significant penalty in convergence rates. In fact, the theory we have
developed will be ripe for further application in upcoming machines, expected
to reach the exascale regime [36]. We believe that the only methods that will
be viable in this setting are those using inexact matrix-vector products and
preconditioning.
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More recently, we concluded a long-term project of using inexact methods
for control problems constrained by parabolic PDEs [9], [8].

Among the DOE researchers who are currently applying our theory on inex-
act Krylov subspace methods is Eric Cyr at Sandia National Laboratory, who
works on multi-physics preconditioners.

Continuing on the theme of inexact methods, we mention our work (jointly
with our postdoc funded by this grant, Fei Xue) [51] on such methods for lin-
ear generalized eigenvalue problems (of the form Av − λBv = 0). It is worth
repeating that these are the only methods which will survive in the next gen-
eration of computer architectures. In [51], we demonstrate how to choose the
tolerances for the inexact solution of the the inner linear systems, e.g., in inex-
act Rayleigh Quotient Iteration, in order to maintain fast convergence toward
the desired (interior) eigenpair. We were able to show for this method, as well
as for single-vector Jacobi-Davidson that, if the inner tolerances are appropri-
ately chosen, the same local convergence rate can be attained for the inexact
method as for the exact counterpart. We should mention that Barry Lee of
the Pacific Northwest Laboratory, has expressed interest in implementing for an
High Performance Computing environment a related work of Xue (and Elman)
on inexact implicitly restarted Arnoldi for the same linear eigenvalue problems
[55]. Similarly, we show in [53] how inexactness influences the convergence of
Newton-type methods for general nonlinear eigenvalue problems, i.e., of fhe form
T (λ)v = 0. More recently, we further analyzed several properties of invariant
pairs of nonlinear algebraic eigenvalue problems [52].

Another area of recent work is more combinatorial in nature. It deals with
graph partitioning, and growing these partitions to obtain overlapping sub-
graphs, i.e., subgraphs whose union is the whole graph, but where the subgraphs
are not disjoint; they share some nodes, called the “overlap.” Our motivation for
this work comes from the need for permutations and partitions (with overlap)
of sparse matrices, to build preconditioners. In [19] we present a linear-time
algorithm (sublinear in the parallel case) to obtain an effective (overlapping)
decomposition; so that the preconditioners thus produced work well (and bet-
ter than many alternatives). The inspiration for this work came from Schwarz
preconditioners for discretized PDE problems, where the overlap between the
subdomains plays a major role in the convergence rates, which are mesh in-
dependent [49], [54]. We point out that our proposal for growing a partition
is more effective than the current default in the software PETSc [2] from Ar-
gonne; and Barry Smith has already mentioned that this default is scheduled to
be revised to incorporate our algorithm.

We mention that this overlap is needed in the Krylov-type algorithms being
proposed for minimal communication between cores, which will be important in
future high performance architectures; see, e.g., [3], [26], as well as for certain
network problems [25].

Schwarz preconditioners are based on domain decomposition methods, and
are widely used at many DOE labs. Scientists from five DOE labs presented
work at the Twentieth International Conference on Domain Decomposition
Methods in San Diego in 2011, and the meeting was in fact co-sponsored by
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Sandia and Livermore. We have made several contributions to the algebraic un-
derstanding of these preconditioners, and in some instances proved convergence
results, or proposed new alternatives, which could not have been done without
this algebraic approach [21], [22], [4], [23], [20], [34], [5], [32], [31], [6], [39], [35],
[40], [1], [27], [29], [28], [30], [12], [24]. As one example, let us mention that the
default Schwarz preconditioner in PETSc (from Argonne) is Restricted Additive
Schwarz [7], and its convergence properties are understood thanks to our work
[23].

Other recent contributions in the area of modern iterative methods for the
solution of linear systems of equations include works on several types of Krylov
subspace methods [44], [45], [43], [46], [11], [47], [10], [48], [38], and we know
that these have influenced research and production codes at several DOE labs.

More recently, during summer 2011, our student Kirk Soodhalter (who grad-
uated in Spring 2012) was an intern at Sandia, working with Michael Parks on
extending recycling strategies for Krylov subspace methods to a block setting,
and using this for the solution of linear systems arising from the use of Newton
iterations for fluid Density Function Theory problems. This work is ongoing
and will include an implementation of block GCRO in Trilinos [37].

Let me mention here that in terms of training future scientists for the needs
of DOE, in addition to Kirk Soodhalter, we have two students working with
us, and both of them are spending this summer (2013) as interns in DOE labs.
Stephen Shank, who is working on methods for matrix equations, is at Sandia
working with Ray Tuminaro; and Scott Ladenheim, who is working on mul-
tipreconditioners and on saddle-point problems, is at Livermore working with
Panayot Vassilevsky.

During this grant, we also produced important results in applied linear al-
gebra. We produced a whole new theory for matrices which are not necessarily
nonnegative or M-matrices, but which possess a “Perron-Frobenius property.”
Namely, the spectral radius is an eigenvalue, it is dominant, and the correspond-
ing eigenvector can be taken to be nonnegative (or positive) [14], [16], [15], [17],
[13], [18]. These properties have been used for decades to show important re-
sults in numerical and applied linear algebra. For example, they were used to
show convergence of certain iterative methods for the solution of discretized
elliptic PDEs, or for the existence of the incomplete LU factorization [33]. The
new theory now can be used to show the same results in more general settings,
for example, with different boundary conditions (which make the underlying
matrices lose the M-matrix property).

More recently, we used the Perron-Frobenius property on some matrices
originating in a tensor representation of a diffusion process in the context of
semi-supervised machine learning [56]. This was used to show convergence of
the method, and numerical experiments demonstrated its superiority over the
state-of-the-art algorithms.
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