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X-RAY AND NEUTRON DIFFUSE SCATTERING 

MEASUREMENTS 

INTRODUCTION 

Diffuse scattering from crystalline solid solutions is used to 
measure local compositional order among the atoms, dynamic 
displacements (phonons), and mean species-dependent static 
displacements. It can also reveal defect densities and the 
presence of second phases, vacancies and insterstitials. In locally 
ordered alloys, fluctuations of composition and interatomic 
distances break the long-range symmetry of the crystal within 
local regions and contribute to the total energy of the alloy 
(Zunger, 1994). Local ordering can be a precursor to a lower 
temperature equilibrium structure that may be unattainable 
because of slow atomic diffusion. Discussions of the usefulness 
of local chemical and displacive correlations within alloy theory 
are given in Chapter 2 (see PREDICTION OF PHASE DIAGRAMS and 
COMPUTATION OF DIFFUSE INTENSITIES IN ALLOYS). In addition to 
local atomic correlations, neutron diffuse scattering methods can 
be used to study the local short-range correlations of the 
magnetic moments. Interstitial defects and vacancies  as opposed 
to the substitutional disorder defects described above, also 
disrupt the long-range periodicity of a crystalline material and 
give rise to diffusely scattered x rays, neutrons (Larson 2009), 
and electrons (electron scattering is not covered in this unit; 
Schweika, 1998). 

Use of tunable synchrotron radiation to change the x-ray 
scattering contrast between elements has greatly improved the 
measurement of bond distances between the three types of atom 
pairs found in crystalline binary alloys (Ice et al., 1992). The 
estimated standard deviation of the first-order (first moment) 
mean static displacements from this technique approaches 
±0.001 Å (0.0001 nm), which is an order of magnitude more 
precise than results obtained with extended x-ray absorption fine 
structure (EXAFS; XAFS SPECTROSCOPY) measurements. In 
addition, both the radial and tangential displacements can be 
reliably determined to five or more near-neighbor shells (Jiang et 
al., 1996). In a binary A-B alloy, the number of A or B near-
neighbor atoms to, for example, an A atom can be determined to 
even less than 1 atom in 100. The second moment of the static 
displacements, which gives rise to Huang scattering, is also 
measurable (Schweika, 1998). Measurements of diffuse 
scattering can also reveal the tensorial displacements associated 
with substitutional and interstitial defects. This information can 
be used to model the statistical arrangements of the atoms on a 
local scale. 

An example of chemical local ordering is given in Figure 1, 
where the probability 

AB
lmnP  of finding a B atom out to the sixth 

lmn shell around an A atom goes from a preference for A atoms 
(clustering) to a preference for B atoms (short-range order) for a 
body-centered cubic (bcc) A50B50 alloy. The real-space 
representation of the atom positions is derived from a Monte 
Carlo simulation of the 

AB
lmnP  values (Gehlen and Cohen, 1965). 

The intensity distribution in reciprocal space is then calculated 
(Robertson et al., 1998). In the upper panel, the probability of 
finding a B atom as the first neighbor to an A atom is 40% (10% 
clustering; 

AB
111P  = 0.4). Atoms are located on a (110) plane so 

that first-neighbor pairs are shown. The middle panel depicts the 
random alloy where 

AB
lmnP  = −0.5 for the first six shells ( lmn ) .  

The lower panel shows the case where 
AB

lmnP  = 0.6 (a preference 
for unlike atom pairs). The intensity distribution in the (100) 
plane of reciprocal space (with the fundamental Bragg maxima 
removed) is shown in the right column of Figure 1. Note that a 
preference for like nearest neighbors causes the scattering to be 
centered near the fundamental Bragg maxima, such as at the 
origin, 0,0. A preference for unlike first-neighbor pairs causes 
the diffuse scattering to peak at the superlattice reflections for an 
ordered structure. Models, such as those shown in Figure 1, are 
used to understand materials properties and their response to heat 
treatment, mechanical deformation, and magnetic fields. These 
local configurations are useful to test advances in theoretical 
models of crystalline alloys as discussed in COMPUTATION OF 

DIFFUSE INTENSITIES IN ALLOYS. 
The diffraction pattern from a crystalline material with 

perfect periodicity, such as nearly perfect single-crystal Si, 
consists of sharp Bragg maxima associated with long-range 
periodicity. With Bragg’s law, we can determine the size of the 

average unit cell. Because of thermal motion, atom positions are 
smeared and Bragg maxima are reduced. In alloys with different 
atomic sizes, static displacements will also reduce Bragg 
intensity. The intensity, which is lost from the Bragg reflections, 
is diffusely distributed. Shown schematically in Figure 2A is a 
solid solution of two kinds of atoms displaced from the sites of 
the average lattice in such a way that the average plane of atoms 
is regularly spaced with a constant “d” spacing existing over 
hundreds of planes. As shown schematically in Figure 2B, there 
is weak diffuse scattering but no broadening of the fundamental 
Bragg reflections, as would be the case for more extended 
defects such as stacking faults, high dislocation densities, 
displacive transformations, and incoherent precipitates, among 
others (Warren, 1969). In cases where the fundamental Bragg 
reflections are broadened, our uncertainty in the size of the 
average lattice increases and the precision of the measured pair 
separation is reduced. 

This unit will concentrate on the use of diffuse x-ray and 
neutron scattering from single crystals to measure local chemical 
correlations and chemically specific static displacements. 
Particular emphasis will be placed on the use of resonant 
(anomalous) x-ray techniques to extract information on atomic 
size from binary solid solutions with short-range order. Here the 
alloys have a well-defined average lattice but have local 
fluctuations in composition and displacements from the average 
lattice. In stoichiometric crystals with long-range periodicity, 
sharp superlattice Bragg reflections appear. If the compositional 
order is correlated only over short distances, the superlattice 
reflections are so broadened that measurements throughout a 
symmetry related volume in reciprocal space are required to 
determine their distributions. In addition, the displacement of the 
atom pairs (e.g., the A-A, A-B, and B-B pairs in a binary alloy) 
from the sites of the average lattice because of different atom 
sizes also contributes to the distribution of this diffuse scattering. 
By separating this diffuse intensity into its component parts—
that associated with the chemical preference for A-A, A-B, and 
B-B pairs for the various near-neighbor shells and that associated 
with the static and dynamic displacements of the atoms from the 
sites of the average lattice—we are able to recover pair 
correlation probabilities for the three kinds of pairs in a binary 
alloy. The interpretation of diffuse scattering associated with 
dynamic displacements of atoms from their average crystal sites 
will be discussed only briefly in this unit. 

Competitive and Related Techniques 

Other techniques that measure local chemical order and bond 
distances exist. In EXAFS, outgoing photoejected electrons are 
scattered by the surrounding near neighbors (most from first and 
to a lesser extent from second nearest neighbors). This creates 
modulations of the x-ray absorption cross-section, typically 
extending for ~1000 eV above the edge, and gives information 
about both local chemical order and bond distances (see XAFS 
SPECTROSCOPY for details). Usually, the phase and amplitudes 
for the interference of the photo-ejected electrons must be 
extracted from model systems, which necessitates measurements 
on intermetallic (ordered) compounds of known bond distances 
and neighboring atoms. The choice of an incident x-ray energy 
specific to an elemental absorption edge makes EXAFS 
information specific to that elemental constituent. For an alloy of 
A and B atoms, the EXAFS for an absorption edge of an A atom 
would be sensitive to the A and B atoms neighboring the A 
atoms. Separation of the signal into A-A and B-B pairs is 
typically done by using dilute alloys containing 2 at.% or less of 
the constituent of interest (e.g., the A atoms). The EXAFS signal 
is then interpreted as arising from the predominately B 
neighborhood of an A atom, and analyzed in terms of the number 
of B first and second neighbors and their bond distances from the 
A atoms. Claims for the accuracy of the EXAFS method vary 
between 0.01 and 0.02 Å for bond distance and ~10% for the 
first shell coordination number (number of atoms in the first 
shell; Scheuer and Lengeler, 1991). For crystalline solid-solution 
alloys, the crystal structure precisely determines the number of 
neighbors in each shell but not the kinds for nondilute alloys. For 
most alloys, the precision achieved with EXAFS is inadequate to 
determine the deviations of the interatomic spacings from the 
average lattice. Whenever EXAFS measurements are applicable 
and of sufficient precision to determine the information of 
interest, the ease and simplicity of this experiment compared 
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with three-dimensional diffuse scattering measurements makes it 
an attractive tool. An EXAFS study of concentrated Au-Ni alloys 
revealed the kind of information available (Renaud et al., 1988). 

Mössbauer spectroscopy is another method for obtaining 
near-neighbor information (MOSSBAUER SPECTROMETRY). 
Measurements of hyperfine field splitting caused by changes in 
the electric field gradient or magnetic field because of the 
different charge or magnetic states of the nuclear environments 
give information about the near-neighbor environments. 
Different chemical and magnetic environments of the nucleus 
produce different hyperfine structure, which is interpreted as a 
measure of the different chemical environments typical for first 
and second neighbors. The quantitative interpretation of 
Mössbauer spectra in terms of local order and bond distances is 
often ambiguous. The use of Mössbauer spectroscopy is limited 
to those few alloys where at least one of the constituents is a 
Mössbauer-active isotope. This spectroscopy is complimentary 
but does not compete with diffuse scattering measurements as a 
direct method for obtaining detailed information about near-
neighbor chemical environments and bond distances (Drijver et 
al., 1977; Pierron-Bohnes et al., 1983). 

Imaging techniques with electrons, such as Z contrast 
microscopy and other high-resolution electron microscopy 
techniques (see Chapter 11), do not yet have the resolution for 
measuring the small displacements associated with crystalline 
solid solutions heterogeneity, but can be used to study the 
displacements associated with interfaces and surfaces. Imaging 
for high-resolution microscopy requires a thin sample about a 
dozen or more unit cells thick with identical atom occupations, 
and precludes obtaining information about short-range order and 
bond distances. Electron diffuse scattering measurements are 
difficult to record in absolute units and to separate from 
contributions to the diffuse background caused by straggling 
energy loss processes. Electron techniques provide extremely 
useful information on more extended defects as discussed in 
Chapter 11. 

Field ion microscopy uses He or Ne gas atoms to image the 
small radius tip of the sample. Atom probes provide direct 
imaging of atom positions. Atoms are pulled from a small radius 
tip of the sample by an applied voltage and mass analyzed 
through a small opening. The position of the atom can be 
localized to ~5 Å. Information on the species of an atom and its 
neighbors can be recovered. Reports of successful analysis of 
concentration waves and clusters in phase separating alloys have 
occurred where strongly enriched clusters of like atoms are as 
small as 5 Å in diameter (Miller et al., 1996). However, 
information on small displacements cannot be obtained with 
atom probes. Scanning tunneling (see SCANNING TUNNELING 

MICROSCOPY) and atomic force microscopy can distinguish 
between the kinds of atoms on a surface and reveal their relative 
positions. 

PRINCIPLES OF THE METHOD 

In this section, we formulate the diffraction theory of diffuse 
scattering in a way that minimizes assumptions and maximizes 
the information obtained from a diffraction pattern without 
recourse to models. This approach can be extended with various 
theories and models for interpretation of the recovered 
information. Measurements of diffusely scattered radiation can 
reveal the kinds and number of defects. Since different defects 
give different signatures in diffuse scattering, separation of these 
signatures can simplify recovery of the phenomenological 
parameters describing the defect. 

Availability of intense and tunable synchrotron x-ray sources, 
which allow the selection of x-ray energies near absorption 
edges, permits the use of resonant scattering techniques to 
separate the contribution to the diffuse scattering from different 
kinds of pairs (e.g., the A-A, A-B, and B-B pairs of a binary 
alloy). Near an x-ray K absorption edge, the x-ray scattering 
factor of an atom can change by ~8 electron units (eu) and 
allows for scattering contrast control between atoms in an alloy. 
Adjustable contrast, either through resonant (anomalous) x-ray 
scattering or through isotopic substitution for neutrons, allows 
for precision measurement of chemically specific local-
interatomic distances within the alloy. Figure 3 gives the real-
space notation used in describing the atom positions and its 

reciprocal space notations used in describing the intensity 
distribution. 

X Rays Versus Neutrons 

The choice of x rays or neutrons for a given experiment depends 
on instrumentation and source availability, the constituent 
elements of the sample, the information sought, the temperature 
of the experiment, the size of the sample, and isotopic 
availability and cost, among other considerations. Neutron 
scattering is particularly useful for measurements of low-Z 
materials, for high-temperature measurements, and for 
measurements of magnetic ordering. X-ray scattering is preferred 
for measurements of small samples, for measurement of static 
displacements, and for good momentum transfer, H, resolution. 

Chemical Order 

Recovery of the local chemical preference for atom neighbors 
has been predominately an x-ray diffuse scattering measurement, 
although x-ray and neutron measurements are complimentary. 
More than 60 systems have been studied with x rays and around 
10 systems with neutrons. The choice between x-ray and neutron 
methods often depends upon which one gives the best contrast 
between the constituent elements and which one allows the 
greatest control over contrast-isotopic substitution for contrast 
change with neutrons (Cenedese et al., 1984) or resonant 
(synonymous with dispersion and anomalous) x-ray techniques 
with x-ray energies near to absorption edge energies (Ice et al., 
1994). In general, x-ray scattering is favored by virtue of its 
better intensity and collimation, which allow for smaller samples 
and better momentum-transfer resolution. Neutron diffuse 
scattering has the advantage of discriminating against thermal 
diffuse scattering (TDS); there is a significant change in energy 
(wave-length) when neutrons are scattered by phonons (see 
PHONON STUDIES). For example, phonons in the few tens of 
millielectron volt energy range make an insignificant change in 
the energy of kiloelectron volt x rays but make a significant 
change in the ~35-meV energy of thermal neutrons, except near 
Bragg reflections. Thus, TDS of neutrons is easily rejected with 
crystal diffraction or time-of-flight techniques even at 
temperatures approaching and exceeding the Debye temperature. 
With x rays, however, TDS can be a major contribution and can 
obscure the Laue scattering. Magnetic short-range order can also 
be studied with neutrons in much the same way as the chemical 
short-range order. However, when the alloy is magnetic, extra 
effort is needed to separate the magnetic scattering from the 
nuclear scattering that gives the information on chemical pair 
correlations. 

