
Spurious Shear in Weak Lensing with LSST

C. Chang,1? S. M. Kahn,1 J. G. Jernigan,2 J. R. Peterson,3
Y. AlSayyad,4 Z. Ahmad,3 J. Bankert,3 D. Bard,1 A. Connolly,4 R. R. Gibson,4
K. Gilmore,1 E. Grace,3 M. Hannel,3 M. A. Hodge,3 M. J. Jee,6 L. Jones,4
S. Krughoff,4 S. Lorenz,3 P. J. Marshall,5 S. Marshall,1 A. Meert,3 S. Nagarajan,3
E. Peng,3 A. P. Rasmussen,1 M. Shmakova,1 N. Sylvestre,3 N. Todd,3 M. Young3
1KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309, USA
2Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
3Department of Physics, Purdue University, West Lafayette, IN 47907, USA
4Department of Astronomy, University of Washington, Seattle, WA 98195
5Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK
6Department of Physics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

Accepted, Received; in original form

ABSTRACT

The complete 10-year survey from the Large Synoptic Survey Telescope (LSST)
will image ∼ 20,000 square degrees of sky in six filter bands every few nights, bringing
the final survey depth to r ∼ 27.5, with over 4 billion well measured galaxies. To take
full advantage of this unprecedented statistical power, the systematic errors associ-
ated with weak lensing measurements need to be controlled to a level similar to the
statistical errors.

This work is the first attempt to quantitatively estimate the absolute level and sta-
tistical properties of the systematic errors on weak lensing shear measurements due to
the most important physical effects in the LSST system via high fidelity ray-tracing
simulations. We identify and isolate the different sources of algorithm-independent,
additive systematic errors on shear measurements for LSST and predict their impact
on the final cosmic shear measurements using conventional weak lensing analysis tech-
niques. We find that the main source of the errors comes from an inability to adequately
characterise the atmospheric point spread function (PSF) due to its high frequency
spatial variation on angular scales smaller than ∼ 10′ in the single short exposures,
which propagates into a spurious shear correlation function at the 10−4–10−3 level on
these scales. With the large multi-epoch dataset that will be acquired by LSST, the
stochastic errors average out, bringing the final spurious shear correlation function
to a level very close to the statistical errors. Our results imply that the cosmological
constraints from LSST will not be severely limited by these algorithm-independent,
additive systematic effects.

Key words: cosmology: observations – gravitational lensing – atmospheric effects –
surveys: LSST

1 INTRODUCTION

Weak gravitational lensing, or weak lensing for short, is one
of the most powerful tools for probing dark matter and
dark energy (Albrecht et al. 2006). Distorted by interven-
? E-mail: chihway@slac.stanford.edu

ing large-scale structures, the otherwise randomly oriented
galaxy images encode signatures of dark matter and dark
energy in a statistical way, namely through cosmic shear.
For a review of weak lensing, see, for example, Bartelmann
& Schneider (2001, hereafter BS01). The lensing power spec-
trum provides a unique tool to distinguish between different
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cosmological models (Jain & Seljak 1997; Kaiser 1998; Hu
& Tegmark 1999).

Since the first detections of the cosmic shear signal by
several independent groups (Wittman et al. 2000; Bacon
et al. 2000; Kaiser et al. 2000), there has been an explosion
of research activity in this field. The most recent analyses
have shown that state-of-the-art weak lensing surveys are
already probing interesting regions of the dark energy pa-
rameter space (Semboloni et al. 2006; Benjamin et al. 2007;
Hetterscheidt et al. 2007; Schrabback et al. 2010; Lin et al.
2011; Huff et al. 2011). However, a major limitation of these
existing surveys has been their relatively small sky coverage,
which results in an insufficient number of galaxies to aver-
age out their random shapes and orientations (i.e. to reduce
the so-called “shape noise”). Cosmic shear measurements to
date are limited by such statistical errors.

As a result, several projects are attempting to over-
come this fundamental limitation by significantly increasing
the sky coverage. The Dark Energy Survey1, the Kilo De-
gree Survey2, Hyper Suprime Cam3, LSST4(Tyson 2002)
and Euclid5 projects have all been explicitly designed for
weak lensing investigations. The primary improvement of
these projects over previous ones is that the cameras they
incorporate have very large fields of view, which leads to a
much larger survey area and a dramatic improvement in the
statistical power of the dataset (Amara & Réfrégier 2007).
When statistical errors become negligibly small in these fu-
ture surveys, systematics errors become a primary concern.

For weak lensing, there are systematic errors associated
with physical effects in the atmosphere and the telescope,
and with imperfect algorithms used in the analysis. In this
paper, we are mostly interested in quantitatively character-
ising the former. Systematic errors due to imperfect algo-
rithms are in principle reducible, and will certainly shrink
as we gain experience with the near-term upcoming surveys.
However, physical effects that are inherent to the system
and independent of specific weak lensing algorithms are ir-
reducible and most likely will determine the ultimate limits
on cosmological constraints derived from weak lensing.

In the past, the effects of different sources of system-
atic errors on cosmic shear measurements have usually been
calculated by assuming some hypothetical power spectrum
for the spurious shear, often in simple functional forms for
analytical calculations (Amara & Réfrégier 2008, hereafter
AR08). However, these functional forms may not be well mo-
tivated by physics. We make the first attempt to approach
the problems in a bottom-up way and simulate the actual
measurements to predict the level of systematic errors from
first principles. We use LSST as our benchmark survey in
this work, but many of the results are general or scalable to
other future weak lensing surveys. The LSST Photon Simu-
lator, or PhoSim (Peterson et al. 2009, 2012; Connolly et al.
2010) is used in this work to generate realistic LSST images
for this study. In this way, we are able to measure quantita-

1 http://www.darkenergysurvey.org/
2 http://kids.strw.leidenuniv.nl/
3 http://www.astro.princeton.edu/~rhl/HSC/
4 http://www.lsst.org/
5 http://sci.esa.int/science-e/www/area/index.cfm?
fareaid=102

tively the systematic errors generated from various physical
effects in a controlled way.

Note that in this paper we only discuss the case of ad-
ditive shear systematics associated with the projected two-
point correlation function on a limited range of angular
scales (within the field of a single focal plane). We do not
consider weak lensing tomography (Hu 1999) or higher or-
der statistics (Schneider & Lombardi 2003; Schneider et al.
2005). The use of these other statistics can impose additional
requirements on the level of systematic errors, but on the
other hand, if the information is combined properly, it also
has the potential of mitigating particular systematic errors
that are only present in the projected two-point correlation
function.

The paper is organised as follows. A brief review of the
canonical framework of weak lensing is given in Section 2.
In Section 3 we present a short introduction to LSST and
our simulation tool. In Section 4, we lay out a framework for
classifying the different physical effects that induce errors in
shape measurements. In Section 5, the different sources of
errors and their correlation properties are quantified using
simulations. Possible sources of spurious shear signals af-
ter correcting for the PSF effects are discussed in Section 6,
while the results from simulations are presented in Section 7.
In Section 8, we discuss the prospect of combining multiple
exposures, the implications for the determination of cosmo-
logical constraints, and the effect of some of our assumptions
on our results. We conclude in Section 9.

2 WEAK LENSING NOTATION AND
MEASUREMENTS

In the presence of weak lensing, a galaxy image, having some
intrinsic shape, is first sheared by the gravitational potential
along the line-of-sight, then convolved with the atmospheric
and instrumental PSF before being measured. As an ob-
server, we want to reverse this process: measure the shape
of a galaxy from a noisy image, correct for the PSF effects
to infer the shear through an estimator, and finally calculate
different statistics that are sensitive to cosmology using the
shear estimator. For details on the weak lensing formalism,
as well as predictions of weak lensing signals from different
cosmological models, see BS01.

