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Abstract—Achieving efficient and correct synchronization of
multiple threads is a difficult and error-prone task at small scale
and, as we march towards extreme scale computing, will be even
more challenging when the resulting application is supposed to
utilize millions of cores efficiently. Transactional Memory (TM)
is a promising technique to ease the burden on the programmer,
but only recently has become available on commercial hardware
in the new Blue Gene/Q system and hence the real benefit for
realistic applications has not been studied, yet.

This paper presents the first performance results of TM
embedded into OpenMP on a prototype system of BG/Q and
characterizes code properties that will likely lead to benefits when
augmented with TM primitives. We first, study the influence
of thread count, environment variables and memory layout on
TM performance and identify code properties that will yield
performance gains with TM. Second, we evaluate the combination
of OpenMP with multiple synchronization primitives on top of
MPI to determine suitable task to thread ratios per node. Finally,
we condense our findings into a set of best practices. These are
applied to a Monte Carlo Benchmark and a Smoothed Particle
Hydrodynamics method. In both cases an optimized TM version,
executed with 64 threads on one node, outperforms a simple TM
implementation. MCB with optimized TM yields a speedup of
27.45 over baseline.

I. INTRODUCTION

Achieving efficient and correct synchronization of multiple
threads is a difficult and error-prone task. The correct use
of lock based schemes requires a strict coding discipline to
place matching lock and unlock operations into the code in a
way that avoids race conditions and/or deadlocks. Addition-
ally, lock-based synchronization often leads to high-overheads,
either due to lock contention, when using coarse grained
locks, or unnecessary lock overhead, when using fine grained
locks. This not only slows down the overall process using the
locks, but also has a global effect in large scale programming
due to the creation of skew between processes as well as
load imbalance, both major factors limiting the scalability of
applications.

Transactional Memory (TM) has been proposed almost
a decade ago to tackle these issues in shared memory
systems [1]. TM simplifies synchronization by providing a
single simple construct: the programmer wraps the critical
instructions in a transaction (also called atomic block). These
transactions are then executed optimistically in parallel and
conflicting accesses are resolved by a TM run time system.
As a consequence only the effects of entire and completed

transactions are visible to concurrent threads, avoiding the
visibility of intermediate memory states.

Except for a few, by now discontinued prototype implemen-
tations in research processors, TM has mainly been confined to
software solutions and therefore has been burdened with sig-
nificant runtime overheads. These overheads severely restrict
its applicability with the consequence that non performance
critical areas, for which the increase in programmability and
ease of verification justify the additional cost, are the primary
target. In high performance computing, however, the applica-
bility of these approaches has been limited.

The recently introduced Blue Gene/Q (BG/Q) system by
IBM for the first time provides Hardware Transactional Mem-
ory (HTM) in a commercially available platform. BG/Q is
designed as a large scale platform for scientific computing
workloads. The first full machine will be installed at Lawrence
Livermore National Laboratory and will provide more than
1.6 million compute cores with a total of over 6 million
hardware threads, making application scalability one of the
premier challenges on this machine.

This paper presents the first performance evaluation of the
HTM capabilities on BG/Q from the application perspective.
Not every lock-based application will be able to benefit from
HTM and it is important to understand what code properties
lead to efficient executions and, hence, which codes can benefit
from a port to HTM. In order to help code developers with
this task, we provide a precise evaluation of the strengths and
weaknesses of the architecture as well as what is required
to map applications to the architecture in an efficient way.
In particular, we focus on the synchronization primitives for
parallel programming in shared memory architectures with
OpenMP and provide detailed benchmark results. Our exper-
iments take into account the application’s characteristic (high
or low contention), the influence of environment variables, the
effects of enlarging transaction sizes, and hybrid parallelization
with MPI. We apply our results to the optimization of a Monte
Carlo Benchmark (MCB) that functions as a proxy application
for several large scale Monte Carlo simulations. A Smoothed
Particle Hydrodynamics method from the PARSEC benchmark
suite serves as our second case study.

Specifically, we make the following contributions:
1) We introduce a new benchmark, CLOMP-TM, that is

aimed at evaluating TM systems for scientific workloads.



2) We characterize the performance of HTM combined
with OpenMP on the Blue Gene/Q architecture using
CLOMP-TM.

3) We study the influence of thread count, environment
variables and memory layout on TM performance.

4) We evaluate MPI with OpenMP and multiple synchro-
nization primitives to determine a fitting task to thread
ratio for one node.

5) We identify code properties that are likely to yield
performance gains with TM.

6) We condense the findings into best practices and apply
them to a realistic Monte Carlo Benchmark code and a
Smoothed Particle Hydrodynamics method.

