THERMODYNAMICS OF LOW-TEMPERATURE (700-850{degree}C) HOT CORROSION

PDF Version Also Available for Download.

Description

Existing phase diagrams in the systems Na{sub 2}SO{sub 4} - MSO}{sub 4} (M=Ni, Co) and Na{sub 2}SO{sub 4} - M{sub 2}(SO{sub 4}){sub 3} (M=Al, Fe, Cr) have been used to calculate the thermodynamic properties of the molten sulfate systems. The calculated thermodynamic data show satisfactory agreement with most of the available experimental observations. The calculations have shown that the activity of Al{sub 2}(SO{sub 4}){sub 3} and Fe{sub 2}(SO{sub 4}){sub 3} in the melt can be lowered to such an extent that liquid sulfate solutions can be formed at P{sub SO{sub 3}} levels that are prevalent in marine gas turbine operations, ... continued below

Physical Description

68 p.

Creation Information

Misra, A. K.; Whittle, D. P. & Worrell, W. L. September 1, 1980.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Existing phase diagrams in the systems Na{sub 2}SO{sub 4} - MSO}{sub 4} (M=Ni, Co) and Na{sub 2}SO{sub 4} - M{sub 2}(SO{sub 4}){sub 3} (M=Al, Fe, Cr) have been used to calculate the thermodynamic properties of the molten sulfate systems. The calculated thermodynamic data show satisfactory agreement with most of the available experimental observations. The calculations have shown that the activity of Al{sub 2}(SO{sub 4}){sub 3} and Fe{sub 2}(SO{sub 4}){sub 3} in the melt can be lowered to such an extent that liquid sulfate solutions can be formed at P{sub SO{sub 3}} levels that are prevalent in marine gas turbine operations, and this has been explained on the basis of complex formation in the melt. Thermodynamic analysis of the interaction of the Na{sub 2}SO{sub 4} - MSO{sub 4} (M=Co, Ni) melt with protective oxides Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} has demonstrated the vulnerability of Al-containing alloys to hot corrosion attack.

Physical Description

68 p.

Subjects

STI Subject Categories

Source

  • Journal Name: Journal of the Electrochemical Society

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBL-11495
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 1076526
  • Archival Resource Key: ark:/67531/metadc838340

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1980

Added to The UNT Digital Library

  • May 19, 2016, 9:45 a.m.

Description Last Updated

  • June 16, 2016, 12:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Misra, A. K.; Whittle, D. P. & Worrell, W. L. THERMODYNAMICS OF LOW-TEMPERATURE (700-850{degree}C) HOT CORROSION, article, September 1, 1980; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc838340/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.