For this work, following the steps in a data reduction
process, we ask the following questions: (1) How do the dif-
ferent physical effects change the measured galaxy shape
before any PSF correction has been made? (Section 4, Sec-
tion 5) (2) To what level can these PSF effects be corrected
to infer the correct shear using a conventional algorithm?
(Section 6, Section 7) (3) With only the information from
two-point shear correlation functions, how do the effects in
(1) and (2) scale in the final combined dataset and what
does that imply in terms of uncertainties in our predicted
cosmological model? (Section 8)

2.1 Weak lensing notation

Throughout the paper we use the following definition for the
complex “ellipticity spinor”, ε = ε1 + iε2, to parametrise the

http://www.darkenergysurvey.org/
http://kids.strw.leidenuniv.nl/
http://www.astro.princeton.edu/~rhl/HSC/
http://www.lsst.org/
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102
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shapes of objects:

ε1 =
I11 − I22

I11 + I22
, ε2 =

2I12

I11 + I22
. (1)

where Iij are normalised moments of the object’s light inten-
sity profile f(x1, x2), weighted by a Gaussian filterW (x1, x2)
to reduce noise:

Iij =

∫ ∫
dx1dx2W (x1, x2)f(x1, x2)xixj∫ ∫
dx1dx2W (x1, x2)f(x1, x2)

, i, j = 1, 2 . (2)

where the width ofW (x1, x2) is chosen to give the maximum
signal-to-noise ratio for each individual object.

In this paper, if not otherwise specified, boldface sym-
bols indicate the complex quantities and the magnitude of
the complex quantity is specified using the corresponding
regular-font symbol (e.g. ε = |ε| =

√
ε2

1 + ε2
2). A similar

notation is used to parametrise shear γ, where we have
γ = γ1 + iγ2.

We also adopt the standard definitions for calculat-
ing the correlation function ξ+,XX(θ) and power spectrum
CX(`):

ξ+,XX(θ) = 〈Xt(θ0)Xt(θ0+θ)〉+〈X×(θ0)X×(θ0+θ)〉 , (3)

CX(`) = 2π

∫ ∞
0

dθθξ+,XX(θ)J0(`θ) , (4)

ξ+,XX(θ) =
1

2π

∫ ∞
0

d``CX(`)J0(`θ) , (5)

where X is a complex spinor (e.g. ellipticity ε or shear γ)
and the subscripts t,× indicate an isotropised decomposition
of X along the line connecting a particular pair of galaxies.
If X is measured in an arbitrary Cartesian coordinate sys-
tem X = X1 + iX2 with 1,2 denoting the two axes, then
the rotated shear is calculated via Xt = −Re(Xe−2iϕ) and
X× = −Im(Xe−2iϕ), where ϕ is the argument of the vector
connecting the pair of galaxies. The angle brackets 〈〉 indi-
cate an average over all galaxy pairs separated by θ (with
one galaxy located at some θ0). J0 is the zeroth-order Bessel
function of the first kind. We will use ξXX as shorthand for
ξ+,XX(θ) for the rest of the paper. For the simulations in
this work, we look at angular scales up to the scale of the
full LSST focal plane (∼ 3 degrees).

2.2 Analysis tools

In all of our analyses of the simulated images, we use the
software package Source Extractor (Bertin & Arnouts
1996) for object detection. We set the following con-
figuration parameters: DETECT_MINAREA = 5 and
DETECT_THRESH = 1.5.

Background estimation, shape measurement, PSF cor-
rection and shear estimation were done through the software
package IMCAT6 based on the algorithm derived in Kaiser
et al. (1995), Luppino & Kaiser (1997) and Hoekstra et al.
(1998), commonly known as KSB. The IMCAT parame-
ters e[0], e[1], gamma[0] and gamma[1] correspond to the
ellipticity and shear components ε1, ε2, γ1 and γ2 respec-
tively, while the IMCAT parameter rg is used for the width

6 http://www.ifa.hawaii.edu/~kaiser/imcat/download.html

of W (x1, x2) in Equation 2. Our specific implementation of
KSB is similar to the “ES2” method in Massey et al. (2007).
We describe briefly the KSB formulae in Appendix B.

3 LSST AND PHOSIM

The LSST survey will be the most powerful ground-based
weak lensing survey planned for the coming decade. Its revo-
lutionary scale will likely lead the next generation of optical
survey designs. We therefore believe that using LSST as the
target for this study will enable us to capture the most im-
portant issues for future weak lensing surveys.

3.1 LSST design parameters

The optical design of LSST is optimised to cover as much
sky as possible while maintaining good image quality (Ivezic
et al. 2008). The 8.4-meter aperture and the 9.5-degree2 field
of view combine to an étendue of ∼319.5 m2degree2, which
is over 10 times larger than that of any previous survey
facility. The heart of the instrument is a 64-cm-diameter,
3.2-giga-pixel focal plane. The focal plane is tiled with 189
CCD sensors, each with 4k×4k, 10 µm square pixels (each
pixel corresponds to an angular scale of 0.2"). The layout of
the focal plane geometry is shown in Figure 1.

Good image quality is one of the key components to
weak lensing measurements. To ensure that over the entire
survey period the instrumental effects that degrade the im-
age quality are kept under control, LSST incorporates an
Active Optics System (hereafter AOS), which adjusts the
figures and positions of the three reflective optics and the
orientation of the camera to correct the wavefront errors.

LSST will take images approximately every 15 – 20 sec-
onds, covering the entire available hemisphere every few days
in six optical filter bands. Each of the 2 consecutive 15-
second exposures (separated by 4-second readout and shut-
ter open/close) is called a visit. The 2 exposures in a visit
will be taken on the same field. From visit to visit, the tele-
scopes will then point to different fields in order to achieve
the very wide sky coverage. The 10-year survey will generate
an unprecedentedly large amount of data (nearly two thou-
sand 15-second exposures on each field across the 20,000
degree2 sky). For cosmic shear measurements, this means
reducing the statistical errors from shape noise and cosmic
variance by orders of magnitude. As a result, understanding
the sources of systematic errors in these data will undoubt-
edly be a major challenge for LSST.

3.2 LSST observation parameters

We extract from catalogues generated by the LSST Opera-
tions Simulator (Krabbendam et al. 2010, hereafter OpSim)
information about the the observing conditions in an ex-
pected LSST weak lensing dataset. OpSim simulates the at-
mosphere and night sky conditions for individual exposures
at the LSST site over 10 years based on weather models,
telescope models and optimisation of the survey strategy.

From previous work, it is known that only images with
the best image quality contribute to the cosmic shear signal
(Hoekstra et al. 2006). As a result, to estimate more ac-
curately the “typical” observing parameters for images that

c© 2011 RAS, MNRAS 000, 1–18
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Figure 1. Layout of the LSST focal plane taken from Ivezic et al.
(2008). The red and blue thin lines indicate the boundaries for
each sensor, where the blue area is the 189 science sensors we
use in our focal-plane size simulations. The ellipticity maps from
our simulations shown in Figures 3 and 5 correspond to ellipticity
values in these areas.

contribute to the final cosmic shear measurement for LSST,
we take mediums of the major observation parameters in a
subset of the full OpSim catalogue. This subset consists of
the 50% of the r-band (552–691 nm) data that give the best
image quality. From this process we define the “fiducial ob-
serving parameters” for a 10-year LSST weak lensing dataset
as listed in Table 1. Note that the parameters in Table 1 are
specified (when applicable) for r band, while for real weak
lensing analyses, i-band (691–818 nm) images are likely to
be used as well. We carry out all the analyses presented
here in r band, but extrapolate the results to i band (see
Section 8.1), knowing that the image quality and observing
parameters are similar in both bands. In Table 1, the pa-
rameter aopt is the designed instrumental PSF size specified
in Ivezic et al. (2011)7 at the elevation that corresponds to
the median airmass.