Neutrons can be used in combination with x rays to obtain 
additional scattering contrast. The x-ray scattering factors 
increase with the atomic number of the elements (since it 
increases with the number of electrons), but neutron scattering 
cross-sections are not correlated with the atomic number as they 
are scattered from the nucleus. When an absorption edge of one 
of the elements is either too high for available x-ray energies or 
too low in energy for the reciprocal space of interest, or if 
enough different isotopes of the atomic species making up the 
alloy are not available or are too expensive, then a combination 
of both x-ray and neutron diffuse scattering measurements may 
be a way to obtain the needed contrast. A more in-depth 
discussion of the properties of neutrons is given in Chapter 13. 
Information on chemical short-range order obtained with both x 
rays and neutrons and a general discussion of their merits is 
given by Kostorz (1996). 

Local chemical order among the atoms including vacancies 
has been measured for ~70 metallic binary alloys and a few 
oxides. Only two ternary metallic systems have been measured 
in which the three independent pair probabilities between the 
three kinds of atoms have been recovered: an alloy of 
Cr21Fe56Ni23 with three different isotopic contents studied with 
neutron diffuse scattering measurements (Cenedese et al., 1984) 
and an alloy Cu47Ni29Zn34 studied with three x-ray energies 
(Hashimoto et al, 1985). 

Bond Distances 

In binary alloys, recovery of the bond distances between A-A, A-
B, and B-B pairs requires measurement of the diffuse intensity at 
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two different scattering contrasts to separate the A-A and B-B 
bond distances (as shown, later the A-B bond distance can be 
expressed as a linear combination of the other two distances to 
conserve volume). Such measurements require two matched 
samples of differing isotopic content to develop neutron contrast, 
whereas for x rays, the x-ray energy need only be changed a 
fraction of a kilovolt near an absorption edge to produce a 
significant contrast change (Ice et al., 1994). Of course, one of 
the elemental constituents of the sample needs to have an 
absorption edge energy above ~5 keV to obtain sufficient 
momentum transfer for a full separation of the thermal 
contribution. However, more limited momentum-transfer data 
can be valuable for certain applications. Thus binary solid 
solutions where both elements have atomic numbers lower than 
that of Cr (Z = 24) may require both an x-ray and a neutron 
measurement of the diffuse intensity to obtain data of sufficient 
contrast and momentum transfer. To date, there have been about 
10 publications on the recovery of bond distances. Most have 
employed diffuse x-ray scattering measurements, but some 
employed neutrons and isotopically substituted samples (Müller 
et al., 1989). 

Diffuse X-ray (Neutron) Scattering Theory 

for Crystalline Solid Solutions 

In the kinematic approximation, the elastically scattered x-ray 
(neutron) intensity in electron units per atom from an ensemble 
of atoms is given by 

 

2

2π 2π ( )*
Total( ) p p qi i

p p q

p p q

I f e f f e
• • −= =∑ ∑∑H r H r r

H  (1) 

Here fp and 
*

qf  denote the complex and complex-conjugate x-
ray atomic scattering factors (or neutron scattering lengths), p 

and q designate the lattice sites from 0 to N − 1, rp and rq are the 
atomic position vectors for those sites, and H is the momentum 
transfer or reciprocal lattice vector |H| = (2 sin θ)/λ (Fig. 3). For 
crystalline solid solutions with a well-defined long-range lattice 
(sharp Bragg reflections), the atom positions can be represented 
by r = R+δ, where R is determined from the lattice constants and 
δ is both the thermal and static displacement of the atom from 
that average lattice. Equation 1 can be separated into terms of the 
average lattice R and the local fluctuations δ, 

2π (δ δ ) 2π ( )*
Total( ) p q p qi i

p q

p q

I f f e e
• − • −=∑∑ H H R R

H  (2) 

We limit our discussion of the diffraction theory to crystalline 
binary alloys of A and B atoms with atomic concentration CA 

and CB, respectively, and with complex x-ray atomic scattering 
factors of fA and fB, (neutron scattering lengths bA and bB). 
Since an x-ray or neutron beam of even a millimeter diameter 
intercepts >1020 atoms, the double sum in Equation 2 involves 
>1021 first-neighbor atom pairs (one at p, the other at q); the sum 
over all the atoms is a statistical description, which includes all 
possible atom pairs that can be formed (i.e., A-A, A-B, B-A, B-
B; Warren, 1969). A preference for like or unlike neighboring 
pairs is introduced by the conditional probability term 

AB
pqP . 

This term is defined as the probability for finding a B atom at 
site q after having found an A atom at site p (Cowley, 1950). 
The probability for A-B pairs is CA AB

pqP , which must equal CB 
BA

pqP , the number of B-A pairs. Also, 
BB
pqP  = 1 − 

BA
pqP , 

AA
pqP  

=  1 −
AB

pqP ; CA + CB = 1. With the Warren-Cowley definition of 
the short-range order (SRO) parameter (Cowley, 1950), αpq ≡ 1 − 

AB
B/pqP C . Spatial and time averages taken over the chemically 

distinct A-A, A-B, or B-B pairs with relative atom positions p  − 
q ,  produce the total elastically and quasielastic (thermal) 
scattered intensity in electron units for a crystalline solid solution 
of two components as 

(
)

2 2π (δ δ )2 AA
Total A A B A

2π (δ δ )* BA
A B A B

22π (δ δ ) AB 2
B A B B

2π (δ δ ) 2π ( )BB

( ) ( α )

(1 α )

( α )

p q

p q

p q

p q p q

i

pq

p q

i

pq

i

pq

i i

I C C C f e

C C f f e

e C C C f

e e

• −

• −

• −

• − • −

= + 〈 〉

+ − 〈 〉

+ 〈 〉 + +

×〈 〉 ×

∑∑ H

H

H

H H R R

H

(3) 

where |f A | and | fB |  denote the absolute value or moduli of the 
complex amplitudes. 

From the theoretical development given in Appendix A, a 
complete description of the diffusely distributed intensity 
through the second moment of the displacements is given as 

1 2Diffuse SRO
( ) ( )( ) ( ) j jI II I

N N N N

= == + +
H HH H

 (4) 

where 

2SRO
A B A B 1 2 3

( )
α cosπ( )lmn

lmn

I
C C f f h l h m h n

N
= − + +∑

H
 (5) 

1 * * AA AA AA
A B 1 2 3

* * BB BB BB
B A B 1 2 3

( )
Re[ ( )][ ]

Re[ ( )][ ]

j

A x y z

x y z

I
f f f h Q h Q h Q

N

f f f h Q h Q h Q

= = − − + +

+ − + +

H

 (6) 

and 

( )

( )
( )
( )
( )
( )

22 2 AA 2 AA 2 AA
A 1 2 3

* 2 AB 2 AB 2 AB
A B 1 2 3

2 2 BB 2 BB 2 BB
B 1 2 3

2 AA AA AA
A 1 2 1 3 2 3

* AB AB AB
A B 1 2 1 3 2 3

2 BB BB BB
B 1 2 1 3 2 3

( ) j

X Y Z

X Y Z

X Y Z

XY XZ YZ

XY XZ YZ

XY XZ YZ

I
f h R h R h R

N

f f h R h R h R

f h R h R h R

f h h S h h S h h S

f f h h S h h S h h S

f h h S h h S h h S

= = + +

+ + +

+ + +

+ + +

+ + +

+ + +

H

 (7) 

Here the individual terms are defined in Appendix A. As 
illustrated in Equations 4, 5, 6, and 7, local chemical order 
(Warren-Cowley α’s) can be recovered from a crystalline binary 
alloy with a single contrast measurement of the diffuse scattering 
distribution, provided the displacement contributions are 
negligible. This was the early practice until a series of papers 
used symmetry relationships among the various terms to remove 
the I(H) j = 1  term in two dimensions (Borie and Sparks, 1964), in 
three dimensions (Sparks and Borie, 1965), and to second 
moment in all three dimensions: I(H)SRO, I(H)j=1, I( H ) j = 2  

(Borie and Sparks, 1971), henceforth referred to as BS. The 
major assumption of the BS method is that the x-ray atomic 
scattering factor terms | f A  – fB |2, Re [ f A  (

* *
A Bf f− ) ], 

Re[fB(
* *

A Bf f− )], |fA|2, |fB|2, and 
*

A Bf f  of Equations 4, 5, 6, 
and 7 have a similar H dependence so that a single divisor 
renders them independent of H. With this assumption, the diffuse 
intensity can be written as a sum of periodic functions given by 
Equation 34. For neutron nuclear scattering, this assumption is 
excellent; neutron nuclear scattering cross-sections are 
independent of H, and in addition, the TDS terms C and D can 
be filtered out. Even with x rays, the BS assumption is generally 
a good approximation. For example, as shown in Figure 4 for Mo 
Kα x rays and even with widely separated elements such as Au-
Cu, a judicious choice of the divisor allows the BS method to be 
applied as a first approximation over a large range in momentum 
transfer. In this case, division by f A u ( f A u  – f C u )  =  fAu ∆f would 
be a better choice since the Au atom is the major scatterer. 
Iterative techniques to further extend the BS method have not 
been fully explored. This variation in the scattering factor terms 
with H has been proposed as a means to recover the individual 
pair displacements (Georgopoulos and Cohen, 1977). 

Equations 5, 6, and 7 are derived from the terms first given by 
BS, but with notation similar to that used by Georgopoulos and 
Cohen (1977). There are 25 Fourier series in Equations 5, 6, and 
7. For a cubic system with centrosymmetric sites, if we know 

AA
YQ , then we know 

AA
YQ  and 

AA
ZQ . Similarly, if we know 

BB
XQ , 

AA
XR , 

BB
XR , 

AB
XR , 

AA
XYS , 

BB
XYS , and 

AB
XYS , then we 

know all the Q, R, and S parameters. Thus with the addition of 
the α series, there are nine separate Fourier series for cubic 
scattering to second order. 

As described in Appendix A (Derivation of the Diffuse 
Intensity), the nine distinct correlation terms from the α, Q, R, 
and S series can be grouped into four unique H-dependent 
functions, A, B, C, D within the BS approximation. By following 
the operations given by BS, we are able to recover these unique 
H dependent functions and from these the nine distinct 
correlation terms. For a binary cubic alloy, one x-ray map is 
sufficient to recover A, B, C, and D and from A(h1h2h3), the 

Page 4 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

Warren-Cowley α’s. Measurements at two x-ray energies with 
sufficient contrast are required to separate the A-A and B-B pair 
contributions to the B(h1h2h3) terms, and three x-ray energies 
for the A-A, A-B, and B-B displacements given in Equation 29 
and contained in the terms C and D of Equation 34. 

In an effort to overcome the assumption of H independence 
for the x-ray atomic scattering factor terms and to use that 
information to separate the different pair contributions, 
Georgopoulos and Cohen (1977), henceforth GC, included the 
variation of the x-ray scattering factors in a large least-squares 
program. Based on a suggestion by Tibballs (1975), GC used the 
H dependence of the three different x-ray scattering factor terms 
to separate the first moment of the displacements for the A-A, A-
B, and B-B pairs. Results from GC’s error analysis (which 
included statistical, roundoff, x-ray scattering factors, sample 
roughness, and extraneous backgrounds) showed that errors in 
the x-ray atomic scattering factors had the largest effect, 
particularly on the Q terms. They concluded, based on an error 
analysis of the BS method by Gragg et al. (1973), that the errors 
in the GC method were no worse than for the BS method and 
provided correct directions for the first moment displacements. 

Improvements in the GC method, with the use of Mo Kα  x rays 
to obtain more data and the use of a Householder transformation 
to avoid matrix inversion and stabilization with ridge-regression 
techniques, still resulted in unacceptably large errors on the 
values of the R and S parameters (Wu et al., 1983). To date, 
there have been no reported values for the terms R and S that are 
deemed reliable. However, the Warren-Cowley α’s are found to 
have typical errors of ~10% or less for binary alloys with a 
preference for unlike first-neighbor pairs with either the BS or 
GC analysis. For clustering systems, the BS method was 
reported to give large errors of 20% to 50% of the recovered α’s 
(Gragg et al., 1973). Smaller errors were reported on the α’s for 
clustering systems with the GC method (Wu et al., 1983). With 
increasing experience and better data from intense synchrotron 
sources, errors will be reduced for both the BS and GC methods.  

Another methodology to recover the pair correlation 
parameters uses selectable x-ray energies (Ice et al., 1992). Of 
most practical interest are the α’s and the first moment of the 
static displacements as given in Equations 27 and 28. When 
alloys contain elements that are near one another in the periodic 
table, the scattering factor term fA − fB can be made to be nearly 
zero by proper choice of x-ray energy nearby to an x-ray 
absorption edge. In this way, the intensities expressed in 
Equations 27 and 28 are made nearly zero and only that intensity 
associated with Equation 29 remains. Then, the term I( H )j=2 

can be measured with low scattering contrast between A 
and B atoms and after proper scaling, subtracted from diffuse 
scattering measurements made at other x-ray energies (selected 
to emphasize the contrast between the A and B atoms). This 
leaves only the I(H)SRO term, Equation 5, and the first moment of 
the static displacements I(H)j=1, Equation 6. Shown in Figure 5 
are the values of |fFe − fCr |

2 for x-ray energies selected for 
maximum contrast at 20 eV below the Fe K and Cr K edges. 
The near null Laue energy, or energy of minimum contrast, was 
7.6 keV. 

The major assumption in this null Laue or 3λ method is that 
the I( H ) j =2 and higher moment terms scale with x-ray Energy 
as |CAfA + CBfB|2 ,which implies that the A and B atoms have the 
same second and higher moment displacements or that the 
different elements have the same x-ray atomic scattering factors. 
This assumption is most valid for alloys of elements with 
similar atomic numbers, which have similar masses (similar 
thermal motion), atom sizes (small static displacement), and 
numbers of electrons (similar x-ray scattering factors). This 3λ 
method has been used to analyze five different alloys, Fe22.5Ni77.5 

(Ice et al., 1992), Cr47Fe53 (Reinhard et al, 1992), Cr20Ni80 
(Schönfeld et al., 1994), and Fe46.5Ni53.5 a recalculated 
Fe22.5Ni77.5 (Jiang et al., 1996), and Cu-Mn (Schonfeld 2008). An 
improvement in the null Laue method by Jiang et al. (1996) 
removed an iteration procedure to account for the residuals left 
by the fact that fA – fB was not strictly zero over the measured 
volume. The Cu-Mn study of Schonfeld found good agreement 
between the 3λ and the GS methods. 