For both case studies, an optimized TM version, executed
with 64 threads on one node, significantly outperforms a
simple or naive TM version validating the the best practices
derived from our observations with CLOMP-TM.

The remainder of this paper is organized as follows. Sec-
tion II provides background on Transactional Memory in
general as well as related work. Section III describes our
experimental setup, the TM architecture of the BG/Q system,
and our benchmark used to determine overheads. Section IV
presents low-level measurements, followed by the lessons
learned in Section V. Section VI shows how we can use
our lessons to add transactions to a Monte Carlo code and
to a Smoothed Particle Hydrodynamics method. Section VII
concludes and presents ideas for future work.

II. BACKGROUND AND RELATED WORK

Transactional Memory has been proposed as architectural
support for lock-free data structures in shared memory sys-
tems [1]. The core idea is to replace pessimistic synchro-
nization, such as locks, with optimistic synchronization in
the form of transactions. Programmers can group updates into
transactions and these can be executed concurrently with the
rest of program. A runtime system (in hardware or software)
detects conflicts between transactions as well as between a
transaction and the rest of the program and, if necessary
aborts and rolls the effects of the transaction back. As a
consequence, the effects of any transaction are seen as if
the transaction occurred as one atomic block, providing the
necessary synchronization guarantees.

This concept does not only have performance implications,
since contention free cases have the potential to execute
concurrently and are not forced to be serialized as with
pessimistic schemes, but it also, and perhaps more importantly,
has the potential to provide a boost in programmability and
maintainability. Lock based schemes are often error prone and
require a strict coding discipline to ensure proper synchroniza-
tion by placing matching lock and unlock instructions without
causing deadlocks. The latter is particularly critical for fine
grain locks. TM approaches, on the other hand, only expose a
single concept, a transaction, to the user in the form of code
blocks, which can be easily annotated within the source code.

Many different TM designs have been proposed [2].
Software-based approaches [3], [4], [5], [6] (STM) use a

Software Transactional Memory library to implement algo-
rithms for the detection and resolution of conflicting memory
accesses. Software is very flexible but also comes with inherent
overheads [7]. On the contrary Hardware Transactional Mem-
ory systems are fast for transactions that fit into the restricted
hardware [8], [9], [10]. Further, hybrid approaches, combining
hardware and software to accelerate execution and lift the
limits of the hardware have been researched [11], [12], [13],
[14].

The only paper that described an early experience with a
commercial hardware transactional memory implementation
published in a major conference, to our knowledge, is by Dice
et al. [15]. The paper describes and evaluates the hardware
transactional memory feature of SUN’s Rock processor [16],
which is no longer available. The focus of their paper is
on the evaluation of concurrent data structures such as Red
Black trees and Hashtable, and the construction of a
minimum spanning forest [17]. The parallelization of these
codes uses threads only. Thus, no experiments are made that
estimate the performance of a hybrid parallelization with MPI.
Further, there is an important difference between the HTM
implementations of Rock and BG/Q. Rock is a checkpoint-
based architecture which is exploited in the context of TM
to save and restore the architectural state of the registers in
hardware. In BG/Q the TM runtime performs this task in
software. This important difference will affect the performance
of both architectures and makes transferring results of previous
studies from the Rock to the BG/Q architecture extremely
difficult.

A description of a second commercial HTM implementation
can be found in a paper by Dick [18]. The goal is to accelerate
the synchronized keyword in Java. Thus, no extensions
to the language are made and explicit programming with
transactions is not possible. Instead a heuristic decides whether
to run a critical section as transaction or not.

Most STM papers use STAMP, a benchmark suite for
transactional memory research [19]. The codes comprise:
Bayesian network learning, gene sequencing, network in-
trusion detection, K-means clustering, maze routing, graph
kernels, a client/server travel reservation system, and delaunay
mesh refinement. This covers many application areas in which
STMs have been used, but do not represent codes from the
area of high performance computing, for which HTM is a
promising approach to overcome synchronization overheads
and to improve scaling of hybrid thread/MPI codes. In this
paper, we therefore focus on a new benchmark explicitly
designed to cover this area and present results that demonstrate
how HTM can be deployed in HPC.

III. EXPERIMENTAL SETUP

For all following experiments we use an early prototype
of BG/Q installed at IBM. TM is available as HTM through
IBM’s XL C/C++/Fortran Compiler suite for BGQ, which
provides new language primitives that allow users to specify
transactions.



Name Description Contention
None Threads do not conflict. No contention.
Adjacent Adjacent memory addresses are updated. No to small contention.
Random Randomly (but repeatable) seeming updates. High contention.
FirstParts Only the first parts are updated Highest contention.

TABLE I
DIFFERENT CONTENTION LEVELS IN THE CLOMP-TM BENCHMARK.