3.3 PHOSIM

To study in detail the expected systematic errors in weak
lensing measurements for this survey, existing data from
other projects are insufficient in both the data quality and
quantity. As a result, simulations become the only way to in-
vestigate such problems before the telescope is built. For this
study in particular, simulations also enable us to trace the
individual sources of systematic errors in a controlled and
bottom-up fashion, which is almost impossible to achieve
with real data. A few unique features of the simulation pro-
cess in this work should be emphasised: First, all the physical
effects that introduce systematic errors in the shape mea-
surements can be separately turned “on” and “off”. There-

7 http://www.lsst.org/files/docs/SRD.pdf

Table 1. Fiducial observing parameters. All parameters are spec-
ified for the LSST r band (552-691 nm). These observing parame-
ters are chosen to be typical for obtaining images for weak lensing
measurements. The numbers are calculated from the medium val-
ues of the best 50% r-band exposures. Note that aatm includes
the airmass contribution.

Parameter name Description Fiducial value

aatm atmospheric seeing 0.56"

aopt
instrumental 0.42"PSF FWHM

Xair airmass 1.2

Bsky sky background 640 counts/pixel

texp exposure time 15 seconds

b Galactic latitude −60◦

N number of exposures 184

fore, we have full control over which actual physical effects
are dominant in determining the image shape error. Second,
the PSF at the location of a galaxy image can be known
exactly by simulating an image with a bright source at that
same location. Finally, all physical processes in these numer-
ical experiments are reproducible.

In an earlier attempt to simulate LSST as a complete
system using a modified version of existing optics software
(Jee & Tyson 2011), the potential power of studying these
issues via simulations has been demonstrated. In this work,
we take the analysis one step further and invoke PhoSim
as our primary tool for generating simulated images. Un-
like the software used in Jee & Tyson (2011), PhoSim is a
set of custom-made software designed specifically to repre-
sent the LSST’s performance, and simultaneously incorpo-
rate many aspects of the project design (e.g. data manage-
ment software development and scientific studies). PhoSim
adopts a photon-by-photon Monte Carlo fast ray-tracing al-
gorithm, which generates images expected for LSST with
very high fidelity. In collaboration with the LSST instru-
mentation teams and multiple science groups, the PhoSim
software has been continuously updated and cross-checked
to track the most current hardware developments.

PhoSim is part of the end-to-end LSST Image Simula-
tor8 (ImSim). ImSim simulates the forward process from cos-
mological models to realistic astronomical images, in which
PhoSim is responsible for the last part in this process – the
photon propagation from top of the atmosphere down to
the CCD sensors and the signal readout. ImSim begins with
a catalogue of celestial sources based on large cosmological
N-body simulations and detailed Milky Way and Solar Sys-
tem models. A realistic observing environment is then set
up by using parameters predicted by the OpSim catalogue.
PhoSim then simulates the final “exposure” by tracing indi-
vidual photons from objects in the catalogue for that part
of the sky, through the atmosphere, the telescope, and into
the camera to form an image that retains all the major char-
acteristics we anticipate in the LSST data.

8 http://lsst.astro.washington.edu/
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We use PhoSim version 3.0 to do all the analyses in
this paper. To provide sufficient background material to in-
terpret the results, we describe briefly in Appendix A the
major physical models in PhoSim, and refer to Peterson
et al. (2012) for further details.

4 SOURCES OF ELLIPTICITY ERRORS

Assume the PSF has some finite size a and we measure a
PSF-convolved galaxy to have ellipticity εm, then this εm

can be broken down to an intrinsic component, a shear com-
ponent and an additional component from various physical
effects associated with counting statistics, the atmosphere
and the telescope/camera system. If we assume that all
these three components are evaluated for the same measured
galaxy size and we are only interested in the small changes
in the anisotropy of the galaxy shape9, we can write out the
following relation in linear additive terms:

εm = εi +
2

α
γ + εs , (6)

where the first term is the ellipticity of the galaxy convolved
with a circular PSF, the second term is the change in εm

due to shear and the last term is the change in εm due
to other physical effects. α is a scaling factor to first “de-
weight” the ellipticity calculated from the weighted moments
(Equation 2) and then account for the effect of the finite-size
PSF. The factor of 2 in the second term converts shear into
ellipticity (BS01). For infinite resolution (PSF ∼ delta func-
tion) and ellipticities calculated from unweighted moments
(W = 1), we have α = 1. For infinite resolution and ellip-
ticities calculated from weighted moments, α is equivalent
to two times the shear responsivity P γαβ defined in Hoekstra
et al. (1998).

The correlation function for the measured ellipticity can
thus be written out as:

ξεmεm =ξεiεi +
4

α2
ξγγ + ξεsεs

+ 2(
2

α
ξεiγ +

2

α
ξγεs + ξεiεs) . (7)

4.1 Non-stochastic and stochastic errors in
ellipticity measurements

Here we present a concept for classifying εs similar to that
in Jain et al. (2006). This classification scheme is especially
important for analyses of multi-epoch datasets such as LSST
– this is the first step towards understanding the nature of
different sources of systematic errors in shear measurements.
Two major classes of physical effects combine to give εs. We
use the terms “non-stochastic” and “stochastic” to refer to
these two classes of errors.

Non-stochastic errors are those that are either fixed in
space and time, or vary with characteristic patterns over
multiple exposures. Stochastic effects, on the other hand,

9 Because the measured ellipticity of a galaxy after convolution
with a PSF depends nonlinearly on the width of the PSF, we
make this assumption and only investigate the anisotropic part
of the ellipticity change, which can be viewed as linear.

Table 2. Classification of the major physical effects that intro-
duce errors in shape measurements. The difference between non-
stochastic and stochastic optics errors is described in Section 4.

Non-stochastic effects Stochastic effects

Optics design Counting statistics
Non-stochastic optics errors Stochastic optics errors

Tracking errors
Atmospheric effects10

induce errors that change randomly from exposure to expo-
sure with no correlation in time. For non-stochastic errors,
because they show repeated patterns from frame to frame,
one does not benefit from averaging over multiple indepen-
dent exposures; however, this repeating feature also means
that they potentially can be characterised very well when
one properly combines the multi-epoch dataset. Stochastic
errors are exactly the opposite: randomness implies one can
only model them with data from limited information in a
single exposure, but via some form of averaging of the mul-
tiple exposures on the same field, the errors are likely to
cancel each other.

In Table 2, we identify the major non-stochastic and
stochastic effects that are modeled in PhoSim and are most
likely to contribute to εs. We also provide in Appendix A
brief descriptions of how each of these effects is modelled
in PhoSim. There are some physical effects that may be
present and are not yet modeled in the current PhoSim, but
we believe they will not contribute significant.ÊThe effects
listed in Table 2 should comprise the great majority of the
sources of error for weak lensing measurements with LSST.

In most existing weak lensing data, non-stochastic ef-
fects dominate the error; therefore the origins of these sys-
tematic errors are historically better understood. For exam-
ple, Jarvis et al. (2008) were able to model the PSF patterns
of telescope aberrations with low order functional forms.
Stochastic effects, being relatively small in existing data,
have not been studied in detail. Only a few pioneering stud-
ies have tried to understand the stochastic effects under sim-
ple cases: Paulin-Henriksson et al. (2008) and Zhang (2010)
studied the noise contribution to shape measurement due
to counting statistics and pixelation, while De Vries et al.
(2007) investigated the atmosphere-induced ellipticity and
its time dependence.

Note that this classification scheme is only valid under
a well-defined survey since it depends on the cadence of the
survey and other operational issues. In this paper we are
assuming the as designed LSST survey mode (Section 3.1),
where the minimum time between consecutive visits on the
same patch of sky is approximately 30 minutes (Ivezic et al.
2011). This means that the telescope has experienced at least
∼50 different pointings between the two consecutive visits
and is looking through a very different column of atmosphere
each time. Under this scenario, most of the physical effects
we discussed are truly stochastic, or at least stochastic to a

10 Atmospheric effects here does not include effects that change
the measured size of the galaxy such as variation in the seeing
and airmass. Instead we use the median seeing and airmass as
listed in Table 1 through the paper.

c© 2011 RAS, MNRAS 000, 1–18
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Figure 2. Ellipticity correlation function for different samples of
simulated galaxies. Black shows the ellipticity correlation func-
tion for a realistic galaxy sample, while red shows the same func-
tion measured from the circularised counterpart of the realistic
galaxy sample. Green curves are measured from samples of circu-
lar Gaussian shapes of different sizes. The green curve measured
from circular Gaussians of 23rd r-band magnitude and R=0.65"
(green square) agree approximately in level and shape with the
black and red curves, where R is the FWHM size of the Gaussian
profile. This demonstrates (1) shape noise is uncorrelated and (2)
we can use the circular Gaussian shape with r-band magnitude
23 and R =0.65" as the “fiducial galaxy” to measure the spatial
correlations of the response of the entire galaxy population.

very high level between visits. For the two exposures in the
same visit, due to the close separation in time, stochasticity
is not guaranteed for all effects – we discuss in Appendix D
how this factor may be estimated for the spurious shear
correlation function in the combined dataset.