The same techniques used for x-ray diffuse scattering 
analysis can also be applied to neutron scattering measurements. 
Neutrons have the advantage (and complication) of being 
sensitive to magnetic order as described in Appendix B. This 

sensitivity to magnetic order allows neutron measurements to 
detect and quantify local magnetic ordering but complicates 
analysis of chemical ordering. 

Error analysis of the null Laue method has been given by 
Jiang et al. (1995) and by Ice et al. (1998). The statistical 
uncertainties of the recovered parameters can be estimated by 
propagating the standard deviation ± n  of the total number of 
counts n for each data point through the nonlinear least-squares 
processing of the data. Systematic errors can be determined by 
changing the values of input variables such as the x-ray atomic 
scattering factors, backgrounds, and composition; then the data is 
reprocessed and the recovered parameters are compared. 

Because the measured pair correlation coefficients are very 
sensitive to the relative and to a lesser degree the absolute 
intensity calibration of data sets collected with varying scattering 
contrast, the addition of constraints greatly increases reliability 
and reduces uncertainties. For example, the uncertainty in 
recovered parameters due to scaling of the measured scattering 
intensities is determined as input parameters are varied Each 
time, the intensities are rescaled so that the I S R O  values are 
everywhere positive and match values at the origin of reciprocal 
space measured by small-angle scattering.   The integrated Laue 
scattering over a repeat volume in reciprocal space is also 
constrained to have an average value of C A C B | f A  − f B |2 (i.e., 
α000 = 1). These two constraints eliminate most of the systematic 
errors associated with converting the raw intensities into absolute 
units (Sparks et al., 1994). The intensities measured at three 
different energies are adjusted to within ~1% on a relative scale 
and the intensity at the origin is matched to measured values. For 
these reasons, the systematic errors for α000 are estimated at ~1%. 

For the null Laue method, errors on the recovered α’s and 
∆X’s arising from statistical and various possible systematic 
errors in the measurement and analysis of diffuse scattering data 
are given in Tables 1 and 2 for the Fe46.5Ni53.5 alloy (Jiang et al., 
1995; Ice et al., 1998). Details of the conversion to absolute 
intensity units are given elsewhere (Sparks and Borie, 1965; Ice 
et al., 1994; Warren, 1969; Reinhard et al., 1992). A previous 
assessment of the systematic errors, without the constraint of 
forcing α000 = 1 and keeping the intensity at the origin and 
fundamentals a positive match to known values, resulted in 
estimated errors approximately two to five times larger than 
those reported here (Jiang et al., 1995). Parameters necessary to 
the analysis of the data (other than well-known physical 
constants) with our best estimate of their standard deviations and 
their contributing standard deviations to the α and DX 

parameters are listed in Tables 1 and 2. From a comparison of 
theoretical and measured values, we estimate a 0.2-eu error on 
the real part of the x-ray atomic scattering factors, a 1% error in 
the P0 calibration for converting the raw intensities to absolute 
units (eus), a 1-eu error in separating the inelastic resonant 
Raman scattering (RRS; Sparks, 1974), a 0- to 1-eu H dependent 
Compton scattering error (Ice et al., 1994), and an error of ±0.3 
at.% in composition (Ice et al., 1998). Systematic errors are 
larger than the statistical errors for the first three shells. 

The asymmetric contribution of the first moment of the static 
displacements, Ij=1, Equation 13, to the diffuse intensity ISRO + 

Ij=1 for an Fe63.2Ni36.8 alloy is displayed in Figure 6. Without 
static displacements the ISRO maxima would occur at the (100) 
and (300) superlattice positions. The static atomic displacements 
for the alloy are similar to those given in Table 2. Such large 
distortions of the short-range order diffuse scattering caused by 
displacements of <0.02 Å (0.002 nm) emphasizes the sensitivity 
of this technique. With a change in the x-ray energy from 7.092 
to 8.313 keV, fNi becomes smaller than fFe. Figure 6 displays a 
reversal in the shift of the position of the diffuse scattering 
maxima. Two of these x-ray energies for the 3λ method are 
chosen to emphasize this contrast and a third nearest the null 
Laue energy for removal of the TDS. The total estimated 
standard deviation on the values of the α’s and in particular the 
∆X’s give unprecedented precision for the displacements with 
errors ±0.003 Å and less. 

PRACTICAL ASPECTS OF THE METHOD 

Local chemical order (Warren-Cowley α’s) from a crystalline 
binary alloy can be recovered with a single contrast 
measurement of the diffuse scattering distribution. Recovery of 
the two terms of the first moment of the static displacements 

AA
lmnX∆  and 

BB
lmnX∆  requires two measurements of 
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sufficiently different contrast in fA∆f* and fB∆f* to separate those 
two contributions (Ice et al., 1992). Scattering contrast can be 
controlled in at least three ways: (1) by selecting x-ray energies 
near to and far from an absorption edge energy (resonance or 
anomalous x-ray scattering, Ice et al., 1994); (2) by measuring 
diffuse scattering over a wide Q range where there is a 
significant change in the atomic form factors (Georgopoulos and 
Cohen, 1977); or (3) with neutrons by isotopic substitution 
(Cenedese et al, 1984). 

The measurement of weak diffuse scattering normally 
associated with local order and displacements requires careful 
attention to possible sources of diffusely distributed radiation. 
Air scatter and other extraneous scattering from sources other 
than the sample, inelastic contributions such as Compton and 
resonant Raman, surface roughness attenuation, and geometrical 
factors associated with sample tilt must be removed. These 
details are important for placing the measured diffuse scattering 
in absolute units: a necessary requirement for the recovery of the 
α’s and displacements. 

Measurement of Diffuse X-ray Scattering 

Methods for collecting diffuse x-ray scattering data from 
crystalline solid solutions have been discussed by Sparks and 
Borie (1965), Warren (1969), and Schwartz and Cohen (1987). 
As demonstrated in Equations 18 and 20, the x-ray scattering 
intensity from a solid solution alloy contains components arising 
from long-range periodicity of the crystalline lattice, correlations 
between the different atom types, and displacements of the atoms 
off the sites of the average lattice. 

Because of the average periodicity of the crystalline solid 
solution lattice, the x-ray scattering repeats periodically in 
reciprocal space. The equations for recovering the various 
components are best conditioned when the data are collected in a 
volume of reciprocal space that contains at least one repeat 
volume for the diffuse scattering (Borie and Sparks, 1971). The 
volume required depends on the significance of the displacement 
scattering. If static displacements can be ignored and thermal 
scattering is removed, the smallest repeat volume for SRO is 
sufficient. This minimum volume increases as higher-order 
displacement terms become important, but in no case exceeds 
one-fourth of the volume bounded by ∆h1 = 1, ∆h2 = 1, and ∆h3 
= 1. A conservative approach is to measure the scattered 
intensity in a volume of reciprocal space that extends from the 
origin to as far out in | H | space as possible, but contains the 
minimum repeat volume for cubic symmetry. As illustrated in 
Figure 7, the repeat volume for cubic crystals is 1/48 of the 
reciprocal space volume limited by the maximum momentum 
transfer, sin θ/λ = 1/λ.This repeat unit contains all the accessible 
information about the structure of a crystal with average cubic 
symmetry. As it takes several days to prepare for the experiment 
and its setup, actual collection of the data is not the time-limiting 
step with x rays, and as much data as possible should be 
collected in an effort to accumulate 1000 or more counts at each 
of several thousand positions. 

The various points h1, h2, h3 in reciprocal space are measured 
by orienting the sample and detector arm with a four-circle 
diffractometer. Diffuse scattering data are typically collected at 
intervals of ∆h = 0.1 in a volume of reciprocal space bounded by 
4 ≥ h1 ≥ h2 ≥ h3 ≥ 1. Regions of detailed interest are measured 
at intervals of ∆h = 0.05. There are on the order of 7000 data 
points collected for a diffuse volume at each x-ray energy. By 
measuring diffuse scattering in a bisecting geometry where 
redundancy of the three sample-orienting circles is used to 
maintain the same incident and exit angle for the radiation with 
respect to the surface, the angular dependence of the absorption 
corrections is eliminated for theoretically-smooth surfaces and 
greatly reduced for rough surfaces (Ice 1994; Chukhovskii 
2010). 

Shown in Figure 8 is the typical optical train for the 
measurement of diffuse x-ray scattering. Every effort should be 
made to ensure that the detector receives the radiation from the 
sample with the same collection efficiency regardless of the 
sample orientation. The sample needs to be replaced with a well-
calibrated standard to convert the flux incident on the sample to 
absolute units. As all scattering measurements are made for fixed 
I0 monitor counts, any changes to the optical train such as slit 
positions (excepting scatter slit) and sizes, distances, detectors, 
and changes in energy require replacing the sample with the 

scattering standard for recalibration of the incident flux against 
the I0 monitor counts. 

New challenges arise from the application of resonant 
(anomalous) x-ray scattering to the study of local order in 
crystalline solid solutions: (1) the need to work near absorption 
edges that can create large fluorescent and resonant Raman 
backgrounds, and (2) the need to know the resonant (anomalous) 
scattering factors and absorption cross-sections to ~1%, 
especially at x-ray energies near absorption edges. Background 
problems due to inelastic scattering are exacerbated. 
Experimental measurement to recover the elastic scattering from 
these inelastic contributions (Compton, fluorescence, and 
resonant Raman) requires a combination of spectroscopy and 
diffraction. 

Removal of Inelastic Scattering Backgrounds 

Photoabsorption is the dominant x-ray cross-section for elements 
with Z > 13 and x-ray energies E < 20 keV. The resultant 
fluorescence is typically orders of magnitude larger than the 
diffuse elastic scattering. Fluorescence can be removed by the 
use of an energy-sensitive detector when the incident x-ray 
energy is far enough above the photoabsorption threshold that 
the detector’s energy resolution is adequate for separation. 

Maximum change in scattering amplitude is obtained when 
measurements are made with the x-ray energy very near and then 
far from an absorption edge, as shown in Figure 9. The size of 
the f' component roughly doubles as the energy gap between the 
incident x-ray energy EI and the absorption edge EK is halved. 
Near an edge, the size of the inelastic background grows rapidly 
due to RRS (Sparks, 1974; Eisenberger et al., 1976a, b; Åberg 
and Crasemann, 1994). RRS is interpreted as the filling of a 
virtual hole by a bound electron. As with fluorescence, the x-ray 
energy spectra is distinctive with peaks corresponding to the 
filling of the virtual hole, say in the K shell, by various higher 
lying shells: K filled from L, or K filled from M shells, often 
referred to as K-L and K-M RRS. Unlike fluorescence, the energy 
of the RRS peaks shift with incident x-ray energy, and the 
energy of the nearest RRS K-L line is only a few tens of 
electronvolts from the incident x-ray energy (Åberg and 
Crasemann, 1994). This large inelastic background must either 
be removed experimentally or be calculated and subtracted. 

The resolution of a solid-state detector at ~150 eV is 
inadequate to resolve all the RRS K-M component from the 
elastic peak when excited near the threshold and can only resolve 
the Compton inelastic scattering at high scattering angles. A 
typical energy spectrum excited by 8.0-keV x rays on a 
Ni77.5Fe22.5 single crystal measured with a Si(Li) detector is 
shown in Figure 10. Near and below the Fe edge of 7.112 keV, 
the RRS K-M component cannot be resolved from the elastic 
scattering peak. The RRS K-M component can be removed by 
measuring the RRS K-L component and assuming the K-LK-M 

ratio remains constant. The Compton scattering component at 
low scattering angles is removed by using theoretical tables. 
Disadvantages to the use of solid-state detectors include the 
statistical and theoretical uncertainty of the inelastic 
contributions. Another disadvantage is the large deadtime 
imposed by the fluorescence K signal in a solid-state detector, 
which restricts the useful flux on the sample. 

Resolution on the order of 10 to 30 eV is necessary to cleanly 
separate the resonant Raman and Compton scattering from 
elastic scattering. A crystal spectrometer improves the energy 
resolution beyond that available with a solid-state detector. 
Perfect crystal spectrometers are highly inefficient compared to 
mosaic crystal spectrometers due to their smaller integrated 
reflectivity. This inefficiency is unacceptable for typical weak 
diffuse x-ray scattering. A mosaic crystal x-ray spectrometer (Ice 
and Sparks, 1990) has been found to be a more practical device. 
The advantages of a mosaic crystal spectrometer is that it is 
possible to obtain energy resolutions similar to that of a perfect 
crystal spectrometer, but with an overall angular acceptance and 
efficiency similar to those of a solid-state detector. A schematic 
is shown in Figure 11A. 

Figure 11B,C illustrates the ability of the graphite 
spectrometer to resolve Ni Kα1 from Kα2 and to resolve RRS 
from elastic scattering near the Ni K edge. Good efficiency is 
possible if the x-ray energy, E I ,  lies within a bandpass, ∆E, set 
by the crystal Bragg angle θB and the rocking curve width ∆ωR; 
∆E=∆ωRE cot θB. The diffracted beam is parafocused onto a 
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linear detector and the beam position is correlated to x-ray 
energy. The energy resolution and energy scale of the 
spectrometer are determined by varying the energy of the 
incident beam and observing the peak position of the elastic 
peak. At 8 keV, the bandpass, ∆E, of a graphite crystal with a 
0.4° full-width at half-maximum (FWHM) mosaic spread is 
~250 eV. The energy resolution is limited by the effective source 
size viewed by the energy analyzer and by imperfections in the 
crystal. Energy resolutions of 10 to 30 eV are typical with a 0.3- 
to 1.5-mm high beam in the scattering plane at the sample. 

Elastic scattering is resolved from the Compton scattering at 
higher scattering angles and K-L RRS at all angles. When an x-
ray energy is selected near but below the absorption edge of the 
higher Z element, the lower Z element will fluoresce. The mosaic 
crystal spectrometer can discriminate against this fluorescence 
and avoid deadtime from this emission. This graphite 
monochromator gives an overall decrease of 3 to 4 in counting 
efficiency compared with a solid-state detector, but provides a 
much cleaner signal with greatly reduced deadtime. 