Name Implementation Description
Bestcase — Bestcase without synchronization.
Serial Ref — Serial reference implementation.
Small TM #pragma tm_atomic Synchronizing each update with a transaction.
Small Atomic #pragma omp atomic Synchronizing each update with an atomic operation.
Small Critical #pragma omp critical Synchronizing each update with OpenMP’s critical section.
Large TM #pragma tm_atomic All scatter zone updates in one transaction.
Large Critical #pragma omp critical All scatter zone updates in one critical section.
Huge TM X #pragma tm_atomic X times Large TM in one transaction.

TABLE II
DESCRIPTION OF SYNCHRONIZATION CONSTRUCTS USED IN CLOMP-TM.

A. Overview of BG/Q’s TM Hardware

The BG/Q prototype we had access to contained 32 nodes
with 16 cores each. Each core can execute up to four hardware
threads. Transactional memory is implemented within the L2
cache, which consists of 16 banks of 2 MB each located across
a full crossbar from the 16 multithreaded compute cores. The
L2 cache has a cache line size of 128 Bytes. Memory accesses
that can lead to conflicts between transactions, are tracked
by the L2 cache, which is a point of coherency. Conflict
detection between different transactions is completed in hard-
ware, while conflict resolution is coordinated through the TM
software stack. Note that, in addition to TM, the L2 cache
also implements an improved set of atomic operations that
also target faster and more efficient thread synchronization.
Comparisons in the remainder of the paper between TM and
atomic operations therefore provide results between two novel
and highly optimized schemes. More information on BG/Q’s
hardware in general can be found in a recent presentation by
Haring at Hot-Chips [20].

B. Application Perspective in BG/Q’s TM Software Stack

By default, the TM runtime defaults to a ´lazy´ (or op-
timistic) conflict detection scheme, at commit time, as the
runtime suppresses the hardware from sending conflict inter-
rupts to the conflicted threads. However, applications/users can
enable a ’pessimistic detection’ scheme by setting the environ-
ment variable TM_ENABLE_INTERRUPT_ON_CONFLICT.
That is, conflict arbitration happens immediately at the time
of conflicts. Either scheme needs to be carefully chosen as
an already doomed thread, if allowed to run till the end, may
cause further spurious conflicts.

The TM runtime also relies on a lazy versioning (i.e.,
write-back) scheme as all speculative writes are buffered in
the multi-versioned cache until commit time. Strong atom-
icity (i.e., opacity) is guaranteed unless a thread is run-
ning in irrevocable mode. In such a case, the thread runs
non-speculatively and all writes take affect immediately.

The TM_MAX_NUM_ROLLBACK environment variable con-
trols when a thread should enter into irrevocable mode. The
irrevocable mode is a mechanism that guarantees that a thread
makes progress. The contention manager favors an older thread
to commit based upon the timebase register value of the thread
at the time when speculation starts. Aborting a transaction
does not back-off for pre-determined time, rather, a thread
retries immediately. The runtime also implements flat nesting
whereby commits and rollbacks are to the outermost TM
region. As an additional feature, the runtime monitors the
TM behavior of the application and provides the resulting TM
statistics to the user. All TM statistics, presented in this paper,
are retrieved by this method.

C. The CLOMP-TM Benchmark

Since current TM benchmark suites do not provide the
necessary coverage for scientific applications, we focus on
the development of a new benchmark specifically designed to
expose the range of properties needed to characterize scientific
workloads, CLOMP-TM1. It is designed to compare multiple
synchronization constructs and approaches over a workload
that is typical for scientific codes. In fact, it was created to
help us mimic the application characteristics of several large
scale, multi-physics applications used in production at DOE
laboratories. It achieves this flexibility and wide coverage
through a series of knobs that allow us to explore varying
transaction granularities and conflict rates, coupled with typi-
cal computational kernels found in scientific codes.

CLOMP-TM originates from the publicly available CLOMP
benchmark [21] used for evaluating OpenMP implementations.
CLOMP resembles an unstructured mesh with a set of parti-
tions. Each partition holds a linked list of zones. To vary the
pressure on the memory system, the size of these zones can
be configured. Computation, that is performed when updating

1For the experiments CLOMP-TM version 1.59 is used and will be made
publicly available at publication time of the paper.



Fig. 1. CLOMP-TM performing 8 divide operations with a stride of 4 per zone update with excellent speedups of Large TM over Small Atomic. Run with
clomp-tm-bgq-divide4 -1 1 256 128 256 stride1,1,stride1%/2 sc 1 0 6 100.

a zone, only uses the first 32 bytes of each zone. The com-
putation per zone update can be scaled by a factor. While the
original CLOMP aims to quantify overheads due to threading
and the specific OpenMP implementation, the CLOMP-TM
aims at quantifying and comparing synchronization overheads
of multiple synchronization constructs. CLOMP-TM can be
configured to resemble the synchronization characteristics of
typical scientific applications used in HPC. Thus, performance
results of CLOMP-TM not only enable us to provide detailed
characteristics of the low-level properties of the Blue Gene/Q
hardware, but also, and more importantly, to project the
performance impact of TM on large scale parallel applications.