4.2 Practical considerations

Real galaxies have intrinsic shapes, and will be subject to
cosmic shear, so that in Equation 6, εi and γ are not gen-
erally equal to zero. To average over these effects at the
statistical level sampled by LSST, we would need to sim-
ulate ∼200 images of roughly four billion galaxies in each
test. This is computationally impractical, so we adopted a
simpler approach described below.

Note from Equations 6 and 7 that if we set up simu-
lations so that εi = γ = 0, we can avoid the contribution
from εi and γ in the observable εm, and directly measure εs

and ξεsεs unambiguously. This suggests that our problem is
equivalent to asking the following question:

Under zero shear, what is the anisotropic component
of the spurious ellipticity εs induced by a certain physical
effect on a circular object of εi = 0 and what are the
correlation properties ξεsεs of those spurious ellipticities?

That is, we do not measure the ellipticity on a fully re-
alistic galaxy population with a distribution of shapes, sizes
and brightnesses; instead, simple circular “galaxies” are used
as “test particles” for the entire population of galaxies. We
show below that this approach is justified for our purposes.

In Figure 2, we simulate a representative galaxy sample

Table 3. Fiducial galaxy characteristics specified in r band. The
representative sample of weak lensing galaxies can be collapsed
into the fiducial galaxy and reproduce the same ellipticity corre-
lation function – on average, the fiducial galaxy reacts to the PSF
effects the same way as the population of galaxies.

Parameter name Description Fiducial value

m AB magnitude 23

S total signal counts ∼ 2600 counts

R Gaussian FWHM 0.65"

ngal number density ∼ 5.5 /arcmin2

SNR signal-to-noise ratio 8.33

from the PhoSim sky catalogue and measure the elliptic-
ity correlation function ξεmεm from a typical single expo-
sure. We then “circularise” these galaxy images at the in-
put catalogue level before entering the atmosphere so that
they retain all the characteristics, such as size, brightness,
redshift and spectral energy distribution (SED) in the orig-
inal sample, but lose the shape information. Although the
original sample shows a noisier ellipticity correlation func-
tion, the circularised sample roughly agrees with it in both
level and shape. The agreement between the ellipticity cor-
relation functions measured from the original galaxies and
the circularised galaxies demonstrates that shape noise is
not spatially correlated; thus it should play no role in the
correlation function as expected. In other words, we have
ξεiεi = ξγγ = ξεiγ = ξεsγ = 0 for both samples. The slightly
lower red curve is mainly due to the small ξεiεs term that is
present only in the original galaxy sample. We show that we
can isolate ξεsεs in the ξεmεm using the circularised galaxy
sample.

To further simplify the problem, the distribution of cir-
cular galaxies is collapsed into a single circular Gaussian
shape. By exploring the size-magnitude parameter space,
we find that using roughly the average magnitude, size and
number density of the original sample, we can recover the
ellipticity correlation of the circularised galaxy sample. For
the rest of this paper, we will refer to this special circular
Gaussian as the “fiducial galaxy.” Figure 2 shows the elliptic-
ity correlation functions for three different sizes of circular
Gaussian shapes, with the middle one (square) being the
fiducial galaxy. The characteristics of the fiducial galaxy are
listed in Table 3.

The construction of the fiducial galaxy is an approxima-
tion, but is appropriate for our analyses with the following
caveats. First, by taking the ellipticity results from a circular
galaxy (εi = γ = 0) as a general result for the whole galaxy
population, we are assuming that the average ellipticity error
on the population of galaxies is approximately the ellipticity
error on the average galaxy in the population. This is ignor-
ing the fact that certain algorithms may tend to measure
the ellipticity of a galaxy more accurately when the galaxy
is more circular or more elliptical. This intrinsic-ellipticity-
dependent error may introduce additional errors in the ellip-
ticity measurements. We ignore them because these errors
are algorithm-dependent, and are spatially uncorrelated, i.e.
they only contribute a small addition contribution to shape
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noise. Second, by choosing a Gaussian profile for the fidu-
cial galaxy rather than a more realistic Sersic-type profile,
we are assuming our ellipticity measurement method per-
forms equally well on Gaussian profiles and realistic galaxy
profiles. This again is to eliminate the algorithm-dependence
coupling to the problem and also important later for shear
measurements as discussed in Section 6.

5 QUANTIFYING ERRORS ON ELLIPTICITY
MEASUREMENTS

In this section, if not otherwise specified, the measured el-
lipticity on any simulated galaxy image is effectively an “el-
lipticity error” generated from a certain physical effect, for
reasons we have explained in Section 4.2 (εi = γ = 0). Thus
we omit the superscripts in our notation and use ε (ξεε)
instead of εs (ξεsεs) or εm (ξεmεm).

Also, for all ellipticity measurements, we define the
quantity σ[ε] to be a measure of the uncertainty in ellip-
ticity measurements due to a certain physical effect. σ[ε]
is defined as the square-root of the quadrature sum of the
standard deviation of individual ε1 and ε2 distributions (as
opposed to the standard deviation of ε):

σ[ε] =
√
σ2
ε1 + σ2

ε2 . (8)

5.1 Non-stochastic effects

5.1.1 Simulations

To examine the non-stochastic effects, we generated two sets
of simulations. Each set of simulations consists of one or
more full LSST focal planes. In all of the simulations, since
we need to “turn off” the atmospheric effects, we convolve
the fiducial galaxies with a circular Gaussian before running
the simulations to ensure that the observed galaxies have
the same size as a fiducial galaxy observed under the fidu-
cial observing conditions. To suppress the contribution from
counting statistics errors in the measurements, all objects
are generated with high SNR at ∼ 160.

In the first set of simulations, we simulate the “as
designed instrument” by including only the optics design,
isotropic charge diffusion in the CCD detectors, and pix-
elisation. In the second set of simulations, we include non-
stochastic perturbations to the optics due to solid body mis-
alignments, surface perturbations of the major optics ele-
ments, and warping and misalignment of the individual sen-
sors in the focal plane (see Table A1 for approximate levels
of the major perturbations). Twenty focal-plane size images
with different Gaussian random realisations of these errors
are generated in order to capture the effects in a “typical”
LSST observations.

5.1.2 Results

In Figure 3 (a), we show the ellipticity magnitude ε mea-
sured from the simulations across the LSST focal plane for
the as designed instrument. When non-stochastic optics er-
ror is induced, the measured ellipticity changes. One exam-
ple in the set of simulation is shown in Figure 3 (b), where

the change in ellipticity due to a certain set of optics errors
is shown.

The distribution of ε for the two sets are plotted in
Figure 4 (a) with arbitrary normalisations. The correspond-
ing σ[ε] values of these distributions after correcting for
the counting statistics11 are listed on the plot. We mea-
sure σ[ε] ∼ 7× 10−3 for the design, σ[ε] ∼ 6× 10−3 for the
non-stochastic optics effects. The total ellipticity contribu-
tion from all non-stochastic effects on the fiducial galaxy is
σ[ε] ∼ 9× 10−3.

The median absolute ellipticity correlation function
|ξεε| measured from the fiducial galaxies in all the simu-
lations is plotted in Figure 4 (b) for the design and for the
non-stochastic optics effects added. The total ellipticity cor-
relation function for all effects in this “non-stochastic” class
is also shown. The correlation function for the design is at
the level ∼ 1.5× 10−5 with a rather flat shape. Adding non-
stochastic effects almost doubles the level of the correlation
function.