A consideration when using a crystal spectrometer is the 
sensitivity of the energy resolution to the effective source size. 
As the source size increases, the energy resolution decreases and 
increasingly small incident beams are required for good energy 
resolution (Ice and Sparks, 1990). In addition, the effective 
source size as viewed by the crystal spectrometer depends on the 
spread of the incident beam on the sample and the angle of the 
detector axis to the sample surface. These geometrical factors are 
governed by the scattering angle, θ, and the chi tilt, χ, as shown 
in Figure 12. 

Diffuse scattering is normally collected in the bisecting mode 
as intended here. The size and shape of the beam intercept with 
the sample surface is determined by the beam height h ,  width 
w ,  and the sample angles θ and ω. As shown in the insert of 
Figure 12, the intercept is a parallelogram that extends along the 
beam direction by h/sin θ due to the beam height and w tan(ω – 

π/2)/sin θ due to the beam width. In the reference frame of the 
detector, the length of the parallelogram is projected into a root-
meansquare source height of 

2 2[2 tan(χ π / 2)cosθ]
σ

12s

w h− +
=  (8) 

The measured energy resolution for a 1.5 × l.5-mm2 beam at 
χ = 55° is plotted in Figure 12 as a function of scattering angle θ. 
Deviations from χ = 90°, where the sample normal lies in the 
scattering plane, are held to a minimum by choosing a crystal 
surface normal centered in the volume of reciprocal space to be 
measured. This reduces surface roughness corrections and 
maintains good energy resolution. Actual spectra collected 
during a diffuse scattering measurement are shown in Figure 13. 
Crystal analyzers will perform even better with third-generation 
synchrotron sources that have smaller source size and higher 
flux. Measurement of the fluorescent intensity or RRS 
throughout the volume used for the data with the identical optical 
train provides a correction for this beam spread, sample 
roughness, and alignment errors. 

A model is used to describe the energy distributions of the 
RRS shown in Figures 13A,B as observed with the graphite 
spectrometer. The model contains a truncated Lorentzian 
centered at the energy for the RRS peak (Sparks, 1974; Ice et al., 
1994). The high-energy cutoff is determined from energy 
conservation. The spectra are corrected for the graphite 
monochromator efficiency, which has a Gaussian distribution 
centered on the elastic scattering peak. The spectra are also 
corrected for the finite spectrometer resolution by convolving the 
Gaussian shape of the elastically scattered peak. The simple 
model for the resonant Raman peak shape allows for a good fit to 
the experimental resonant Raman peak observed with the 
graphite monochromator, as shown in Figures 13A,B. 

Compton scattering can be removed from the elastic scatter 
by subtracting tabulated theoretical Compton intensities. It is 
possible to experimentally separate the elastic scattering peak 
from the Compton peak except at the lowest scattering angles. A 
correction for overlap of the two peaks at small angles is 
achieved by modeling the energy dependence of the Compton 
profile. The doubly differential Compton scattering cross-section 
is calculated using the impulse approximation (IA; Carlsson et 
al., 1982; Biggs et al., 1975). The Compton scattering is 
calculated for each subshell, and energy conservation is used to 

restrict the high-energy tail from each shell. The total spectrum 
is determined by adding the contribution from each shell and 
from each atom type. This cross-section is subtracted from the 
measured data normalized to absolute electron units per atom, 
which leaves only a resonant Raman peak and an elastic 
scattering peak. The slight overlap of the Compton peak with the 
elastic peak is typically small compared with statistical 
uncertainties. 

Comparison of the calculated to the observed Compton 
spectrum can be achieved with x-ray energies sufficiently 
removed from an edge that the resonant Raman contribution is 
negligible. At 8.000 keV, the resonant Raman contribution from 
an Fe-Ni sample is centered far below the elastic peak and 
outside the spectrometer window. The IA-calculated Compton 
profiles are observed to be in qualitative agreement with the 
observed spectra, but the intensity is overestimated at low angles 
and underestimated at high angles. Particularly noticeable is a 
low-energy tail at high scattering angles. A more exact theory 
without the impulse approximation might improve matters. 

Determination of the Resonant Scattering Terms f′ and f′′ 

The widely used Cromer-Liberman tabulation (Cromer and 
Liberman, 1981; Sasaki, 1989) of f ′ and f ′′ explicitly ignores the 
presence of pre-edge unfilled bound states (bound-to-bound 
transitions), lifetime broadening of the inner-shell hole, and x-
ray absorption fine structure (XAFS; XAFS SPECTROSCOPY). 
These assumptions are justified ~100 eV below and ~1 keV 
above an edge, but not near an absorption edge (Lengeler, 1994; 
Chantier, 1994). Of particular concern is the underestimation of 
the absorption coefficient and f '  just below an absorption edge 
due to the Lorentzian hole width of an inner shell. This is 
illustrated in Figure 14. An inner-shell hole with a 2-eV 
broadened lifetime and a K edge jump ratio of 8 will increase the 
absorption cross-section by ~11% at 20 eV below the nominal 
edge and by 2% at 100 eV below the edge. Theoretical 
tabulations that ignore the lifetime broadened hole width must be 
corrected, as they underestimate the absorption coefficient (and 
f′)  just below an edge and overestimate f "  above the edge. 
Theoretical tabulations also do not include unfilled pre-edge 
states or absorption fine structure that is highly sample 
dependent. Thus, it is necessary to determine the photoelectric 
absorption cross-section, µ/ρ, experimentally for each sample, to 
calculate f "  with the optical theorem (James, 1948), and then to 
calculate f '  from f "  with the Kramers-Kronig relationship. 

The practical method of measuring the sample-specific 
absorption cross-section is to measure the relative absorption 
cross-section across the edge of each of the elements of the 
sample over a range of ~100 to 1000 eV. These data are 
normalized to theoretical data far from the edge (Kawamura and 
Fukamachi, 1978; Dreier et al., 1983; Hoyt et al., 1984). 
Measurements are made with a thin foil of the sample in 
transmission geometry. The measured value of f ′ is obtained by 
adding the difference integration to tabulated values of f ′,  as 
shown in Figure 9. 

We find f ′ is 5 to 10 times less sensitive than f "  to lifetime 
broadening of the inner-shell hole. For example, the effect of a 
2-eV lifetime on f ′ at 20 eV below the edge is only 2% and at 
−100 eV the effect is only 0.3%. The value of f′ is sensitive to 
the position of the average inflection point of the absorption 
edge. A shift of 5 eV results in a 4% to 5% change in f ′ at 20 eV 
below the edge. Errors in the absolute energy calibration are 
removed when the energy of the incident radiation is fixed to the 
same absorption edge energy as the calculation of f ′ and f ′ ′ .  

As shown in Figure 15A,B, the absorption edge energies for 
Fe and Ni in a fully ordered FeNi3 foil do not shift compared to 
the absorption edge energies of pure Fe or Ni foils. However, the 
local environment of the Fe atoms in FeNi3 are sufficiently 
different that calculated or measured values of f ′ and f "  for pure 
Fe would be in error close to the Fe absorption edge. For 
samples where there is a large charge transfer (change in 
oxidation state), this difference becomes even larger. 

Absolute Calibration of the Measured Intensities 

Conversions to absolute units depend on previously calibrated 
standards to place the intensity in electron units (Suortti et al., 
1985). Calibrated powder standards account for the monitor 
efficiency, the beam path transmission, and the efficiency and 
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solid angle of the detector. The largest uncertainty is in the 
values of the linear x-ray absorption cross-sections, µ, near an 
absorption edge for both the powder and the sample. This 
problem is reduced by using a powder similar in elemental 
composition to the sample or by careful calibration of the sample 
absorption. Comparison between standardizations with various 
powder samples are consistent to within 3% to 5% (Suortti et al., 
1985). 

The relative scaling factors between different energy sets can 
be refined with great sensitivity by restricting the short-range-
order intensity as discussed previously and as described below. 
For alloys that cluster, the Laue scattering can be obscured by 
proximity of the fundamental Bragg peaks. Higher-resolution 
measurements such as small-angle x-ray scattering (SAXS) 
techniques may then be required to recover the Laue scattering. 
SAXS can be used to measure the total SRO scattering at the 
origin, and the relative scaling factors of data sets can be 
adjusted so that α000 = l, and the fitted SRO diffuse scattering, 
approach the SAXS value obtained near the origin. This scaling 
method is illustrated in Figure 16 for a Ni77.5Fe22.5 alloy. As 
shown in Figure 16, a small change in the relative scaling (here 
the zero contrast or near null Laue scale factor) makes a big 
change in the SRO scattering near the origin. Fe-Ni alloys are 
known to show negligible scattering near the origin (Simon and 
Lyon, 1991). Scale factors are adjusted to set the SRO scattering 
to near zero at the Bragg peaks. Nonlinear fitting routines that 
refine the relative intensities and include these and other 
restrictions may be possible with more reliable data sets from 
third-generation synchrotron sources. 

DATA ANALYSIS AND INITIAL INTERPRETATION 

Most x-ray detectors are count-rate limited, and measured x-ray 
scattering intensities must be corrected for detectorsystem 
deadtime (Ice et al., 1994). With proportional counters and solid-
state detectors, the measured deadtime is typically 3 times the 
amplifier shaping constant. For most measurements, this results 
in deadtimes of ~1 to 10 µs/count. 

Detector survival can also be challenged by intense x-ray 
beams and requires that the sample orientation and detector 
position be controlled such that a Bragg reflection from the 
cyrstal does not enter the detector. Bragg reflections can contain 
in excess of 109 x rays per second at synchrotron sources, which 
can paralyze or damage detectors. Position-sensitive wire 
proportional counters are especially vulnerable, and count rates 
below 104 counts/s are generally advisable to prevent damage to 
the wire or coated filament. Just flashing through a Bragg 
reflection when changing orientation can damage the wire anode 
of a linear-senitive proportional counter, and materially degrades 
its spatial resolution. Extreme caution is necessary when 
measurements are taken near Bragg reflections with flux-
sensitive detectors. 

Mirrors and crystal monochromators can pass a significant 
number of harmonics (multienergy x rays), which are then 
diffracted by the sample at positions of h/n ,  k /n ,  l/n ,  where n  

is an integer and hkl  are the Miller indices of the Bragg 
reflections. Any sharp spikes observed in the measurement of 
diffuse intensities at these positions are suspect and must be 
removed before processing the data to recover the local 
correlations. At the position (100) in Figure 17, we note an 
outlying data point that can be attributed to the Bragg diffraction 
from the (200) reflection of an x-ray energy twice that of the 
nominal energy. Such spurious data can also be caused by 
surface films left from chemical treatment or oxidation. 

An example of the raw data measured for three different x-
ray energies from an Fe46.5Ni53.5 alloy single crystal is shown in 
Figure 17 (Jiang et al., 1996). The solid line in Figure 17 is the 
near null Laue measurement, which can be used to remove the 
quadratic and higher-order displacement terms from the other 
data sets. The assumption is made that for elements with similar 
masses and small static displacements the second and higher 
moment terms are the same for both atoms species so that for 
Ij≥2, the intensity scales as 〈f 〉 2  This method avoids the need to 
calculate thermal scattering from a set of force constants with the 
Born-von Karman central forces model that assumes harmonic 
vibrations and Hooke’s law forces between the atoms 
independent of their environment (Warren, 1969). Theoretically 
calculated TDS increasingly deviates from measured TDS on 
approach to the Brillouin zone boundaries. This is not 

unexpected as local structure is important near the zone 
boundaries. A comparison of x-ray null Laue results with 
neutron diffuse scattering measurements, which are not 
complicated by TDS, gives very similar α’s for Fe3Ni (Jiang et 
al., 1996). 

An example of the measured diffuse scattering data in the 
h1h20 plane (labeled here as H1, H2, 0) for three x-ray energies is 
shown in Figure 18 for an alloy of Fe27.5Ni77.5 (Ice et al, 1992). 
The x-ray energy at 8.000 keV (Fig. 18B) is the near null Laue 
energy (fNi − fFe ~0), where ISRO is nearly zero compared with the 
intense SRO maxima such as (100), (110), and (210) at 7.092 
keV of Figure 18A. With the data in electron units and with 
inelastic scattering removed, the data are now processed to 
recover the α and δ values. As discussed previously (see 
Principles of the Method), we have the choice of different 
processing methods. 

1. The null Laue method (also referred to as the 3λ method). This 
method is used when the elements of an alloy are sufficiently 
near each other in the periodic table that their dynamic 
displacements are similar and Ij≥2 scales as (CAfA+CBfB)2 for 
the different energies; Ij≥2 can be experimentally measured at a 
low x-ray scattering contrast and then substracted from the 
diffuse scattering with high elemental contrast (Ice et al., 
1992; Reinhard et al., 1992; Schoenfield et al, 1994; Jiang et 
al, 1996). The null Laue method is implemented using a 
nonlinear least-squares approach. 

2. Collection of sufficient data such that the BS separation 
technique can first be used to recover ISRO, Ij = 1, Ij = 2, and 
higher terms separately for each of the three x-ray energies. 
Then a least-squares program is used to recover the α’s from 
ISRO The α’s are used to recover the displacements from Ij = 1 
and the second moments from Ij = 2 as given in Equations 4, 5, 
6, and 7. As the assumption is made that the x-rayatomic 
scattering factors are independent of H, aninteractive 
technique is required to remove that assumption. This is 
possibly the most robust of the methods as it does not have the 
assumption of method 1. Therefore it can be extended to 
include the Ij = 3 and Ij = 4 terms to account for higher moments 
of the displacements including second-order TDS, which 
becomes important for measurements made at temperatures 
approaching the Debye temperature. Furthermore, data for 
each energy can be separately into ISRO and displacement 
scattering and checked for the correct normalization factors 
before different energy sets are subjected to a simultaneous 
least squares program to recover the A-A: A-B, and B-B pair 
correlations. 

