MDD Status Letter Report (AFCI CETE Milestone)

PDF Version Also Available for Download.

Description

Current flow sheets for processing used nuclear fuels do not produce separated streams of all of the actinides. These aqueous processing streams must be converted into solid forms suitable for recycle (fuel/target fabrication), storage, or disposal, necessitating co-conversion. A process developed at ORNL in the 1980s to make UO{sub 3} suitable as fuel feedstock was studied for preparation of mixed actinide oxides with similarly favorable ceramic properties. The process, Modified Direct Denitration (MDD), uses ammonium nitrate to alter the thermal decomposition behavior of metal nitrates and improve the ceramic properties of the resulting solid oxide. Since plutonium (IV) and neptunium(IV) ... continued below

Creation Information

Vedder, Raymond James & Jubin, Robert Thomas September 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 32 times , with 5 in the last month . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Current flow sheets for processing used nuclear fuels do not produce separated streams of all of the actinides. These aqueous processing streams must be converted into solid forms suitable for recycle (fuel/target fabrication), storage, or disposal, necessitating co-conversion. A process developed at ORNL in the 1980s to make UO{sub 3} suitable as fuel feedstock was studied for preparation of mixed actinide oxides with similarly favorable ceramic properties. The process, Modified Direct Denitration (MDD), uses ammonium nitrate to alter the thermal decomposition behavior of metal nitrates and improve the ceramic properties of the resulting solid oxide. Since plutonium (IV) and neptunium(IV) form compounds similar to uranium with the ammonium ion [(NH{sub 4}){sub 2}Pu(NO{sub 3}){sub 6}, (NH{sub 4}){sub 2}Np(NO{sub 3}){sub 6}], MDD-conversion of these metals was considered to be applicable. Co-conversion has advantages for making mixed oxides over individual element conversions that are followed by dry mixing of the oxide powders. Issues associated with preparing a mixture from individual oxides include use of additional equipment, dusting associated with feeding and milling, time requirements for milling, blending to obtain a uniform mixture, and inhomogenity at higher plutonium concentrations. These issues can be partially or wholly avoided by using MDD coconversion in which the mixing of the individual metals occurs in liquid solution; thus, adjusting relative metal concentrations is simpler and the resulting mixed oxide is more uniform than that produced by blending the individual oxides. Utilizing MDD also eliminates the need for mechanical treatment of the powder to obtain the desired ceramic properties, such as surface area and particle size distribution, since these characteristics are acceptable as-produced. The original MDD development work established that uranium oxide with good ceramic properties could be made. Following the discovery, a more fundamental understanding of the chemistry of the uranium-ammonium double nitrate salt was developed. Later pilot-scale studies produced kilogram quantities of UO{sub 3} using engineering-scale (1 kg/hour), continuously-operated equipment, while establishing the reliability of the process and equipment. The current work was performed in support of the Advanced Fuel Cycle Initiative (AFCI), utilizing glove-box-contained equipment (100 g/hour) to produce UO{sub 3}, PuO{sub 2}, and mixed oxides of uranium, plutonium, neptunium, and americium from a nitrate solution of those actinides. Then the MDD glove-box system was utilized in the Coupled-End-To-End (CETE) project to convert the U-Pu-Np and uranium product solutions into oxide powders. As part of the CETE project, a powder characterization laboratory was established in gloveboxes with instruments required for the determination of: (1) surface area by the BET methodology; (2) tap density by using a Quantachrome AutoTap; (3) flow properties by using a Freeman technology powder rheometer; (4) material composition and crystalline structure by using a powder X-ray diffractometer; (5) particle size distribution by using a laser light-scattering analyzer; and (6) imaging of the powders with a stereomicroscope. These instruments can be used to characterize the products and to determine the effects of MDD operating parameters on product powder morphology. Ultimately, the powder characteristics necessary to produce high-density, sintered MOX pellets can be determined.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2009/217
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/1042750 | External Link
  • Office of Scientific & Technical Information Report Number: 1042750
  • Archival Resource Key: ark:/67531/metadc838200

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2009

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Sept. 6, 2016, 1:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 32

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Vedder, Raymond James & Jubin, Robert Thomas. MDD Status Letter Report (AFCI CETE Milestone), report, September 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc838200/: accessed September 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.