Note that Figure 4 may not be characteristic of other
telescopes, since we have utilised a large amount of LSST-
specific information about the optics configuration and en-
gineering tolerances (Ivezic et al. 2011). However, the main
message from this section is the demonstration that for fu-
ture large telescopes with designs similar to LSST, the non-
stochastic spurious ellipticity correlation will be at a low
level compared with existing telescopes (see Jarvis & Jain
2004, for example).

5.2 Stochastic effects

5.2.1 Simulations

To examine the contributions of stochastic effects, we use
one realisation of the non-stochastic optics errors in the
previous simulations and then add on stochastic contribu-
tions that vary randomly from exposure to exposure. Non-
stochastic contributions to the ellipticities are later sub-
tracted component-wise from the measured ellipticities to
obtain the stochastic contribution.

For each of the four stochastic effects listed in Table 2,
we generate a set of 20 focal-plane-size simulations with fidu-
cial galaxies distributed over the field. The input parameters
to the 20 simulations in each set are controlled so that each
of the other three effects are “turned off” and only one ef-
fect is “turned on” – only parameters associated with that
one effect are allowed to vary. In addition, we generate one
set of simulations (20 focal-plane-size image), where the four
stochastic effects are all turned on. These images are used
in Section 7 for shear measurement tests. We describe below
the prescriptions for how we set the parameters for each of
the effects in the simulations.

Counting statistics is the largest stochastic source of
noise in these single exposures. It is also the only effect that

11 We will see later in Section 5.3 that for the ellipticity mea-
surements done with SNR∼160 objects, there exist uncertainties
from counting statistics at the σ[ε] ∼ 5 × 10−3 level (see Equa-
tion 12), which we need to subtract in quadrature from the raw
measurements to isolate the uncertainties due to the specific effect
of interest.
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(a) (b)

Figure 3. Ellipticity magnitude ε measured from the fiducial galaxies over the LSST focal plane for the (a) optics design and (b) one
example of adding non-stochastic optics errors. All non-stochastic optics effects induce ellipticity magnitudes <0.02 for most of the field.
Greater ellipticites are mainly near the edges. The large-scale variations come from perturbations of the positions and surface heights of
the mirrors and lenses, while the variation in the focal plane height contributes to the visible boundaries between individual CCDs.

(a) (b)

Figure 4. The following abbreviations are used for the different sources of ellipticity errors: DES (design), OPT_NS (non-stochastic
optics effects) and ALL_NS (all non-stochastic effects). (a) Distribution of the ellipticity magnitude measured for the fiducial galaxies
when different non-stochastic effects are added. (b) Absolute correlation function of the ellipticity errors for the fiducial galaxies when
different non-stochastic effects are added. The red curve is the median value for 20 different realisations of the non-stochastic optics
effects.

is stochastic in both space and time, which prohibits it from
being corrected through PSF modelling.

The relevant measure for counting statistics is the SNR
of an object, which we can calculate straightforwardly for
a circular Gaussian profile given the total signal counts S,
object FWHM size R, background counts Bsky and apparent

object FWHM size Rm:

SNR =
0.7× S√

0.7× S + π(1.34×Rm)2 ×Bsky

(9)

Here we use a typical aperture radius of ∼1.34 times the
FWHM of the apparent object size Rm, containing ∼70%
of the source counts. For circular Gaussian, the apparent
object size Rm can be approximated as the object size R
convolved with a circular Gaussian with FWHM size equal
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to the PSF size a:

(Rm)2 = R2 + a2 (10)

where a can be estimated by adding to aatm in quadrature
the instrumental PSF contribution aopt:

a =
√
a2

atm + a2
opt (11)

In this section, we fix S, R, Bsky and a to the fiducial
values in Tables 1 and 3. In Section 5.3, we explore the
full SNR parameter space. The 20 focal-plane-size images
in this set are identical except that different photons are
drawn from the galaxy and therefore travel slightly different
light-paths.

Stochastic optics effects are the residual optics errors
after AOS correction that do not show repeatable patterns
from exposure to exposure. The 20 focal-plane-size images
in this set are identical except that the optics perturbations
are varied from frame to frame within the level allowed by
the adopted tolerances listed in Table A1.

Tracking errors occur due to imperfect tracking of the
telescope during the exposure. They cause the measured ob-
ject shape to be slightly elongated in the direction of the sky
rotation. The 20 focal-plane-size images are identical except
that a different tracking error trajectory within the adopted
tolerances described in Section A2 is assigned to each reali-
sation.

Atmospheric effects are slightly more complicated to
model. For the same assumed fiducial seeing in all 20 simula-
tions, different realisations of the atmosphere are generated
by different combinations of the structure function, outer
scale, wind speed and wind directions over the multiple at-
mospheric layers. The 20 focal-plane-size images are identi-
cal except that a different combination of these parameters
is used.

For the first three sets of simulations, since the atmo-
sphere is turned off, all objects are convolved with a circu-
lar Gaussian before we run the simulator so that the mea-
sured object size is the same as if it had propagated through
the atmosphere. Similar to Section 5.1.1, for all sets except
the first, objects are generated with high SNR at ∼ 160
to suppress contribution from counting statistics errors in
the measurements. The ellipticity of each object is mea-
sured and the mean ellipticity for each object over the 20
realisations is taken as the non-stochastic contributions and
subtracted component-wise to yield the stochastic ellipticity
component.

5.2.2 Results

Figure 5 shows one example of the absolute ellipticity er-
rors in each of the four sets. The colour mapping for the
four plots are adjusted to best illustrate the spatial patterns
and absolute ellipticity levels. Note that in Figure 5 (a) the
CCDs in the corner of the field are missing. This is because
the fiducial galaxies have very low SNR at those vignetted
locations. In a more realistic field, brighter galaxies will still
be detected there.

Distributions of the magnitudes of the stochastic ellip-
ticity errors ε measured from the four sets of simulations
are plotted in Figure 6 (a). Each of the curve is normalized
so that it peaks at . Also overlaid is the total stochastic el-
lipticity error distribution. The corresponding σ[ε] values of
these distributions after correcting for counting statistics11

are listed on the plot. Figure 6 (c) is a zoomed-in view of Fig-
ure 6 (a) on the lower ellipticity values. Clearly, in a single
exposure the dominant error contribution to the shape mea-
surements for a fiducial galaxy is counting statistics, giving
σ[ε] ∼ 1.1× 10−1. The atmospheric effects and the stochas-
tic optics effects are at similar levels and are the second
and third largest contributors, giving σ[ε] ∼ 1.2× 10−2 and
σ[ε] ∼ 1.1× 10−2 respectively. Tracking errors are the most
insignificant effect of the four, with σ[ε] ∼ 5 × 10−3. The
total stochastic ellipticity uncertainty when all effects are
turned on is σ[ε] ∼ 1.3 × 10−1. Note that the total non-
stochastic ellipticity error discussed in Section 5.1 is more
than an order of magnitude smaller than the total stochastic
ellipticity errors.

We now turn to the median correlation functions of
these four stochastic ellipticity error components, shown in
Figure 6 (b), along with the total stochastic ellipticity error
correlation function. The error bars in each case show the
standard deviation of the 20 realisations divided by

√
20.

The first observation is that although counting statistics er-
rors dominate in the ellipticity error as shown in Figures 5
and 6 (a), they are completely uncorrelated. They oscillate
rapidly but are always consistent with zero. This is of course
expected – regardless of the SNR of the measured objects,
counting statistics makes no contribution to the correlation
function. Tracking errors, on the contrary, being the lowest
in Figure 6 (a), contribute to a small but non-zero correla-
tion at the 10−5 level. The stochastic optics effects generate
ellipticity correlations slightly below the 10−4 level while the
atmospheric effects contribute to a similar level of ellipticity
correlation with a steeper shape as can be seen more clearly
in Figure 6 (d), the zoomed-in view for Figure 6 (b). The to-
tal ellipticity correlation function is thus dominated by the
atmosphere component at small scales and then a combi-
nation of the stochastic optics errors and the atmospheric
effects at larger scales. Also notice that the non-stochastic
component is approximately an order of magnitude smaller
than the total stochastic ellipticity correlation in a single
exposure.