Major changes over CLOMP: In order to study the im-
pact of TM in the presence of loop dependencies and the
resulting conflicts, CLOMP-TM adds explicit and controllable
dependencies to the loop structures of CLOMP. Besides the
implementation with TM, CLOMP-TM also tests optimistic
execution not secured by any synchronization2 or using other
constructs such as atomics or OpenMP-based constructs with
the same level of abstraction in terms of programming.

For a meaningful comparison of optimistic and pessimistic
synchronization constructs, multiple memory access patterns
have to be considered. These memory access patterns deter-
mine the likelihood of a conflict between concurrent accesses
of two threads. A single parameter defines the zones that are
updated by a thread. The contention arises when multiple
threads update the same zones. These different contention
scenarios are shown in Table I.

In comparison to the CLOMP benchmark, the updates of
a zone are enlarged. This new construct is called “scatter
zone” and enables larger critical sections, which resembles the
update of multiple variables (e.g., coordinates with multiple
dimensions x, y, and z) in one critical section. For the
large versions of the synchronization constructs, scatterCount

2In this configuration CLOMP-TM does not return correct results, but the
timings can be used to study conflict free cases.

updates many zone in a single synchronized block.

Each iteration executes the selected computation pattern.
Available patterns with increasing complexity are: none, di-
vide, manydivide, and complex. CLOMP-TM is carefully de-
signed to eliminate as much noise as possible: I/O is performed
only outside of timing loops and all the loops are run just
before the timing loops to eliminate start up costs and cold
cache effects. Table II holds the synchronization constructs to
be compared.

Comparison of CLOMP-TM with TM benchmarks: Apart
from the heavily cited STAMP benchmark suite [19] that does
not represent the scientific application behavior we are inter-
ested in, a growing number of parameterized workloads gains
popularity. An important example is the WormBench work-
load [22]. WormBench is derived from the popular snake game
and has been designed to evaluate and verify the efficiency of
a TM system. WormBench is written in C# and enables to
compare TM performance with a global lock. Parameters are
size of the world (matrix), number of worms (threads), body
and head size of a worm and operations to be performed while
moving. In contrast CLOMP-TM enables a comparison with
a single instruction atomic update, an unsynchronized version
and two sizes of transactions and critical sections respectively.
For our workloads C# does not play an important role and we
believe that a more versatile benchmark to model scientific
workloads is needed and thus propose CLOMP-TM. A more
suited candidate for the modeling of arbitrary TM workloads
is Eigenbench [23]. Eigenbench uses orthogonal metrics to
model a specific workload. For our use case, not knowing a
priori how TM will perform, we would have to transactify
the application, measure the metrics, derive a configuration
for Eigenbench and use this to model our workload. With
CLOMP-TM, the user only needs to know the number of
shared memory accesses and the number of floating point
operations per loop iteration of an application to set the right
parameters that will resemble the application behavior.



Fig. 4. CLOMP-TM performing 8 divide operations per zone update with
huge critical sections. Speedup shown with None - generated with CLOMP-
TM version 1.36.

IV. CHARACTERIZING TM PERFORMANCE ON BG/Q
USING CLOMP-TM

For the CLOMP-TM cases presented in this paper, synchro-
nization overheads can dramatically affect speedup. We vary
the parameters of CLOMP-TM to learn how the parameters
affect the speedup and to find out what code properties qualify
for TM. These results will help application developers to tune
their codes (e.g., through picking a better suited synchroniza-
tion primitive), but the achievable speedup is determined by
the properties of the application (e.g., ratio of computation and
synchronization, contention for memory locations).

For our initial experiments targeted at understanding the
potential for TM, we chose the parameters for CLOMP-TM
in a way that TM outperforms a highly efficient implemen-
tation of omp atomic. In this configuration, CLOMP-TM
performs 8 divide operations per zone update with a stride
of 4 and the results are shown in Figure 1. Threads do not
contend for memory locations. We increase the size of the
scatter zone so that an increasing amount of updates is carried
out in Large TM. Figure 1 a) illustrates that in the case of
32 threads performing 4 zone updates is the cross-over point
for Large TM over Small Atomic. For 64 threads the number
of zones is twice as high (see Figure 1 b)). Please note that
the large amount of computation per zone update masks the
overheads of synchronization.