3. The GC method of analysis, which uses data measured at only 
one energy for 25 symmetry-related points for each of the 25 
terms expressed in Equations 4, 5, 6, and 7. These symmetry-
related points are chosen such that the values of ISRO, and the 
Q, R, and S terms are of the same or of opposite magnitude. 
Only their scattering factors and H dependence differ. In this 
way, the terms of Equations 4, 5, 6, and 7 are obtained from a 
system of linear equations stabilized by a ridge regression 
technique. These terms are then inverted to recover their 
Fourier coefficients. Results with this technique have been 
mixed. An analysis of AuCu3 data (Butler and Cohen, 1989) 
concluded that the Au-Au bond distance was shorter than that 
for Cu-Cu. This result is contrary to the experimental findings 
that ordering of AuCu3 reduces the lattice constant as more 
first-neighbor Au-Cu pairs are formed and that the addition of 
the ~14% larger Au atoms to Cu increases the lattice constant 
because of the larger Au-Au bond distance. Theoretical 
considerations have also concluded that the Au-Au bond 
distance is the largest of the three kinds (Chakraborty, 1995; 
Horiuchi et al., 1995). Apparently, the H variation of fAu∆f* 
and fCu∆f* shown in Figure 4 is not sufficiently different to 
provide for a meaningful separation of the Au-Au and Cu-Cu 
bond distances. In a direct comparison with the 3λ technique 
on an alloy of Ni80Cr20, the GC result gave a Ni-Ni bond 
distance with a different sign, which was contrary to other 
information (Schöenfeld et al., 1994). In addition, published 
GC values for 〈(∆X)2〉 coefficients are not reliable (Wu et al., 
1983). Though first-order TDS is included in the separation, 
higher-order TDS is calculated from force constants and 
subtracted. 

Interpretation of Recovered Static Displacements 
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The displacements are defined as deviations from the average 
lattice and are given by 

( ) (δ δ )p q p q p q− = − + −r r R R  (9) 

As we can move the frame of reference so that its origin always 
resides on one of the atoms of the pair, such that rP ≡  r0, Rp ≡ 
R0, and δp ≡ δ0, then 

0 0rp q q lmn lmn− = − = − = −r r r r r r  (10) 

and with the atom pair identified by ij 

ij ij

lmn lmn lmn= +r R δ  (11) 

where Rlmn is independent of the kinds of atom pairs since it is 
defined by the average lattice (i.e., Bragg reflection positions). 
The average value of the measured rlmn for all the N pairs 
contributing to the measured intensity is 

1
δ δij ij ij

lmn lmn lmn lmn lmnij
ijN

〈 〉 = 〈 + 〉 = + 〈 〉∑r R R  (12) 

Here 
ij

lmnδ  is the variable recovered from the diffuse 
scattering. As shown in Equation 25, we recover the Cartesian 
coordinates of the average displacement vector, 

δij ij ij ij

lmn lmn lmn lmn
X Y Z〈 〉 ≡ 〈∆ 〉 + 〈∆ 〉 + 〈∆ 〉a b c  (13) 

For cubic systems, when the atom has fewer than 24 neighboring 
atoms in a coordination shell (permutations and combinations of 
±l, ±m, ±n), 

ij

lmnδ  must be parallel to the lattice vector Rlmn. 

This maintains the statistically observed long-range cubic 
symmetry even though on a local scale this symmetry is broken. 
For lmn multiplicities ≥24, the displacements on average need 
not be parallel to the average interatomic vector Rlmn to preserve 
cubic symmetry (Sparks and Borie, 1965). 

Measurements of diffuse scattering from single crystals 
provides the components of the atomic displacements (∆X), 
(∆Y), and (∆Z) whereas the spherical average usually obtained 
from EXAFS and x-ray measurements on amorphous materials 
and crystalline powders gives only the magnitude of the radial 
displacements. Thus, diffuse x-ray scattering from single crystals 
provides new information about the vector displacements 
associated with near-neighbor chemistry. 

Measured displacements such as those presented in Table 2 
provide unique insight into how atoms move off their lattice sites 
when local symmetry is broken. Local symmetry is broken when 
a multicomponent crystalline material is above the ordering 
temperature (with less-than-perfect long-range order) and/or off 
stoichiometry. With perfect long-range order the atoms are 
constrained to lie precisely on the sites of the average lattice by 
balanced forces. In alloys, where the local symmetry is broken, 
we gain new insights into the chemically distinct bonding, 
including the interatomic bond distances and whether the 
displacements have both radial and tangential components. With 
reference to Figure 23, the displacement for the [110] nearest-
neighbor atoms is on average radial with a magnitude given by 

110 110| | 2 | |Xδ = ∆ .  

We note that the Fe-Fe first-neighbor pair distances given in 
Table 2 are 0.021(3) Å × 2  =  0.030(4) Å further apart then 
the average lattice and that second neighbor pairs are closer by 
(−) 0.023(1) Å. Average bond distances along the interatomic 
vector between nearest-neighbor pairs for this fcc lattice are 
obtained by adding the 2 |∆X110| to the average interatomic 
vector R110, as defined in Figure 19. The parameter |R 1 1 0 |  is just 
the cubic lattice constant |a| times 1/ 2 . From the 
construction shown in Figure 19, it follows that the vector 
distance between a pair of atoms, 

ij

lmnr ,  has radial and tangential 
displacement components with magnitudes given by 

δ
δ

ij
ij lmn lmn
lmn

lmn

•
=

R

R�

 (14) 

and 

2 2
δ δ δij ij ij

lmn lmn lmn⊥
= −

�
 (15) 

The radial (||) and tangential ( ⊥ ) components of the 
displacements recovered from diffuse scattering measurements 
on single crystals are shown in Figure 19. 

As the Fe46.5Ni53.5 alloy is cubic (face centered), the ∆Y and 
∆Z displacements are derived from the ∆X’s given in Table 2 by 
permutation of the indices. (Henceforth, we will omit the < >  on 
the displacements for simplicity.) For example, ∆X321 has the 
identical value as ∆Y231 and ∆Z123, and ∆X321 = ∆X312 = ∆Y231 = 
∆Y132 = ∆Z123 = ∆Z213. In addition, ∆X321 = −∆X321 and similarly 
for the other combinations as illustrated in Figure 20. The 
nearest-atom pairs that could have, on average, nonradial 
components are those in the third neighboring shell, lmn = 211 

(Sparks and Borie, 1965). If the displacements between atom 
pairs is on average along their interatomic vector, then ∆X211 = 2 
∆X121 (Fig.20). For the Fe-Fe pair displacements given in Table 
2, ∆X211 = 0.0005(2)Å and 2 ∆X121 = 0.0028(8)Å; thus the (211) 
Fe-Fe pair displacements have a significant tangential 
component. From Equations 14 and 15, the magnitude of the 
displacement between (211) Fe-Fe pairs along the radial 
direction 

Fe-Fe
211| |δ || is 0.0016 (7)Å and 

Fe-Fe
211| |δ ⊥  tangential is 

0.0013(7)Å. Thus the (211) Fe-Fe neighbors have a similar 
radial and tangential component to their displacements. For the 
(310) Fe-Fe pair displacements, ∆X310 ≅  3 ∆X130 within the total 
estimated error, and on average (310) displacements are 
predominantly radial. These measured displacements provide 
new information not obtained in other ways about the local 
atomic arrangements in crystalline solid solutions. 

Results for the few crystalline binary alloys that have had 
their individual pair displacements measured with this 3λ 
technique are summarized in Figure 21. Here the ∆X static 
displacements are plotted as a function of the radial distance 

2 2 21
2 l m n+ + . When there is more than one value for ∆X, the 

plots show the various values. Most striking is the observation 
that for the three ordering alloys the near- neighbor Fe-Ni and 
Cr-Ni bond distances are the smallest of the three possible pairs 
(Fig. 21). However, for the clustering Cr47Fe53 alloy the Cr-Cr 
nearest-neighbor bond distances are closest and the Cr-Fe are 
furthest apart. More details, including the short-range-order 
parameters α and numerical values of the displacements for each 
shell, are given in the original papers. These pair displacement 
observations provide a more rigid test of theoretical predictions 
than variations of the average lattice parameter with 
concentrations (Froyen and Herring, 1981; Mousseau and 
Thorpe, 1992). 

METHOD AUTOMATION 

Because of the large data sets collected (~7000 data points per 
diffuse scattering volume, each consisting of a multichannel 
energy spectrum with 200 to 500 channels), data collection is 
under computer control. The program most widely used for 
converting the reciprocal space coordinates to Eulerian angles 
and then stepping the three- (or four-) axis diffractometer to this 
list of coordinates is SPEC (Certified Scientific Software). 
Because the diffuse scattering is a slowly varying function 
without sharp peaks, it is fastest to take the data while the 
diffractometer is moving and avoid the time-consuming starting 
and stopping of the diffractometer. The reciprocal space 
coordinate is estimated from the midrange of the angular scans 
during data collection. When using the BS separation procedure, 
it is necessary to have the diffuse scattering data on a uniform 
cubic grid in reciprocal space. Least-squares procedures do not 
have this requirement. Since the experiment is enclosed in a 
radiation hutch, computerized control of all slits, sample 
positioning and electronic components in the hutch is desirable. 

SAMPLE PREPARATION 

The most detailed measurements of diffuse x-ray scattering are 
made on homogeneous single crystals with polished and etched 
surfaces. These samples must be carefully prepared and handled 
to minimize surface roughness effects, surface contamination, 
and inhomogeneities. To prepare a sample, a single crystal of the 
intended composition and ≥99.9% purity metals should be 
homogenized for ≥3 days at ~50° to 100°C below the crystal 
melting point in an atmosphere that protects its composition. 
This step is intended to create a single crystal with uniform 
chemical composition. For a crystal with cubic symmetry, the 
crystal should be oriented and then cut with a surface near the 
<421> normal. This orientation minimizes the goniometer χ 
range, improves the energy resolution of measurements with a 
crystal spectrometer, and improves access to a cubic symmetry 
volume of reciprocal space. The surface of the crystal should be 
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~20 mm in diameter to ensure that the incident beam is 
completely intercepted by the sample at all orientations. 
Electrical discharge machining or chemical sawing minimizes 
surfaces strains and distortions and is preferred to standard 
machining. After chemical polishing to remove distorted metal, 
the crystals should be heat treated to the desired state of 
thermodynamic equilibrium before quenching. Metallographic 
polishing is followed by chemical dissolution or electropolishing 
to produce a mirror smooth surface with nondistorted metal (see 
SAMPLE PREPARATION FOR METALLOGRAPHY). Verification of 
negligible distortion is obtained by optical microscopy of 
subgrain boundary images. Because surface roughness reduces 
x-ray scattering intensity at low angles, smooth surfaces reduce 
the corrections to the absolute intensity measurements. The 
effect of sample roughness on intensity can be checked with 
fluorescence or RRS measurements to determine if there is any 
angular variation with respect to H in the bisecting geometry 
(Sparks et al., 1992). The acceptable mosaic spread of the 
crystals measured from x-ray rocking curves depends on the H 
resolution necessary to resolve the features of interest, but can be 
as large as ~2 degrees. Verification of the composition to ± 0.2 
at.% or less is needed to reduce the uncertainty in the data 
analysis. A check of the weight of the raw materials against the 
weight of the single-crystal ingot will determine if more 
extensive chemical analysis is necessary. 

PROBLEMS 

The fundamental problem of diffuse x-ray scattering is that the 
measurements must be made in absolute units and must be 
consistent over large ranges in reciprocal space and with 
different experimental conditions (x ray, neutron, energy, etc.). 
Even small systematic uncertainties increase the uncertainties in 
the recovered local correlations. Special procedures can 
sometimes be used to calibrate the relative normalization 
between different experimental conditions, but the reality 
remains that great care is required to collect meaningful data. For 
example, near an absorption edge, uncertainties in the scattered 
intensity can occur because the values of f′ and f ′′ change 
rapidly with small fluctuations in incident photon energy, as seen 
in Figure 9. The intensities of RRS also increases as the incident 
photon energy approaches an absorption edge. As a compromise, 
the incident energies are usually chosen ~20 eV below an 
absorption edge. This requires that the x-ray optics, which select 
the x-ray energy from the white synchrotron spectrum, be very 
stable so as to control the selected energy fluctuations to less 
than about ±1 eV. 
     Where limited information is acceptable, problems of slow 
data collection and difficulties in systemmatic errors associated 
with measurments over large volumes of reciprocal space can be 
minimized. For example, measurements of intensity and peak 
width for a single superstructure reflection can be used to 
monitor correlations lengths and tendencies during 
rearrangements of local atomic coordinations (Mudgel M 2007). 

Similarly, environments must maintain a clean surface free of 
condensates and oxidation that can add unwanted scattered 
intensity to measurements. Extremely thin coverages of a few 
tens of monolayers can contribute noticeable intensity. 
Equilibrium temperatures can sometimes be difficult to define on 
quenched samples. For example, quenching to a desired 
equilibrium local-ordered state may not be possible due to rapid 
kinetics; quenched-in vacancies enhance diffusion, which can 
alter chemical order at the actual temperature of interest for local 
order. Kinetic studies or measurements at the higher temperature 
are required to ensure that equilibrium order is achieved. Even if 
diffusion, which changes the α’s on cooling, is not a problem, 
changes in lattice constant on cooling may affect the static 
displacements. It is better to have the sample in a known state of 
equilibrium so that the recovered parameters can be directly 
compared to theory. A discussion of the effect of quenching 
parameters on the diffuse scattering from an Al-Cu sample has 
been given by Epperson et al. (1978), and a study of the kinetics 
of short-range ordering in Ni0.765Fe0.235 has been given by Bley et 
al. (1988). 

The complexities of actually performing and interpreting a 
three-dimensional diffuse scattering experiment require a major 
commitment of time and resources. To ensure success, we 
suggest that beginners collaborate with one of the referenced 

authors who has experience in this science and who has access to 
the specialized instrumentation and software required for 
successful diffuse scattering experiments. 

ACKNOWLEDGMENTS 

We wish to express our appreciation to the early pioneers of 
diffuse scattering and to our many contemporaries who have 
contributed to this subject. Research was sponsored by the U.S. 
Department of Energy, Basic Energy Sciences, Materials 
Sciences and Engineering Division.  

LITERATURE CITED 

Åberg, T. and Crasemann, B. 1994. Radiative and radiationless 
resonant Raman scattering. In Resonant Anomalous X-Ray 
Scattering: Theory and Applications (G. Materlik, C. J. 
Sparks, and F. Fischer, eds.). pp. 431–48. Elsevier Science 
Publishing, New York. 

Biggs, F., Mendelshohn, L. B., and Mann, J. B. 1975. Hartree-
Fock Compton profiles for the element. Atomic Data Nucl. 
Tables 16:201–309. 