5.3 Discussion

Up to this point, we have quantified σ[ε], the expected levels
of errors in ellipticity measurements due to different physi-
cal effects for a typical LSST single exposure. These results
can be scaled to other observing conditions and source dis-
tributions as a first-order estimation for the uncertainties in
ellipticity measurements in another dataset. The two major
quantities that govern the scaling of σ[ε] and ξεε for a cer-
tain dataset are the average observed object size Rm (Equa-
tion 10) and the average SNR (Equation 9) of the objects.
The level of counting statistics contribution to ellipticity er-
rors σ[ε] is expected to scale with some function of SNR,
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(a) (b)

(c) (d)

Figure 5. Ellipticity magnitude ε measured from the fiducial galaxies over the LSST focal plane for four stochastic effects: (a) counting
statistics, (b) tracking errors, (c) stochastic optics errors and (d) atmospheric distortions. In each case, the colour bars are adjusted to
best show the ellipticity spatial pattern. Since these effects are stochastic, we show only one representative realisation of the random
process to illustrate the kind of ellipticity pattern induced by each effect. Among the four, (a) counting statistics induces the highest level
of errors and show “missing” sensors on the edge of the field due to the fact that vignetting causes the fiducial galaxies to be undetectable
at those positions.

while ellipticity errors from all the other effects scale with12

(Rm)−2. For ξεε, on the other hand, the counting statistics

12 This can be derived by assuming the measured ellipticity
comes from an elliptical Gaussian PSF convolved with a cir-
cular Gaussian galaxy. If the PSF has second moments I′ij
and the galaxy has second moments Iij , then because the mo-
ments are effectively summed in the convolved image, and I11 −
I22 = I12 = 0, the convolved object has ellipticity (ε1, ε2) =

1
I11+I′11+I22+I′22

(I′11 − I′22, 2I
′
12) ∝ ( 1

Rm )2(I′11 − I′22, 2I
′
12).

contribution is essentially zero, while all other components
scale with (Rm)−4.

Note also that in general the measured level of the cor-
relation function is lower than what is expected for a naive
assumption of |ξεε| ∼ σ[ε]2. This is because the distortions
of the galaxies are usually only partially correlated in space.
The degree of correlation, which is governed by the physi-
cal mechanism that induces the correlation, determines how
close |ξεε| approaches σ[ε]2.

To determine the scaling of σ[ε] with SNR, we perform
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(a) (b)

(c) (d)

Figure 6. The following abbreviations are used for the different sources of ellipticity errors: CS (counting statistics), OPT_S (stochastic
optics effects), TRK (tracking errors), ATM (atmospheric effects), and ALL_S (all stochastic effects). (a) Distribution of the ellipticity
magnitude measured for the fiducial galaxies when different stochastic effects are added. The grey shaded area indicates the ellipticity
magnitude distribution from all the stochastic effects together. (b) Absolute correlation function of the ellipticity errors for the fiducial
galaxies when different stochastic effects are added. Note that all curves plotted for the stochastic effects are the median value for 20
different realisations, with the error bars showing the standard deviation of the 20 realisations divided by

√
20. Negative values are

plotted with open symbols. (c) is a zoomed-in view of (a) on the lower ellipticity values and (d) is a zoomed-in view of (b) on the higher
correlation function curves.

a series of simulations similar to the first set of simulations
(i.e. counting statistics) in Section 5.2.1, but vary the input
galaxy’s size and magnitudes over the range R = [0" (point
source), 0.5", 0.7", 0.85", 1.0", 1.5", 2.0"] and m = [18, 19,
20, 21, 22, 23, 24] to cover a nominal galaxy population and
plot σ[ε] as a function of the object’s SNR. The results are
illustrated in Figure 7. We find that even for the wide range
of size and brightness sampled, the ellipticity errors for all
objects lie on a power law curve of index ∼ −1, described
by the fit:

σ[εCS ] ≈ 0.875× SNR−0.9995 ≈ 0.875

SNR
, (12)

where the subscript CS indicates the ellipticity uncertainty
due to counting statistics errors only. Equation 12 is consis-
tent with the analytical predictions and numerical simula-

tions (Paulin-Henriksson et al. 2008; Réfrégier et al. 2012)
in previous studies.

In Figure 7, we show the breakdown of σ[ε] into differ-
ent components for a galaxy of FWHM size ∼ 0.65" under
fiducial LSST observing conditions (Table 1) as a function
of the SNRs of the objects. The top axis m∗ shows the cor-
responding r-band AB magnitude for objects at that SNR.
The errors due to all non-stochastic effects and the errors
due to all stochastic effects except counting statistics are by
definition independent of the SNR of the galaxy, therefore
they are represented by horizontal lines on the plot. The to-
tal errors from stochastic effects are derived by adding the
level of counting statistics contributions and other stochastic
errors in quadrature.

Under the assumption that these individual noise terms
are approximately independent from one another, we can
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now estimate the uncertainty in ellipticity measurements of
an arbitrary galaxy under an arbitrary scenario by scaling
the results from our tests with the fiducial galaxies and con-
ditions, which we denote by the subscript “0” in the following
steps:

(i) Calculate the galaxy’s SNR, which depends on Rm, S,
a and Bsky, and scale the counting statistics errors on the
ellipticity from the fiducial case via:

σ[ε] ∝ SNR0

SNR
. (13)

(ii) Calculate the contributions from all other effects by
scaling the results in Sections 5.1 and 5.2 by the measured
galaxy size:

σ[ε] ∝
(
Rm0
Rm

)2

. (14)

(iii) All stochastic components are further scaled by the
exposure time:

σ[ε] ∝
√
texp,0
texp

. (15)

(iv) Add the individual components in quadrature to
yield an estimate of the total ellipticity uncertainty in the
measurement. Note, however, that the simple assumption
that all effects are decoupled breaks down at the low SNR
end, where the errors are no longer small and cannot be
linearly decomposed into the different components.

It is straightforward to also estimate the ellipticity error
correlation function of a population of galaxies:

(i) Since counting statistics errors do not correlate, we do
not need to account for a correlation function for them.
(ii) Scale the individual correlation functions in Figures 4

and 6 by the average Rm of objects in the frame:

ξεε ∝
(
Rm0
Rm

)4

. (16)

(iii) Scale the stochastic components of the individual
correlation functions by texp:

ξεε ∝
texp,0
texp

. (17)

(iv) Add the individual components to yield the total el-
lipticity correlation function.

These scaling relations serve as first-order estimates of
the ellipticity errors and error correlations.

6 SOURCES OF SPURIOUS SHEAR

After measuring the ellipticities of the galaxies (εm in Equa-
tion 6), the next step, following Equation 18, is to estimate
the PSF-induced ellipticity errors εs, estimate the scaling
factor α and calculate the shear estimator γ̂:

γ̂ =
α

2
(εm − εs) = γ +

α

2
εi. (18)

The first part of Equation 18 represents operationally how
one would calculate γ̂ and the second part comes from rear-
ranging Equation 6. When averaging γ̂ over a large number

Figure 7. Uncertainties of ellipticity measurements induced by
counting statistics errors for objects in a large range of size and
magnitudes is labeled by the black triangles, which is well fit by a
function of the objects’ SNR as shown with the grey dashed line. If
all the parameters other than magnitude (m, or effectively, S) are
held fixed, then the bottom SNR axis corresponds to the r- band
AB magnitudes labeled on the top axis m∗. The yellow diamond
atm∗ = 23 is where the fiducial galaxy is located. Under the same
assumption that we only vary the object’s magnitude along the
x-axis, we can then plot the ellipticity uncertainties induced by
all the other physical effects discussed in this paper as horizontal
lines since these errors depends only on the object’s size. Finally,
the level of intrinsic shape noise is indicated by the solid blue line.

of galaxies, we recover the true shear, or 〈γ̂〉 = γ. As de-
scribed in Section 4.2, since we have set both shear and
intrinsic ellipticity to zero in our simulations, any non-zero
shear measurement from Equation 18, even without averag-
ing over an ensemble of galaxies, indicates mis-estimation
of εs and/or α. In other words, any measured shear from
our simulations is spurious. In the remainder of this section,
we use γs and ξγsγs to indicate the spurious shear and their
correlation functions. As opposed to previous ellipticity mea-
surements, we only show results for ξγsγs (rather than single
γs measurements), and propagate them directly into uncer-
tainties of the inferred cosmological model in Section 8.2.