A. Synchronization Overhead

To understand the tradeoffs in using TM, we first study the
synchronization overhead associated with different approaches
and contrast them to the TM results. We obtain the results
in this section by using the parameters shown in Table III.
Memory is allocated by the main thread. This is sufficient
because memory access are uniform in BG/Q. The setting of
zonesPerPart equal to 100 stems from the original CLOMP
and mimics the loop sizes of many multiphysics applica-
tions [21]. The chosen computation pattern is divide. For each
zone update 8 extra divide calculations are executed. The

environment variable OMP_WAIT_POLICY has been set to
ACTIVE for all runs.

numParts 64
zonesPerPart 100

zoneSize 128
zone alignment 128

scatter 3
flopScale 1
timeScale 100

Zones per Part 100
Total Zones 6400

Zone Calc Stride 1
Extra Zone Calcs 8

Zone Calc Flag -DDIVIDE CALC
Zone Calc Formula ((1.0/(x+2.0))-0.5)

TABLE III
PARAMETERS FOR CLOMP-TM.

Figure 2 shows the speedup of the different synchronization
mechanisms for updating one memory location. In case of high
contention, generated by the Random and firstParts memory
access pattern, Small Atomic is the method of choice for
synchronization.

Large TM outperforms Large Critical as can be seen for
both no and high contention cases of Figure 3. Thus, for
critical sections with more than one memory update, TM is
the preferred method. The Huge TM with 100 times the size
of Large TM performs excellent in case of no contention (cf.
Figure 4). Further experiments with higher contention cases
reveal that this speedup is very fragile. These experiments
demonstrate (and the TM statistics confirm) that longer trans-
actions are more susceptible to contention.

B. Conflict Probability

The performance of any TM application depends on the
number of conflicts it has to encounter that lead to potentially
costly rollbacks. We study this issue by extending CLOMP-
TM with a special mode that allows to transition between scat-
ter modes. Thus, a parameter has been added that defines the
number of intended conflicts for this run. For our experiments
this parameter can be computed from a conflict probability (cp)
according to the following equation: total zones∗scatter∗cp.
Updates are counted as intended conflicts and performed inside
a large transaction. Note, however, not all of these intended
conflicts lead to an actual conflict and some conflicts can cause
multiple rollbacks.

Figure 5 a) illustrates the impact of the number of retries
on the achievable speedup. From this figure we can clearly
see that a linear increase of the conflict probability (shown
as intended conflicts) leads to an exponential decrease of the
speedup. In this experiment the zone size is set to 128 bytes.
In case it is smaller (e.g., 64 or 32 bytes) conflicts may be
falsely detected because two zones are mapped to the same
cache line. These False Positives are eliminated when the zone
size equals the size of the L2 cache line.



(a) Speedup with None. (b) Speedup with Random.

Fig. 2. CLOMP-TM performing 8 divide operations per zone update with small critical sections.

(a) Speedup with None. (b) Speedup with Random.

Fig. 3. CLOMP-TM performing 8 divide operations per zone update with large critical sections.

C. Tuning the BG/Q TM Runtime Environment

The TM runtime system in BG/Q provides a series of
knobs that can be used to fine tune the performance of HTM
applications. These knobs are available to the user through
environment variables that can be set before the code’s execu-
tion. The most significant one is TM_MAX_NUM_ROLLBACK
(RBM), which controls the number of times a transaction can
be aborted and rolled back before the runtime gives up on
it and executes it in irrevocable mode, i.e., the transaction is
executed non-transactional under a global lock so that other
transactions can not interfere. The TM runtime will further
mark this transaction and execute it in irrevocable mode right
away on a subsequent execution.

Figure 5 shows results with 32 threads and RBM set to
1 and 10. In Figure 5 a) RBM is set to 10 and shows a
significant higher number of retries than Figure 5 b) (RBM
1). The relative number of serialized transactions is higher
for RBM=1. Both observations are due to the RBM setting

because a smaller RBM value serializes after less retries. In
terms of speedup RBM 10 outperforms RBM 1 because of
the less frequent serialization. The effects of the adaptive TM
runtime on the performance need a closer investigation.

Figure 6 demonstrates the influence of RBM1, RBM 5 and
RBM 10 on the achievable speedup with TM. For all con-
tention levels and Small TM the differences between RBM 5
and RBM 10 are insignificant. For higher contention and Large
TM, RBM 10 has slight advantages over RBM 5. RBM 1 shows
the worst performance for the presented level of contention.

An second important parameter for TM is the scrub rate. It
triggers a garbage collection for TM SpecIds. SpecIds mark
entries in the cache as belonging to the same or different
transactions. Figure 7 shows that varying the scrub rate has
a large impact. For our benchmark with a lot of transactions
and short intervals between these, a scrub rate of 6 shows the
best performance.