Bley, F., Amilius, Z., and Lefebvre, S. 1988. Wave vector 
dependent kinetics of short-range ordering in 62Ni0.765Fe0.235, 
studied by neutron diffuse scattering. Acta Metall. Mater. 
36:1643–1652. 

Borie B. and Sparks C. J. 1964. The short-range structure of 
copper-16 At. % aluminum. Acta. Crystallogr. 17: 827–835. 

Borie, B. and Sparks, C. J. 1971. The interpretation of intensity 
distributions from disordered binary alloys. Acta Crystallogr. 
A27:198–201. 

Butler, B. D. and Cohen, J. B. 1989. The structure of Cu3Au 
above the critical temperature. J. Appl. Phys. 65:2214–2219. 

Carlsson, G. A., Carlsson, C. A., Berggren, K., and Ribberfors, 
R. 1982. Calculation of cattering cross sections for increased 
accuracy in diagnostic radiology. 1. Energy broadening of 
Compton-scattered photons. Med. Phys. 9:868–879. 

Cenedese, P., Bley, F., and Lefebvre, S. 1984. Diffuse scattering 
in disordered ternary alloys: Neutron measurements of local 
order in stainless steel Fe0.56Cr0.21Ni0.23. Acta Crystallogr. 
A40:228–240. 

Chantier, C. T. 1994. Towards improved form factor tables. In 
Resonant Anomalous X-Ray Scattering: Theory and 
Applications (G. Materlik, C. J. Sparks, and K. Fischer, eds.). 
pp. 61–78. Elsevier Science Pubishers, New York. 

Chakraborty, B. 1995. Static displacements and chemical 
correlations. Eur. Phys. Lett. 30:531–536. 

Chukhovskii, F. N., Polyakov, A. M. 2010. X-ray Specular 
Scattering From Statistically Rough Surfaces: A Novel 
Theoretical Approach Based on the Green Function 
Formalism, Acta Crystallogr. A66:640-648. 

Cowley, J. M. 1950. X-ray measurement of order in single 
crystals of Cu3Au. J. Appl. Phys. 21:24–30. 

Cromer, D. T. and Liberman, D. 1970. Relativistic calculations 
of anomalous scattering factors for x rays. J. Chem. Phys. 
53:1891–1898. 

Cromer, D. T. and Liberman, D. 1981. Anomalous dispersion 
calculations near to and on the long-wavelength side of an 
absorption edge. Acta. Crystallogr. A37:267–268. 

Dreier, P., Rabe, P., Malzfeldt, W., and Niemann, W. 1983. 
Anomalous scattering factors from x-ray absorption data by 
Kramers-Kronig analysis. In Proceedings of the International 
Conference on EXAFS and Near Edge Structure, Frascati, 
Italy, Sept. 1982 (A. Bianconi, L. Incoccia, and S. Stipcich, 
eds.). pp. 378–380. Springer-Verlag, New York and 
Heidelberg. 

Drijver, J. W., van der Woude, F., and Radelaar, S. 1977. 
Mössbauer study of atomic order in Ni3Fe. I. Determination 
of the long-range-order parameter. Phys. Rev. B 16:985–992. 

Eisenberger, P., Platzman, P. M., and Winick, H. 1976a. X-ray 
resonant Raman scattering: Observation of characteristic 
radiation narrower than the lifetime width. Phys. Rev. Lett. 

36:623–625. 
Eisenberg, P., Platzman, P. M., and Winick, H. 1976b. Resonant 

x-ray Raman scattering studies using synchrotron radiation. 
Phys. Rev. B. 13:2377–2380. 

Epperson, J. E., Fürnrohr, P., and Ortiz, C. 1978. The short-
range-order structure of α-phase Cu-Al alloys. Acta 
Crystallogr. A34:667–681. 

Froyen, S. and Herring, C. 1981. Distribution of interatomic 
spacings in random alloys. J. Appl. Phys. 52:7165–7173. 

Page 10 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

Gehlen, P. C. and Cohen, J. B. 1965. Computer simulation of the 
structure associated with local order in alloys. Phys. Rev. A 

139:884–A855. 
Georgopoulos, P. and Cohen, J. B. 1977. The determination of 

short range order and local atomic displacements in 
disordered binary solid solutions. J. Phys. (Paris) Colloq. 

38:C7-191–196. 
Georgopoulos, P. and Cohen, J. B. 1981. The defect arrangement 

in (non-stoichiometric) β′-NiAl. Acta Metall. Mater. 
29:1535–1551. 

Gragg. J. E., Hayakawa, M., and Cohen, J. B 1973. Errors in 
quantitative analysis of diffuse scattering from alloys. J. Appl. 
Crystallogr. 6:59–66. 

Hashimoto, S., Iwasaki, H., Ohshima, K., Harada, J., Sakata, M., 
and Terauchi, H. 1985. Study of local atomic order in a 
ternary Cu0.47N0.29Zn0.24 alloy using anomalous scattering of 
synchrotron radiation. J. Phys. Soc. Jpn. 54:3796–3807. 

Horiuchi, T., Takizawa, S., Tomoo, S., and Mohri, T. 1995. 
Computer simulation of local lattice distortion in Cu—Au 
solid solution. Metall. Mater. Trans. A 26A:11–19. 

Hoyt, J. J., Fontaine, D. D., and Warburton, W. K 1984. 
Determination of the anomalous scattering factors for Cu, Ni 
and Ti using the dispersion relation. J. Appl. Crystallogr. 
17:344–351. 

Ice, G. E. and Sparks, C. J. 1990. Mosaic crystal x-ray 
spectrometer to resolve inelastic background from anomalous 
scattering experiments. Nucl. Instrum. Methods A291:110–
116. 

Ice, G. E., Sparks, C. J., Habenschuss, A., and Shaffer, L. B. 
1992. Anomalous x-ray scattering measurement of near-
neighbor individual pair displacements and chemical order in 
Fe22.5 Ni77.5 Phys. Rev. Lett. 68:863–866. 

Ice, G. E., Sparks, C. J., Jiang, X., and Robertson, L. 1998. 
Diffuse scattering measurements of static atomic 
displacements in crystalline binary solid solutions. J. Phase 

Equilib. 19:529–537. 
Ice, G. E., Sparks, C. J., and Shaffer, L. B. 1994. Chemical and 

displacement atomic pair correlations in crystalline solid 
solutions recovered by resonant (anomalous) x-ray scattering. 
In Resonant Anomalous X-Ray Scattering: Theory and 
Applications (G. Materlik, C. J. Sparks, and K. Fischer, eds.). 
pp. 265–294. Elsevier Science Publishing, New York.  

James, R.W. 1948. The Optical Principles of the Diffraction of 
X-Rays. Cornell University Press, Ithaca, N.Y. 

Jiang, X., Ice, G. E., Sparks, C. J., Robertson, L., and Zachack, 
P. 1996. Local atomic order and individual pair 
displacements of Fe46.5Ni53.5 and Fe22.5Ni77.5 from diffuse x-
ray scattering studies. Phys. Rev. B 54:3211–3226. 

Jiang, X., Ice, G. E., Sparks, C. J., and Zschack, P. 1995. 
Recovery of SRO parameters and pairwise atomic 
displacements in a Fe46.5Ni53.5 alloy. In Applications of 
Synchrotron Radiation Techniques to Materials Science. 
Mater. Res. Soc. Symp. Proc. 375:267–273. 

Kawamura, T. and Fukamachi, T. 1978. Application of the 
dispersion relation to determine the anomalous scattering 
factors. Proceedings of the International Conference on X-ray 
and VUV Spectroscopies, Sendai, Japan. J. Appl. Phys., 
Suppl. 17-2:224–226. 

Kostorz, G. 1996. X-ray and neutron scattering. In Physical 
Metallurgy, 4th and revised and enhanced edition. (R W. 
Cahn and P. Hoosen, eds.). pp. 1115–1199. Elsevier Science 
Publishing, New York. 

Larson, B. C. 2009. X-ray Diffuse Scattering Near Bragg 
Reflections for the Study of Clustered Defects in Crystalline 
Materials, pp. 139-160 in Diffuse Scattering and the 
Fundamental Properties of Materials, Momentum Press LLC, 
New Jersey Ed. R. I. Barabash, G.E. Ice, and P.E. Turchi. 

Lengeler, B. 1994. Experimental determination of the dispersion 
correction f'(E) of the atomic scattering factor. In Resonant 
Anomalous X-Ray Scattering: Theory and Applications (G. 
Materlik, C. J. Sparks, and K. Fischer, eds.). pp. 35–60. 
Elsevier Science Publishing, New York. 

Miller, M. K., Cerezo, A., Hetherington, M. G., and Smith, G. D. 
W. 1996. Atom Probe Field Ion Microscopy. Oxford 
University Press, Oxford. 

Mousseau, N. and Thorpe, M. F. 1992. Length distributions in 
metallic alloys. Phys. Rev. B 45:2015–2022. 

Mudgel, M., Awana, V. P. S., Kishan, H. and Bhalla, G. L. 2007 
Physica C467:31-37. 

Müller, P. P., Schönfeld, B., Kostorz, G., and Bührer, W. 1989. 
Guinier-Preston I zones in Al-1.75 at.% Cu single crystals. 
Acta Metall. Mater. 37:2125–2132. 

Pierron-Bohnes, V., Cadeville, M. C, and Gautier, F. 1983. 
Magnetism and local order in dilute Fe-C alloys. J. Phys. F 
13:1689–1713. 

Reinhard, L., Robertson, J. L., Moss, S. C, Ice, G. E., Zschack, 
P., and Sparks, C. J. 1992. Anomalous-x-ray scattering study 
of local order in BCC Fe0.53Cr0.47. Phys. Rev B 45:2662–2676. 

Renaud, G., Motta, N., Lançon, F., and Belakhovsky, M. 1988. 
Topological short-range disorder in Au1−XNix solid solutions: 
An extended x-ray absorption fine structure spectroscopy and 
computer-simulation study. Phys. Rev. B 38:5944–5964. 

Robertson, J. L., Sparks, C. J., Ice, G. E., Jiang, X., Moss, S. C, 
and Reinhard, L. 1998. Local atomic arrangements in binary 
solid solutions studied by x-ray and neutron diffuse scattering 
from single crystals. In Local Structure from Diffraction: 
Fundamental Materials Science Series (M. F. Thorpe and S. 
Billinge, eds.). Plenum, New York. In press. 

Sasaki, S. 1989. Numerical tables of anomalous scattering 
factors calculated by the Cromer and Liberman’s method. 
KEK Report 88–14. 

Scheuer, U. and Lengeler, B. 1991. Lattice distortion of solute 
atoms in metals studied by x-ray absorption fine structure. 
Phys. Rev. B 44:9883–9894. 

Schönfeld, B., Ice, G. E., Sparks, C. J., Haubold, H.-G., 
Schweika, W., and Shaffer, L.B. 1994. X-ray study of diffuse 
scattering in Ni-20 at% Cr. Phys. Status Solidi B 183:79–95. 

Schönfeld, B., Roelofs, H., Kostorz, G. , Robertson, J. L., 
Zschack, P. and Ice, G. E. 2008. Static Atomic Displacements 
in Cu-Mn Measured with Diffuse X-ray Scattering, Phys. 
Rev. B. 77 144202. 

Schwartz, L. H. and Cohen, J. B. 1987. Diffraction from 
Materials. Springer-Verlag, New York and Heidelberg. 

Schweika, W. 1998. Disordered Alloys: Diffuse Scattering and 
Monte Carlo Simulations, Vol. 141. Springer-Verlag, New 
York and Heidelberg. 

Simon, J. P. and Lyon, O. 1991. The nature of the scattering tail 
in Cu-Ni-Fe and invar alloys investiaged by anomalous small 
angle x-ray scattering. J. Appl. Crystallogr. 24:1027–1034. 

Sparks, C. J. 1974. Inelastic resonance emission of x rays: 
Anomalous scattering associated with anomalous dispersion. 
Phys. Rev. Lett. 33:262–265. 

Sparks, C. J. and Borie, B. 1965. Local atomic arrangements 
studied by x-ray diffraction. In AIME Conference 
Proceedings 36 (J.B. Cohen and J.E. Hilliard, eds.). pp. 5–50. 
Gordon and Breach, New York. 

Sparks, C. J., Ice, G. E., Shaffer, L. B., and Robertson, J. L. 
1994. Experimental measurements of local displacement and 
chemical pair correlations in crystalline solid solutions. In 
Metallic Alloys: Experimental and Theoretical Perspectives 
(J. S. Faulkner and R. G. Jordan, eds.). pp. 73–82. Kluwer 
Academic Publishers, Dordrecht, The Netherlands, NATO 
Vol. 256. 

Sparks, C. J. and Robertson, J. L. 1994. Guide to some 
crystallographic symbols and definitions with discussion of 
short-range correlations. In Resonant Anomalous X-ray 
Scattering: Theory and Applications (G. Materlik, C. J. 
Sparks, and K. Fischer, eds.). pp. 653–664. Elsevier Science 
North-Holland, Amsterdam, The Netherlands. 

Suortti, P., Hastings, J. B., and Cox, D. E. 1985. Powder 
diffraction with synchrotron radiation. I. Absolute 
measurements. Acta Crystallogr. A41:413–4l6. 

Tibballs, J. E. 1975. The separation of displacement and 
substitutional disorder scattering: A correction for structure 
factor ratio variation. J. Appl. Crystallogr. 8:111–114. 

Warren, B. E. 1969 (reprinted) 1990. In X-Ray Diffraction. 
Dover Publications, New York. 

Warren, B. E., Averbach, G. L., and Roberts, B. W. 1951. 
Atomic size effect in the x-ray scattering by alloys. J. Appl. 

Phys. 22:1493–1496. 
Welberry, T. R. and Butler, B. D. 1995. Diffuse x-ray scattering 

from disordered crystals. Chem Rev. 95:2369–2403. 
Wu, T. B., Matsubara, E., and Cohen, J. B. 1983. New 

procedures for quantitative studies of diffuse x-ray scattering. 
J. Appl. Crystallogr. 16:407–14. 

Zunger, A. 1994. First-principles statistical mechanics of 
semiconductor alloys and intermetallic compounds. In Statics 
and Dynamics of Alloy Phase Transitions, Vol. B319 of 
NATO ASI Series B (P.EA. Turchi and A. Gonis, eds.). p. 
361. Plenum, New York. 