Operationally, three separate steps are involved in cal-
culating the terms of Equation 18 that are prone to system-
atic effects: PSF modelling (estimating εs), “deconvolving”
with the PSF13 (properly removing the effect of the PSF in
estimating intrinsic galaxy shape) and converting the mea-
surement to shear (estimating α). The first step is related
to properly modelling the physical effects discussed previ-
ously, while the latter two steps are determined by choices
of algorithms. We use the terms “spurious shear from PSF
modelling” and “spurious shear from shear measurement al-
gorithms” to refer to these two classes of errors.

Given a perfectly known PSF, an imperfect algorithm
can still render spurious shear. Several works have studied

13 Deconvolution here implies some algorithm that removes the
effects of the PSF from the galaxy images, which may or may not
be a mathematically exact deconvolution.
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the effectiveness of different PSF deconvolution algorithms
and quantified the errors in shear measurements (Heymans
et al. 2006; Massey et al. 2007; Bridle et al. 2010; Kitch-
ing et al. 2012a,b). This spurious shear studied in previous
work (“spurious shear from shear measurement algorithms”
in our classification) is not necessarily intrinsic to the mea-
surement, and is therefore not the main interest of this pa-
per. We choose to use KSB, one of the most popular weak
lensing algorithms, as our test method, but design the simu-
lations and analyses as described below to eliminate some of
the known flaws in this method. All of our results can thus
be viewed as the best possible results achievable by a KSB
pipeline. In principle, more sophisticated pipelines should do
even better.

As mentioned in Section 4.2, we choose to use simple
circular Gaussians as galaxies to perform our analyses. In
terms of shear measurement, this implies that our estimates
of the spurious shear from these galaxies will not be heavily
affected by the choice of a simplistic moment-based method
like KSB. Furthermore, to account for the “calibration fac-
tors” often used in KSB-like algorithms (Heymans et al.
2006; Massey et al. 2007; Bridle et al. 2010; Kitching et al.
2012a,b), which are derived from simulations and intended
to calibrate the process that converts ellipticity to shear, we
use a calibration factor that shifts the mean shear in each
frame to zero, which effectively performs a perfect calibra-
tion for the additive shear error.

On the other hand, spurious shear induced by PSF mod-
elling is less dependent on the specific shear measurement
algorithm; instead, it is heavily affected by the nature of the
various physical effects. In fact, to model the PSF across an
image, we are really just modelling the response function
of a point source to all the physical effects across the focal
plane. For a multi-epoch survey like LSST, the two classes
of physical effects – non-stochastic and stochastic – should
be modeled differently.

For the non-stochastic errors, since they show repeated
patterns over multiple exposures, there is a massive number
of stars that contain information to constrain the model.
Jarvis & Jain (2004) first suggested the concept of detecting
the repeated patterns in the data themselves via principle
component analysis (PCA). For current surveys, this is be-
coming a standard operation for PSF modelling in weak lens-
ing analyses. The power of PCA scales with the total num-
ber of stars in all the exposures, which essentially scales with
1/
√
N , where N is the number of exposures taken with sim-

ilar observing configurations (Jain et al. 2006). For LSST,
we believe that the large number of exposures in the sur-
vey would enable us to characterise the non-stochastic PSF
very accurately. PSF variation induced by stochastic effects,
however, can be captured only from stars in a single expo-
sure, which are both sparse and noisy. The stochastic PSF
variation would be modeled poorly in a PCA-like approach.

Note that the two classes of shear measurement errors
are not necessarily decoupled, making them difficult to sep-
arate from one another. In this work, our goal is to quan-
tify the former, the “spurious shear from PSF modelling”.
We do this by first eliminating the algorithm-dependence in
our shear measurement algorithm by carefully designing the
simulations and analysis pipeline, and then by testing for
any residual shear errors from the algorithms with perfect
knowledge of the PSF model (Section 7.1).

7 QUANTIFYING ERRORS ON SHEAR
MEASUREMENTS

We have shown in Section 5 that the total ellipticity error
correlation is at the 10−4 − 10−3 level for a fiducial LSST
single exposure. In this section, we correct the PSF effects
in these simulations and measure the spurious shear corre-
lation. Three different PSF model scenarios are considered:
The first assumes perfect knowledge of the PSF; the second
assumes that a PCA-like method is used to model the PSF,
yielding perfect knowledge of the non-stochastic component
of the PSF but no information about the stochastic com-
ponent of the PSF; the third assumes that we attempt to
model both components of the PSF simultaneously by us-
ing a standard method – interpolating a smooth polynomial
function between measurements of individual stars. By per-
forming these three tests and examining the residual shear
correlation function, we can pin down the sources of spurious
shear correlation functions.

All analyses are measurements of the spurious shear
from fiducial galaxies in the set of 20 focal-plane-size simula-
tions described in Section 5.2.1 that contain all the physical
effects modelled in PhoSim; we will refer to this set of sim-
ulations as the “master set”. In the three subsections below,
we describe the simulations used to obtain the three dif-
ferent PSF models and show the spurious shear correlation
functions we measure from the master set using the three
PSF models.

Also, if not otherwise specified, since the measured
shear of any simulated image is effectively “spurious shear”
generated from the PSF modelling and correction process
(εi = γ = 0), we omit the superscripts in our notation and
use γ (ξγγ) instead of γs (ξγsγs) or ε̂ (ξε̂ε̂).

7.1 Perfect PSF model

In this test, since the spurious shear from PSF modelling is
by definition zero, the spurious shear we measure indicates
any imperfections of the KSB implementation we adopted.

7.1.1 Simulations and results

We generate a set of 20 focal-plane-size images identical to
the master set, except that at the location of each galaxy, we
simulate a bright star instead. The shape of each bright star
is measured and the shape parameters are used to construct
the PSF models for its galaxy partner in the master set.

In Figure 8 (a), we show the median shear correlation
function for the 20 simulations. We show that by using a
perfect PSF model, the spurious shear correlation is noisy
but consistent with zero. This suggests that our idealised
KSB implementation corrects the PSF effects nearly per-
fectly. Also plotted in Figure 8 (a) for comparison are the
ellipticity correlation function for the galaxies and the ellip-
ticity correlation function of the PSF model. The PSF spa-
tial correlation prints through and is apparent in the shear
correlation as can be seen by the similarities between the
blue and red curves. The error bars show the standard de-
viation in the 20 realisations divided by

√
20.
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7.2 Perfect non-stochastic PSF model

Next we assume that the non-stochastic component of the
PSF can be characterised perfectly by analysing a large num-
ber of exposures via, for example, a PCA method. However,
no attempt to model the stochastic component of the PSF
has been made. In this case, one would construct PSF mod-
els that capture only the non-stochastic effects discussed in
Section 5.1. The measured shear correlation function in this
test is the spurious shear from not modelling and correcting
for the the stochastic PSF variations.

7.2.1 Simulations and results

Similar to Section 7.1.1, we generate one focal-plane-size im-
ages with only the non-stochastic effects in the master set
included and replace each galaxy in the master set with a
bright star. The shape of each bright star is measured and
the shape parameters are used to construct the PSF models
for its galaxy partner in the master set.