Fig. 5. Influence of TM_MAX_NUM_ROLLBACK (RBM) on retries/speedup. Run with clomp-tm-bgq-divide1 -1 1 x1 d6144 128
firstZone,cp,randFirstZone 3 1 0 6 100.

Fig. 6. Studying the influence of setting TM_MAX_NUM_ROLLBACK
with CLOMP-TM and changing the level of contention.
Run with clomp-tm-bgq-divide4 32 1 256 128 256
stride1,cp,stride1%/2 10 1 0 6 100.

D. CLOMP-TM with mixed Scatter Modes

So far, we have only discussed settings with a single scatter
mode at a time (cf. Table I). This leads to a fixed TM ap-
plication behavior that defines the contention between threads
for the whole program run. As a result, TM either performs
excellent because of the lack of conflicts (e.g., scatter mode
None) or suffers from the frequent retries (e.g., firstParts). This
model, while useful to get point results, is too restricted to
model all scientific workloads and expose the potential of TM.
CLOMP-TM therefore additionally supports an two different
scatter modes that execute concurrently. It uses a parameter
to define how often the second scatter mode will be used for
updates. Increasing this parameter leads to more updates with
the second scatter mode.

Fig. 7. Influence of the scrub rate for SpecIds on performance with
64 threads. Run with clomp-tm-bgq-divide1 -1 1 64 100 128
InPart,10,firstParts 10 1 0 sr 100

E. Using TM in the Context of MPI Applications

Up to this point, we focused on single node experiments
using OpenMP as the method for threading. To work across
nodes and hence to exploit the vast parallelism available in
the planned BG/Q system, scientific applications will require
additional parallelization with MPI in order to exploit its
compute power. Consequently, it is important to understand
the interplay between OpenMP threading with TM support
and having multiple MPI tasks on the node.

In the following we study the side effects of running
multiple MPI tasks, each executing CLOMP-TM, on one node.
Our goals are:

1) to verify the robustness of the previously presented
results,

2) identify bottlenecks due to the sharing of architectural
resources,



Fig. 8. CLOMP-TM with MPI performing 8 divide operations with a stride of 4 per zone update with no and high contention. Run with
clomp-tm-mpi-bgq-divide4 -1 1 (1024/taskno) 128 256 stride1,cp,stride1%/2 10 1 0 6 100. cp is set to 16

taskno
for the left

and 1.12∗106
taskno

for the figure on the right.

3) and determine a fitting MPI task to OpenMP thread ratio.

Similar to the previously published CLOMPI [21], we
designed CLOMP-TM to execute multiple instances of its core
functionality, synchronized by MPI operations. Besides calls
to init and finalize MPI, we inserted MPI Barriers. These
barriers are placed such that all MPI tasks execute the code
for the same synchronization primitive. An example for the
placement of the MPI Barrier calls is shown in Listing 1. To
execute in this lock step fashion guarantees that all MPI tasks
execute the code for the same synchronization primitive. As
a consequence, we can directly control the contention on the
architectural resources that are necessary for synchronization
(such as the L2 cache). Thus, the methodology proivides a
clear and controllable mechanism to study the architectural
resources needed by individual synchronization primitives.

MPI_Barrier (MPI_COMM_WORLD ) ;
g e t t i m e s t a m p (& b e s t c a s e s t a r t t s ) ;
d o b e s t c a s e v e r s i o n ( ) ;
g e t t i m e s t a m p (& b e s t c a s e e n d t s ) ;
MPI_Barrier (MPI_COMM_WORLD ) ;

Listing 1. Use of MPI barriers for CLOMP-TM with MPI.

Figure 8 illustrates the performance characteristics of
CLOMP-TM with MPI and small as well as large critical
sections. The experiments are carried out as strong scaling
experiments, i.e., the amount of work is constant for all task
counts. We achieve this by dividing the number of parts
(initially 1024) by the number of MPI tasks. The number
of updates in the second scatter mode is also divided by the
number of MPI tasks. All MPI tasks execute as many threads
as possible without oversubscribing the node (e.g., 1 MPI task
executes 64 threads).

First, Figure IV-E a) shows the average speedup of the
threads in each MPI task multiplied by the number of MPI
tasks on the y-axis. The number of MPI tasks is plotted on the
x-axis. In this case with extremely low contention, Large TM
performs almost as well as Small Atomic. The surprise is that

for large task counts, Small and Large Critical perform better
than Small TM. Especially Small Critical, that is protecting
one memory location, has been optimized heavily in the new
BG/Q L2 cache and is now a strong alternative for TM if
the granularity in the codes allows for this. With increased
contention, as shown in Figure IV-E, Large TM and Small TM
perform a little worse than before but the overall trend with
respect to the critical section is still the same. Large Critical
benefits from the smaller thread numbers at higher task counts
because the cost for serialization is reduced.