Page 11 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer R
eview

KEY REFERENCES 

Cowley, J.M. 1975. Diffraction Physics. North-Holland, 
Amsterdam, The Netherlands. 
This reference is a good basic introduction into diffraction 

physics and x-ray techniques. 

Materlik, G., Sparks, C. J., and Fisher, K. (eds.).. 1994. Resonant 
Anomalous X-ray Scattering. North-Holland, Amsterdam, 
The Netherlands. 

This reference is a collection of recent work on the theory and 
application of resonant x-ray scattering techniques. It 
provides the most complete introduction to the application of 
anomalous (resonant) scattering techniques and how the field 
has been revolutionized by the availability of intense 
synchrotron radiation sources. 

Schwartz and Cohen, 1987. See above. 
This is another introductory text on x-ray diffraction with an 

emphasis on the application to materials. The section on 
diffuse x-ray scattering is especially strong and the notation is 
the same as used in this unit. 

Schweika, 1998. See above. 
This monograph provides an excellent reference to the interplay 

between experiment and theory in the field of local atomic 
order in alloys. 

Warren, 1969 (reprinted 1990). See above. 
This reference provides an authoritative treatment of all phases 

of diffuse x-ray scattering, including thermal diffuse 
scattering, TDS, short-range order, and atomic size 
displacement scattering. Although it does not include a 
modern outlook on the importance of resonant scattering, it 
provides a clear foundation for virtually all modern 
treatments of diffuse scattering from materials. 

APPENDIX A: 

DERIVATION OF THE DIFFUSE INTENSITY 

Our interest is in the diffusely distributed intensity. To separate 
Equation 3 into an intensity that may be sharply peaked and one 
that is diffusely distributed, we follow the method of Warren 
(1969). This method expands e2πiH•(δp − δq) in a Taylor series about 
δP − δq and examines the displacement terms as the separation of 
atom pairs becomes large, p − q→∞. As the x-ray or neutron 
beam intercepts many atoms and the atoms undergo many 
thermal vibrations during the period of the intensity 
measurement, both a spatial and a time average are taken. These 
are indicated by < >. The spatial and time average of the jth-
order Taylor series expansion of the exponential displacement 
term is 

2 3
π

2

(δ δ ) 1
2 3!

...
!

pqiX pq pqe i

p g pq

j

pq

X i X
e e i X

i X

j

〈 〉 〈 〉
〈 • − 〉 ≡ 〈 〉 = + 〈 〉 − −

〈 〉
+ +

H

 (16) 

The time average for harmonic thermal displacements causes 
odd-order terms to vanish. With the definition 〈Xpq〉 = 〈Xp − 
Xq〉, so that 〈(Xp − Xq)

2〉 = 〈X2
p〉 + 〈X2

q〉 –  2 〈XpXq〉, and for 
sharply peaked Bragg reflections, where p − q → ∞, the 
displacements become uncorrelated so that 〈XpXq〉 = 0. 
Therefore, 〈X2

pq〉p–q→∞ = 〈Xp
2〉 + 〈X2

q〉, and with the harmonic 
approximation we can estimate the long-range dynamical 
displacement term by 

2 21
2

( ) ( )pq p q p qiX x x M M

p q
e e e

〈 〉+〈 〉 − +
− →∞〈 〉 ≅ =  (17) 

Here Mp  is the usual designation for the Debye-Waller 
temperature factor (Warren, 1990, p. 35). The subject is treated 
by Chen in KINEMATIC DIFFRACTION OF X RAYS. We also include 
the mean-square static displacements in M. Experience has 
shown the validity of the harmonic approximation in Equation 
17 to account for the reduction in the intensity of the Bragg 
reflections as a function of H. With the understanding that when 
there is an A atom at site p  or q ,  Mp  or M q  is written as M A ,  
and similarly MB when there is a B at p or q,  the fundamental 
Bragg intensity for an alloy is given by the substitution of 
Equation 17 into Equation 3 as 

A B 2π ( )2
A A B B B( ) p qiM M

p q

I C f e C f f e e
• −− −= + ∑∑ H R R

FundH  (18) 

This expression accounts for the reduced intensity of the 
fundamental Bragg reflections due to thermal motion and static 
displacements of the atoms. Fundamental reflections scale as the 
average scattering factor and are insensitive to how the chemical 
composition is distributed on the lattice sites. When the alloy has 
long-range order among the kinds of atoms, the αpq’s do not 
converge rapidly with larger p, q and account for the 
superstructure Bragg reflections that depend on how the atoms 
are distributed among the sites. We are now concerned with the 
distribution of this thermal and static scattering. To recover the 
diffuse intensity, we subtract I(H)Fund from I(H)Total in Equation 
3. To avoid making the harmonic approximation of Equation 17, 
we subtract I(H)Fund term by term and take the limit as p—q→∞. 
For example, to second order we have 

( )2
2

1
1

2
pqiX q

p q pe X X− →∞〈 〉 = − 〈 〉 + 〈 〉  (19) 

By substitution of Equation 19 for each of the pqiX
e  terms in 

Equation 3 and assignment of the proper atom identity for 
different pairs, and recalling that as p—q → ∞, → ∞, αpq= 0, we 
subtract this expression for I(H)Fund from I(H)Total and write the 
diffuse scattering to second order in the displacements as 

{
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 (20) 

Our use of the double sum requires that the pairs of atoms be 
counted in both directions, that is, a p, q  pair will become a q ,  p  

pair such that i (δp – δq) = −i(δq − δq) as shown in Figure 22. As 
seen in Equation 2, the I(H)Total double sum is made up of p, q 

elements that are the product of four complex numbers: the two 
complex scattering factors and the two complex phase factors. 
For every p ,  q  pair there is a corresponding q ,  p  pair where the 
two scattering factors and the two phase factors are the p,  q  pair 
complex conjugates; hence the p ,  q  and q ,  p  elements add up to 
a real number. This means that the terms in the series expansion 
of the fluctuation displacements  must add in pairs to give real 
intensity and from Equation 20, the j = odd order displacement 
terms have a sin 2π( H • R )  

A A( ) j

p qX X−  dependence and 
the j = even-order terms have a cos 2π(H • R) 

A A( ) j

p qX X−  dependence; the imaginary components 
cancel. 

From the definition of an average lattice, the weighted 
average of the displacements for all the kinds of pairs formed for 
any coordination shell is zero (Warren et al., 1951), 

A B A AA

B

B BB

A

2(α 1) δ δ α δ δ

α δ δ

pq p q pq p q

pq p q

C

C

C
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 
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 (21) 
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If a crystal structure has more than one kind of site symmetry 
(sublattices with different site symmetries), than Equation 21 
may be true for only that sublattice with all the same site 
symmetries. Different-sized atom species will most likely have a 
preference for the symmetry of a particular sublattice. This 
preference could produce long-range correlations and 
superstructure reflections from which site occupation preferences 
can be recovered. Disorder among the atoms on any one 
sublattice and between sublattices will produce scattering from 
which pair correlations can be recovered. Discussion of this issue 
is beyond the scope of this unit. A study of a partially ordered 
non-stoichiometric bcc NiAl crystal, where one of the two 
sublattices with the same site symmetry is partly occupied by 
vacancies, has been discussed in Georgopoulos and Cohen 
(1981). A general review of the application of diffuse scattering 
measurements to more complicated structures with different site 
symmetries shows a wider use of models to reduce the number 
of variables necessary to describe the local pair correlations 
(Welberry and Butler, 1995). 

Equation 20 can be expressed in a more tractable form 
through three steps: (1) Replace the double sum over atomic sites 
p and q by N single sums around an origin site where the 
relative sites are identified by lattice difference lmn  such that Rp 

− Rq = R0 – Rlmn. This approximation neglects surface effects. 
(2) Use trigonometric functions to simplify the phase factors. (3) 
Substitute Equation 21 into Equation 20. With these steps, the 
diffuse intensity can be expressed as, 
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 (22) 

Equation 22 is a completely general description of the diffuse 
scattering from any crystal structure through the second moment 
of the static and thermal displacements. We now apply this to 
binary solid solutions, which have received the most attention 
among crystalline solid solutions. 

It is helpful to choose real-space basis vectors a, b, c that 
reflect the long-range periodicity of the crystal structure. This 
long-range periodicity in turn is reflected in the intensity 
distribution in the reciprocal space lattice with basis vectors a* = 
l/a, b* = l/b, and c*=l/c, as shown in Figure 3. For an alloy that is 
on average statistically cubic, such as that shown in Figure 3, we 
define 

* * *
0 1 2 3,

2 2 2lmn

l m n
h h h− ≡ + + ≡ + +R R a b c H a b c  (23) 

so that 

0 1 2 32π ( ) π( )lmn h l h m h n• − = + +H R R  (24) 

In addition, 

 δlmn lmn lmn lmnX Y Z≡ ∆ + ∆ + ∆a b c  (25) 

So that 

0 0 1 0 2

0 3 0

2π (δ δ ) 2π[ ( )

( ) ( )]
lmn lmn lmn

lmn lmn

X X h X X h

Y Y h Z Z

− ≡ • − ≡ ∆ − ∆ +

+ ∆ − ∆ + ∆ − ∆

H
 (26) 

This definition of R0 – Rlmn causes the continuous variables 
h1h2h3 in reciprocal space to have the integer values of the Miller 
indices at reciprocal lattice points. We further specify that the 
site symmetry is cubic such as for the bcc Fe structure and fcc 
Cu structure. With these definitions, the various diffuse x-ray 
scattering terms in Equation 22 can be written, starting with the 
local chemical order term as 

2SRO
A B A B 1 2 3

( )
α cosπ(h )lmn

lmn

I
C C f f l h m h n

N
= − + +∑

H
 (27) 

which was first given by Cowley (1950). For bcc Fe and fcc Cu 
structures, 

lmn lmn lmnlmn lmnlmn l mn lmn
α = α = α = α = α = α = α = α
 and the cosine term takes the form cosπh1lcosπh2mcosπh3n. 

For the first-order displacement term, 

=1 * * AA AA AA
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* * BB BB BB
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 (28) 

Where 

AA 2 A A
A A B 0 1

2 3

2π ( α ) sin π

cos π cos π
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and 

( ) BBB 2 B
B A B 10
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2π α sin π

cos π cos π
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×

∑
 

and similarly for the other terms as given by Borie and Sparks 
(1964) and Georgopoulos and Cohen (1977). Where 

AA A A
00lmn lmn

X X X∆ = ∆ − ∆  

Equation 28 is a result given by Borie and Sparks (1964) that 
avoids an earlier assumption of radial displacements first given 
by Warren et al. (1951). Shown in Figure 23 is a schematic of 
the displacements described by Equation 28. 

Diffuse scattering from the second-order displacement term 
can be expanded as, 
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Where 
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and similarly for RY and RZ with Y and Z replacing X, 
respectively, or 

AA
XR  (h1h2h3)= 

AA
YR  (h2h3h1). The RBB terms 

are given by 
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For the RAB terms, we have 

( ) ( )
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 (31) 

and similar terms for 
AB
YR  with Y replacing X and for 

AB
ZR  

with Z replacing X. For the cross terms 
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and similarly for 
AA
XZS  and 

AA
YZS  with XY replaced with XZ 

and YZ, respectively. The terms 
BB
XYS , 

BB
XZS  and 

BB
YZS  are 

derived from the SAA terms by replacing AA with BB and by 
replacing 

2
AC , with 

2
BC  and CA/CB with CB/CA. For the term 

AB
XYS , we write 
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and similarly for 
AB
XZS  and 

AB
YZS , where XZ and YZ replace XY, 

respectively. The periodicity of the terms in Equations 27, 28, 
and 29, and the assumption that the scattering factor terms can be 
made independent of H, permit us to write their sum as 

Diffuse
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+
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 (34) 

where A(h1,h2,h3) is given by Equation 27 ÷ | f (H)|2, and 
B(h1h2h3) contains the two terms −fA∆f*

AA
XQ

 + fB∆f*
BB
XQ

 

given by Equation 28 ÷|f(H)|2, and likewise for the other terms. 

APPENDIX B: 

NEUTRON MAGNETIC DIFFUSE SCATTERING 

The elastic diffuse scattering of neutrons from binary alloys with 
magnetic short-range order is composed of three parts: the 
nuclear scattering, the magnetic scattering, and the nuclear 
magnetic interference scattering. The nuclear scattering length 
for neutrons is analogous to the x-ray atomic scattering factor for 
x rays. Thus the information obtained is the same for chemical 
short-range order and displacements as discussed for x rays. 
Because neutrons have a magnetic moment, there is also 
magnetic scattering associated with the unpaired electron spins 
(see MAGNETIC NEUTRON SCATTERING). If the direction of 
magnetization is perpendicular to the scattering plane, the 
magnetic scattering cross-section (in barns) for an A-B alloy of 
atomic concentration CA of A atoms is given by 

2
M A B( ) ( ) (0.270)I C C T=H H  (35) 

Here, T(H) is the moment-moment correlation function 
expressed in terms of µlmn flmn(H), where µlmn is the magnetic 
moment of the atom on site lmn and flmn (H) its magnetic form 
factor (the magnetic scattering comes from the unpaired 
electrons rather than the nucleus so that it has a scattering angle 
dependent form factor much like that for x rays): 

µ µ ( )lmn lmn lmnf= H  (36) 

2π
A B 000( ) µ ( )[µ ( ) µ( ) ]i

lmn lmn

lmn

C C T e
⋅= 〈 − 〈 〉 〉∑ H R

H H H H  (37) 

The nuclear magnetic interference term INM(H) is proportional to 
a site occupation-magnetic moment correlation M(H). For a 
magnetization perpendicular to the scattering plane, we have 

NM A B( ) (0.540) ( )I C C b M= ∆H H   (38) 

and 

2π
A B 000( ) (α 1)µ ( )i

lmn lmn

lmn

C C M e
⋅= 〈 − 〉∑ H R

H H  (39) 

Here the quantity in < >’s represents the average increase in the 
moment of the atom at the origin (000) due to the atomic species 
of the atom located at site lmn. 