F. Finding a Competitive Task to Thread Ratio

The architecture of one BG/Q node features 16 compute
cores each equipped with 4-way hyper-threading. As demon-
strated in earlier papers [21], an OpenMP barrier has a higher
overhead for higher thread counts. Thus, a hybrid paralleliza-
tion with MPI and OpenMP may achieve higher performance
than an OpenMP only implementation. In order to be able to
compare results of OpenMP and hybrid parallelization, we use
a simple metric. For the hybrid case, we multiply the reported
OpenMP speedup with the number of MPI tasks. Figure 8
shows that the Bestcase across MPI tasks is stable. Depending
on the properties of the application the best synchronization
primitive varies. Across all tested memory access patterns
and MPI tasks configurations, the OpenMP version with the
highest possible thread count performs best. While this is not
surprising since the BG/Q architectures requires at least two
threads per core to be able to reach full issue bandwidth, it
is nevertheless an important first insight that we gain from
this experiment. For architectures with hyper-threading, the
additional HW threads are often turned off because they
lead to a slowdown. For the BG/Q architecture running the
CLOMP-TM (with MPI) benchmark this is not the case. Every
thread (even beyond the minimum of two needed for full
issue bandwidth) contributes an important part of the reported
performance. For the executed strong scaling experiments,



however, the results of finding a preferable task to thread ration
are inconclusive. All tested ratio perform well and differences
are extremely small.

The synchronization primitive with the best performance
varies. In all high contention cases Small Atomic performs
best. For cases with little to no contention Large TM may per-
form almost as good as Small Atomic. The large transactions
benefit from the optimistic concurrency and the overhead for
setting up the transaction is amortized due to the long trans-
action size. Unfortunately, this effect is limited to scenarios
where expensive roll back operations are infrequent.

V. LESSONS LEARNED

The experiments described above gives us a clear char-
acterization of HTM on BG/Q and provide the necessary
information to understand which kind of applications can
benefit from HTW. In the following we summarize these
findings in set of best practice guidelines that will help code
developers on BG/Q decide if and how to best exploit HTM.

The identified preferable code properties for TM are:
• critical section should have low contention so that con-

flicts are unlikely,
• critical sections should access more than one memory

location (preferably in the range of 10 to 20) so that
omp atomic is not applicable and TM’s property of
providing atomicity for updates of multiple memory
locations is valuable,

• high computation to synchronization ratio so that com-
putation can mask the overheads of synchronization.

For synchronization with OpenMP, both the size of the code
region that needs to be executed atomically and the potential
conflict rate play an important role:

• For code regions that only require atomic updates using
one instruction, omp atomic shows the best performance,
since it can be mapped to the efficient atomic instructions
implemented in the BG/Q L2 cache.

• For larger critical sections with low to moderate con-
tention and conflict potential (<< 1 rollback per trans-
action), TM using the tm atomic primitive is beneficial,
since the costs of conflicting transactions are amortized
by avoiding serialization.

• In case of very high contention (> 1 rollback per
transaction) and small critical sections, omp critical also
outperforms TM, since TM conflicts and rollbacks start
dominating leading to higher overhead.

• For applications that are not utilizing the full memory
bandwidth with a high transactional execution time and
short times in between transactions, setting the scrub rate
to 6 yields better performance.

These findings complement a previous study on using Soft-
ware Transactional Memory for scientific codes using a dif-
ferent and more specific setup [24]. Additionally, researchers
already identified codes that match the criteria from above and
are expected to benefit from TM [25], although also this work
was limited to STM methods and has up to now not been

verified on a HTM system, and thus no performance results
have been published either. Our current recommendations
verify the applicability of these previous preliminary studies
to HTM, extend them by adding tradeoffs offered by the
new performance knobs found in IBM’s HTM solution, and
generalize them to a more comprehensive guide for application
developers.

VI. APPLICATION CASE STUDIES

A. MCB: A Proxy Application for Monte Carlo Simulations

In this section we apply the best practices from the previous
section to a benchmark closely representing a real world
application. The Monte Carlo Benchmark (MCB) models a
Monte Carlo simulation, a popular technique for physics
simulations. In contrast to classical simulation approaches,
Monte Carlo simulations do not compute their result explicitly,
but instead adaptively sample the simulation domain and
execute individual simulations for each sample. This process
is repeated until the probability of a result can be quantified.

The initial MCB code was already parallelized with MPI
and OpenMP. The original version uses omp critical and omp
atomic to synchronize OpenMP threads (denoted as Critical &
Atomic in the following). As a first, naive TM implementation,
referred to as TM naive, we replace all critical sections with
transactions and set the TM environment variables to their
default for TM simple and Critical & Atomic.

Additionally, we create an optimized version, called TM
opt, following the lessons in the previous section. In TM
opt we use a hybrid strategy matching the characteristics for
each synchronization construct: synchronizations that involve
only one instruction use omp atomic, while all omp critical
constructs are replaced with tm atomic.

Table VI-A shows the results of the experiments with one
MPI task and 64 threads in a strong scaling experiment with
5 ∗ 106 particles. Each value is an average of samples per
second over 30 runs and normalized to baseline: samples per
second with one MPI task and one thread. TM opt performs
very well with a speedup over baseline with 27.45, which
is slightly better than the original version but comes with
reduced code complexity and programmer effort. The result of
TM naive demonstrates that the lessons learned in this paper
are essential to getting good performance. Further experiments
reveal a limited potential for optimizing the synchronization
of threads in MCB. Commenting out all occurrences of omp
atomic and omp critical (and ignoring the fact that this
results in wrong answers for the simulation) yields ≈ 5%
perfomance improvement.

Code version Critical & Atomic TM naive TM opt
Speedup 27.57 20.06 27.45

TABLE IV
MCB WITH ONE MPI TASKS AND 64 THREADS (STRONGSCALING) –

SPEEDUP OVER BASELINE.



Fig. 9. fluidanimate with coarse grain and fine grain locks as well as simple and optimized transactions.

B. Fluidanimate from the PARSEC suite

In addition to the Monte Carlo Benchmark, we use the appli-
cation fluidanimate from the PARSEC benchmark suite [26].
fluidanimate implements a Smoothed Particle Hydrodynamics
(SPH) method to animate fluid dynamics. To include it in
the PARSEC suite, the application has been parallelized with
Pthreads and fine grain locking. Under the assumption that
particles can not travel more than one cell in one time step, this
parallelization uses an array of locks to protect the boundaries.
An if-statement checks whether a lock needs to be taken. This
synchronization pattern is rather sophisticated and exceeds
the complexity of a single global lock by far. Because the
programming complexity of TM can be compared with a
single global lock, we added two versions: one with a coarse
grain lock (cgl) and a simple TM version (TM simple) that
replaced all lock acquire and lock release operations (that
occur in three code segments) with a transaction.

Then, we apply the lessons learned from Section V. First,
we enlarge all three transactions by removing the if-statement
and changing the two outer loops to be inner loops. More
measurements reveal that for the third transaction having three
nested inner loops is best. Further, we reduce the scrub rate
to 6 so that SpecIds from the TM hardware will be reclaimed
faster. All measures combined deliver the performance shown
for TM opt in Figure 9. For the small input data set (simlarge)
and medium thread counts, TM opt outperforms the fine grain
locking (cf. Figure 9 a)). For the larger input data set (native)
the lessons learned are necessary to increase the scalability
with TM and come into sight of fine grain locking (cf. Figure 9
b)). The execution with native input data sets increases the
input data size and the frame rate simultaneously. We were
interested to know which of these parameters influences the
performance in favor of TM. The result is that the smaller
input data favors TM whereas the frame rate simply serves
as a multiplier of the observed performance. Further, this
experiment reveals that the BG/Q architecture is extremely

stable with very little noise. The observed performance of
the synchronization patterns shows that even with Hardware
Transactional Memory, expert-level use of lightweight effi-
cient fine-grained locks will be hard to beat. Moreover, we
identified the need to research tools with support for TM that
enable an in-depth understanding of the TM behavior and the
causes for performance degradation. From a programmability
perspective, employing TM is as simple as using a single
global lock. For this experiment, even the unoptimized TM
version outperforms the single global lock in terms of speedup
and scalability. Therefore TM takes an important step towards
simplifying shared memory programming.

VII. CONCLUSIONS

In this paper we evaluated BG/Q’s TM hardware from
the perspective of an application developer. We introduced,
CLOMP-TM, a benchmark designed to represent scientific
applications, and applied it to benchmark transactions against
traditional synchronization primitives, such as omp atomic and
omp critical. We then extended CLOMP-TM with MPI to
mimic hybrid parallelization with OpenMP and MPI. Addi-
tionally, we studied the impact of environment variables on the
performance. Finally, we condensed the findings into a set of
best practices and applied them to a Monte Carlo Benchmark
that closely resembles real world applications. An optimized
TM version of MCB with 64 threads achieved a speedup of
27.45 over the baseline. Further, an optimized TM version
of the Smoothed Particle Hydrodynamics method from the
PARSEC suite significantly outperformed a simple TM version
as well as a coarse grain lock and verified the usefulness of
the best practices.
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