While the terms IM(H) and INM(H) allow one to study the 
magnetic short-range order in the alloy, they also complicate the 
data analysis by making it difficult to separate these two terms 
from the chemical SRO. One experimental method for resolving 
the magnetic components is to use polarization analysis where 
the moment of the incident neutron beam is polarized to be either 

parallel ( ε = 1) or antiparallel (ε = −1) to the magnetization. The 
total scattering for each case can now be written as 

ε N NM M( ) ( ) ε ( ) ( )I I I I= + +H H H H  (40) 

The intensity difference between the two polarization states 
gives 

Total NM( ) 2 ( )I I∆ =H H  (41) 

and the sum gives 

ε N M
ε

( ) 2 ( ) 2 ( )I I I+ +∑ H H H  (42) 

If IN(H) is known from a separate measurement with x rays, all 
three components of the scattering can be separated from one 
another. 

One of the greatest difficulties in studying magnetic short-
range order comes when the moments of the atoms cannot be 
aligned in the same direction with, for example, an external 
magnetic field. In the above analysis, it was assumed that the 
moments are perpendicular to the scattering vector, H. The 
magnetic scattering cross-section is reduced by the sine of the 
angle between the magnetic moment and the scattering vector. 
Thus if the magnetization is not perpendicular to the scattering 
vector, the moments on the atoms must be reduced by the 
appropriate amount. When the spins are not aligned, the sine of 
the angle between the moment and the scattering vector for each 
individual atom must be considered. In this case, it becomes 
necessary to construct computer models of the spin structure to 
extract M(H) and T(H). More in-depth discussion is given in 
MAGNETIC NEUTRON SCATTERING. 
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Figure Caption: 

Figure 1. Direct and reciprocal space representations for a 
clustering, a random, and an ordering A50B50 bcc alloy. Courtesy 
of Robertson et al. (1998). 

Figure 2. Displacements about the average lattice preserve the 
regular spacing between atomic planes such that d = d1 = d2 = 
d3 =....The average lattice is obtained from the positions of the 
sharp Bragg reflections (B). Information about short-range 
correlations among the atoms is contained in the diffusely 
distributed intensity between the Bragg peaks. Courtesy of Ice et 
al. (1998). 

Figure 3. The atom positions for a face-centered cubic (fcc) 
structure are used to illustrate the notation for the real-space 
lattice. The unit cell has dimensions a = b = c. The 
corresponding reciprocal space lattice is a* , b* , c* . A position 
in reciprocal space at which the scattered intensity, I(H), is 
measured for an incoming x ray in the direction of S0 of 
wavelength λ and detected in the outgoing direction of S would 
be H = (S − S0)/λ = h1a* + h2b* + h3c*. At Bragg reflections, 
h1h2h3 are integers and are usually designated hkl, the Miller 
indices of the reflection. This notation follows that used in the 
International Tables for Crystallography. Courtesy of Sparks and 
Robertson (1994). 

Figure 4. Variation in the ratio of the x-ray atomic scattering 
factor terms as a function H. The divisor 〈f 〉 2  = |CCufCu + CAufAu 

|2 was chosen to reduce the H dependence of all the terms for an 
incident energy of Mo Kα = 1.748 keV. The relatively larger x-
ray atomic scattering factor of Au, fAu = 79 versus Cu, fCu = 29 at 
H = 0, would require a divisor more heavily weighted with fAu, 
such as |fAu|

2 to reduce the H dependence of those terms. 

Figure 5. For elements nearby in the periodic table, x-ray 
energies can be chosen to obtain near null Laue scattering to 
separate intensity arising from quadratic and higher moments in 
atomic displacements. Courtesy of Reinhard et al. (1992). 

Figure 6. Diffusely scattered x-ray intensity from an Fe63.2Ni36.8 
Invar alloy associated with the chemical order ISRO and the first 
moment of the static displacements IJ=1 versus h in reciprocal 
lattice units (r.l.u.) along the [h100] direction. A major intensity 
change is affected by the choice of two different x-ray energies. 
The solid lines calculated from the α and δ parameters recovered 
from the 3λ data sets closely fit the observed data given by o and 
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+. The dashed lines are calculated intensity through the 
fundamental reflections. Courtesy of Ice et al. (1998). 

Figure 7. The diffuse intensity is mapped in a volume of 
reciprocal space bounded by three mirror planes that contain all 
the information available for a cubic alloy. 

Figure 8. Optical setup for resonant diffuse x-ray scattering 
measurement. 

Figure 9. Variation of f' and f'' near the K absorption edge of 
nickel. Dashed lines are the theoretical calculation from Cromer 
and Liberman (1970; 1981). Courtesy of Ice et al. (1994). 

Figure 10. Energy spectrum measured with a solid-state detector 
from Ni-Fe alloy excited by 8.0-keV x rays. Courtesy of Ice et 
al. (1994). 

Figure 11. (A) Scattered radiation is energy analyzed with a 
mosaic graphite crystal dispersing radiation along a position 
sensitive detector to resolve (B) fluorescence and (C) resonant 
Raman and Compton scattering. Courtesy of Ice and Sparks  
(1990). 

Figure 12. Incident beam spread on the sample depends on χ and 
θ, which orient the surface normal with respect to the incident 
beam. As the beam spread on the sample is proportional to the 
effective source size viewed by the spectrometer, the energy 
resolution changes as χ and θ change. The measured energy 
resolution (points) is plotted for χ = 55° and compared with the 
theoretical prediction (line). 

Figure 13. Energy spectrum of scattered radiation when the 
incident energy is (A) 13 eV below the Ni K edge and (B) 20 eV 
below the Fe K edge of a Fe-Ni crystal. Courtesy of Ice et al. 
(1994). 

Figure 14. The usual tabulated values of the resonant 
(anomalous) scattering terms are not corrected for hole width 
(lifetime), which causes a Lorentzian broadening of the 
absorption edge and affects the values of f′ and f′′ near the edge. 
Courtesy of Ice et al. (1994). 

Figure 15. The absorption edge energy shifts are very small for 
metallic alloys with differing nearest neighbors. Courtesy of Ice 
et al. (1994). 

Figure 16. Fitted ISRO along the h00 line for three relative scale 
factors on the near zero contrast data of a Ni77.5Fe22.5 sample. 
With a scale factor of 1.04, ISRO is near zero at the origin and 
fundamental Bragg peaks as measured by SAXS. Courtesy of 
Sparks et al (1994). 

Figure 17. Total elastically scattered x-ray intensity along the 
(h00)  measured at 293 K for the three x-ray energies listed. 
Note the shift in contrast for intensities measured with energies 
20 eV below the Fe K edge at 7092-eV and the Ni K edge at 
8313 eV, which changes the sign of Re(fNi − fFe). The outlying 
data point at the {100} position is from harmonic energy 
contamination of the incident radiation and such points are 
removed before processing. Courtesy of Jiang et al. (1996). 

Figure 18. Diffuse x-ray scattering intensities from Fe22.5Ni72.5 in 
the h 3  = 0 plane collected with x-ray energies of (A) 7.092, (B) 
8.000, and (C) 8.313 keV. Courtesy of Ice et al. (1992). 

Figure 19. Construction of the vectors recovered from diffuse 
scattering measurements on single crystals. The parameter Rlmn 
is obtained from the lattice parameter |a|, and the average 
components of the displacement 

ij

lmnδ  are recovered from 
measurements of the diffuse scattering. Courtesy of Ice et al. 
(1998). 

Figure 20. Radial displacements (parallel to the interatomic 
vector Rlmn) between the atom pairs require that the relative 
magnitudes of the displacement components be in the same 
proportion as the average lattice vector; ∆X: ∆Y: ∆Z = l,  m, n. 
As shown for lmn = 211, a radial displacement requires |∆X| = 
2|∆Y| and |∆X| = 2|∆Z|. For lmn = 121, |∆X| = |∆Y|/2 and |∆X| = 
|∆Z|. For a cubic lattice, we can interchange l, m, and n and 
similarly ∆X, ∆Y, and ∆Z. Thus there is only one value ∆X for 
lmn multiplicities <24 (i.e., 110, 200, and 222), two values for 
∆X when lmn has multiplicities equal to 24 ( l  ≠ m and l = m, 
n), and three values for ∆X with multiplicities equal to 48. 
Courtesy of Ice et al. (1998). 

Figure 21. Displacement from the average lattice sites for 
chemically specific pairs. Shell radius divided by the lattice 
parameter a0 becomes 1 for second neighbors (seperated by the 
cube edge). Courtesy of Ice et al. (1998). 

Figure 22. Schematic illustration showing that since all the pairs 
of atoms are counted as to kind and displacement in both 
directions, odd-power terms in the displacements are replaced 
with their negatives i(δp  –  δq) = −i(δq − δq) and Rp − Rq = −(Rq 
− Rp) so that the imaginary terms cancel. 

Figure 23. The rectangular square of solid lines is the average 
lattice about which the atom centers (+) are displaced by the 
amount δpq. Shown in the smaller box on the right are the 
rectangular components of the displacement, ∆x, ∆y, and ∆z. 
Courtesy of Jiang et al. (1996). 
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Table 1. Contributions to the Uncertainties in the Short-Range-Order Parameter, of Fe46.5Ni53.5
a (±lσ) 

lmn αlmn (σTotal) 
σ( n )  

σ ( f ′ )  ±0.2 eu σ(P0) ±1% σ(RRS) ±1 eu σCompton σ(CA) ±0.3 at.% 

000 1.0000 (100) 0.0024 0 0 0 0 0 
110 − 0.0766 (54) 0.0018 0.0010 0.004

8 
0 0.0006 0.0011 

200 0.0646 (28) 0.0017 0.0003 0.001
6 

0.0008 0.0013 0.0003 

211 − 0.0022 (15) 0.0014 0 0.000
4 

0.0001 0.0002 0.0001 

220 0.0037 (14) 0.0013 0.0002 0.000
3 

0.0003 0.0003 0.0001 

310 −0.0100 (11) 0.0011 0.0001 0.000
2 

0.0001 0.0001 0.0001 

222 0.0037 (12) 0.0011 0 0.000
2 

0.0002 0.0003 0 

321 0.0032 (19) 0.0009 0 0.000
1 

0.0001 0.0001 0.0001 

400 0.0071 (12) 0.0011 0.0002 0.000
1 

0.0003 0.0004 0 

330 −0.0021 (9) 0.0008 0.0001 0 0.0003 0.0001 0 
411 0.0007 (7) 0.0007 0 0 0 0.0002 0 
420 0.0012 (8) 0.0007 1.0002 0 0.0004 0.0001 0 
332 −0.0007 (7) 0.0007 0 0 0 0.0001 0 
aFor statistical and possible systematic errors associated with counting statistics n ,  the real part of the resonant x-ray scattering factor f ′  the 
scaling parameter P0 to absolute intensities, inelastic resonant Raman scattering (RRS) and Compton contributions, and concentration CA. 
Total error is shown in parentheses and 0 indicates uncertainties < 0.00005 Å. 

Table 2.   Standard Deviation of ±lσ of x, y, and z Components of the Pair Fe-Fe Displacements δFe–Fea 

lmn ∆X(σTotal) (Å) 
σ n  

σ( f ' )  ±0.2 eu σ(P0) ±1% σ(RRS) ±1 eu σCompton σ(CA) ±0.3 at.% 

110 0.0211 (25) 0.0002 0.0023 0.0007 0.0002 0.0004 0.0004 
200 −0.0228 (14) 0.0004 0.0010 0.0007 0.0002 0.0004 0.0002 
211 0.0005 (2) 0.0002 0 0.0001 0.0001 0 0 
121 0.0014 (4) 0.0001 0.0003 0.0001 0.0002 0 0 
220 0.0030 (7) 0.0002 0.0006 0.0001 0.0003 0.0001 0 
310 0.0022 (3) 0.0002 0.0001 0.0001 0.0002 0.0001 0 
130 0.0009 (2) 0.0002 0.0001 0 0.0001 0 0 
222 0.0003 (3) 0.0002 0.0002 0 0.0001 0 0 
321 0.0011 (2) 0.0001 0.0001 0 0.0002 0 0 
231 0.0001 (1) 0.0001 0 0 0.0001 0 0 
123 0.0008 (4) 0.0001 0.0001 0 0 0 0 
400 −0.0019 (6) 0.0004 0.0002 0.0001 0.0003 0.0001 0 
330 0.0011 (4) 0.0002 0.0001 0 0.0003 0 0 
411 −0.0008 (3) 0.0002 0.0002 0 0.0002 0 0 
141 −0.0001 (2) 0.0001 0.0001 0 0.0001 0 0 
aFor the various atom pairs of Fe46.5Ni53.5 for statistical and possible systematic errors described in the text. Total error 
is shown in parentheses and 0 indicates uncertainties <0.00005 Å. 

 

Page 16 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

146x188mm (72 x 72 DPI)  

 
 

Page 17 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

133x85mm (72 x 72 DPI)  

 
 

Page 18 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

134x131mm (72 x 72 DPI)  

 
 

Page 19 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

120x110mm (72 x 72 DPI)  

 
 

Page 20 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

83x80mm (72 x 72 DPI)  

 
 

Page 21 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

234x170mm (72 x 72 DPI)  

 
 

Page 22 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

147x111mm (72 x 72 DPI)  

 
 

Page 23 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

154x72mm (72 x 72 DPI)  

 
 

Page 24 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

137x164mm (72 x 72 DPI)  

 
 

Page 25 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

172x118mm (72 x 72 DPI)  

 
 

Page 26 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

92x234mm (72 x 72 DPI)  

 
 

Page 27 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

176x122mm (72 x 72 DPI)  

 
 

Page 28 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

291x152mm (72 x 72 DPI)  

 
 

Page 29 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

136x103mm (72 x 72 DPI)  

 
 

Page 30 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

145x73mm (72 x 72 DPI)  

 
 

Page 31 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

137x110mm (72 x 72 DPI)  

 
 

Page 32 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

136x100mm (72 x 72 DPI)  

 
 

Page 33 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

304x112mm (72 x 72 DPI)  

 
 

Page 34 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

110x105mm (72 x 72 DPI)  

 
 

Page 35 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

73x84mm (72 x 72 DPI)  

 
 

Page 36 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

271x183mm (72 x 72 DPI)  

 
 

Page 37 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

65x61mm (72 x 72 DPI)  

 
 

Page 38 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

137x126mm (72 x 72 DPI)  

 
 

Page 39 of 39

John Wiley & Sons

Characterization of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