In Figure 8 (b), we show the median shear correlation
function for the 20 simulations. With corrections only for
the non-stochastic component of the shape of the PSF, the
spurious shear correlation for a single 15-second exposure is
at the few times 10−4 level. Also plotted for comparison are
the ellipticity correlation function for the galaxies and the
ellipticity correlation function of the PSF model. The error
bars show the standard deviation in the 20 realisations di-
vided by

√
20. Since we have shown in Figures 4 and 6 that

the level of the stochastic ellipticity error correlation func-
tion is more than one order of magnitude larger than that
for the non-stochastic ellipticity errors, it is reasonable that
there are large spurious shear correlations when we correct
only for the non-stochastic effects. The main effect of the
PSF correction in this scenario is to correct for the PSF size
and the weighting factor – very little PSF ellipticity spatial
variation is corrected.

7.3 Model both non-stochastic and stochastic
PSF via polynomial models

In Section 7.2.1 we have shown that even when the non-
stochastic PSF is corrected, there can still be large shear
residuals in single exposures due to stochastic PSF ef-
fects. This motivates us to model both stochastic and non-
stochastic PSF components simultaneously. One common
approach is to fit certain shape parameters of stars across the
individual CCD sensors with a low order polynomial func-
tion, with the underlying assumption that the PSF spatial
variation is smooth on individual sensor scales. The shear
correlation function determined from this test is a measure
of the spurious shear arising from incorrectly modelling and
correcting for the stochastic and non-stochastic PSF varia-
tions using polynomial PSF models constructed from stars.

7.3.1 Simulations and results

We generate a set of 20 focal plane-size images identical to
the master set, except that the fiducial galaxies are replaced
by a realistic star sample obtained from the PhoSim sky
catalogue, randomly located over the field. On average each

sensor-size image contains 120−150 stars used for PSF mod-
elling (SNR>13). The shape of each star is measured and
the shape parameters are interpolated with nth-order poly-
nomials onto the locations of the galaxies to obtain the PSF
model at the location of the galaxies in the master set. We
tested for several n values and show only the best case (n=5)
here.

Figure 8 (c) shows the residual shear correlation func-
tions when a 5th-order polynomial interpolation of stars is
used to model the PSF. Also plotted are the ellipticity corre-
lation function for the galaxies and the ellipticity correlation
function of the 5th-order polynomial PSF model. The error
bars show the standard deviation of the 20 realisations di-
vided by

√
20.

Excess power is present on small scales in the shear
correlation function and the slope has a slight transition at
∼ 3′, beyond which the curve decreases less steeply. The
negative correlation on large scales is an artifact from the
shear calibration procedure described in Section 6, where
the measured shear distribution in single measurements is
calibrated to have zero mean, forcing part of the positive
correlation to become negative. This excess power on small
scales is expected, since structures within scales smaller than
[sensor size]/n cannot be modeled by a polynomial of order
n, where [sensor size]∼ 18′ in our simulations, the part of
the PSF not modeled by the polynomial prints through as
spurious shear correlation. The fact that the PSF variations
on small scales have significant power coming from the at-
mosphere, which we have shown in Section 5.2, means that
the spurious shear correlation will also have excess power on
these small scales. We measure the level of spurious shear
correlation for a single 15-second exposure using a polyno-
mial PSF model as 5× 10−4 at small scales and decreasing
by two orders of magnitude towards larger scales. We have
also examined how the different n values affect the level of
the correlation function, and found that the general shape
of the shear correlation remains similar to the n=5 case but
the transition point where the correlation starts to rise at
small scales changes according to [sensor size]/n. To improve
upon this simple polynomial model, one would need to de-
velop a more flexible interpolation technique that captures
structures on different scales in a more efficient way. We pro-
pose such an approach in a companion paper (Chang et al.
2012).

8 DISCUSSION

8.1 Combining multiple exposures

We now estimate the spurious shear correlation function in
a combined 10-year LSST dataset. In the most simplistic
case where all N exposures on the same galaxy field have
similar image quality, we show in Appendix C that averaging
the shear measurements in the N exposures suppresses the
stochastic piece of the spurious shear correlation by a factor
N . But in a realistic case of varying image quality, the N
scaling is no longer straightforward. One needs to estimate
the “effective number of exposures”, or Neff , taken on each
galaxy, which essentially weights each exposure according to
the image quality. We direct the reader to Appendix D for
how we estimated the value of Neff that is suitable for our
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(a)

(b)

(c)

Figure 8. The absolute ellipticity correlation function for the
fiducial galaxies before PSF correction (dotted black) and the
absolute shear correlation function after PSF correction (solid
green) for (a) perfect PSF models, (b) perfect non-stochastic PSF
models, and (c) PSF models constructed with a 5th-order polyno-
mial fit to bright stars. The absolute ellipticity correlation func-
tion (dashed red) in each case is plotted for comparison. All curves
are the medians of 20 different realisations under the fiducial ob-
serving condition, with the error bars indicating the standard
deviation in the 20 curves divided by

√
20. Negative values are

plotted with open symbols.

Figure 9. Absolute spurious shear correlation function after com-
bining 10 years of r- and i-band LSST data when a standard
KSB algorithm is implemented and the PSF is modeled at dif-
ferent levels: non-stochastic PSF knowledge only (dashed) and
partial stochastic PSF knowledge from polynomial interpolation
of stars (solid). Red lines indicate the pessimistic case assuming
Neff = 184 while the green lines show the optimistic case when
Neff = 368 is assumed. All curves are the medians of 20 different
realisations under the fiducial observing condition, with the error
bars indicating the standard deviation in the 20 curves divided
by
√
20. Negative values are plotted with open symbols.

analysis. From Appendix D, we estimate Neff to be between
184 and 368, with Neff = 184 being the most pessimistic
scenario and Neff = 368 being the most optimistic.

Consider now the three scenarios described in Section 7,
where KSB is used to correct for the PSF effects and the
three levels of PSF modelling are assumed. For a hypothet-
ical perfect PSF modelling technique, the shear errors in
individual frames are already consistent with zero, so there
is no need to discuss the combined results here.

For the second case, we know only the non-stochastic
component of the PSF. In this case, spurious shear correla-
tions result from not modelling any of the stochastic compo-
nent of the PSF shape. In the combined dataset, the latter
contribution can be estimated by taking the solid spurious
shear correlation function in Figure 8 (b) and multiply by
1/Neff to account for the averaging of the stochastic spurious
shear correlation.

When both the non-stochastic and stochastic PSF com-
ponents are modeled using a 5th-order polynomial model fit-
ted to the stars, we assume that the smoothly varying non-
stochastic PSF component is fully modeled and the spurious
shear is mainly due to stochastic PSF modelling errors. The
combined shear correlation function then can be estimated
by scaling the spurious shear correlation function in Figure 8
(c) by 1/Neff .

The total expected spurious shear correlation functions
from combining Neff exposures for the latter two cases are
shown in Figure 9.

c© 2011 RAS, MNRAS 000, 1–18



16 C. Chang et al.

8.2 Implication for constraints on cosmological
parameters

We now interpret the spurious shear correlation function
derived in Section 8.1 in terms of the implied uncertainties
on inferred cosmological parameters.

Since γ = 0 in all our analyses, we can identify the ξγγ
measured in Section 7 to be the “additive spurious shear cor-
relation function” ξsadd introduced in Huterer et al. (2006).
According to AR08, for several hypothetical forms of the
spurious shear power spectrum, one can calculate the upper
limits for allowed systematic errors of predictions of the ma-
jor cosmological parameters via a simple extension to the
Fisher Matrix formalism. This upper limits on the system-
atic errors are set so that the systematic errors do not exceed
the statistical errors. In a survey with statistical power sim-
ilar to the LSST survey, AR08 suggests the following limits
on the spurious shear power spectrum:

σ2
sys =

1

2π

∫ `max

`min

|Csadd(`)|(`+ 1)d` 6 3× 10−7 , (19)

where Csadd is the power spectrum corresponding to ξsadd,
which can be derived through Equation 5.

Equation 19 is in the form of shear power spectra, but
our measurements are in the form of shear correlation func-
tions. To properly connect our results to Equation 19, we
revisit the hypothetical power spectrum used in AR08:

Csadd(`) =
A0

`(`+ 1)
(n log10(

`

`0
) + 1) , (20)

where n is the slope of the log-linear power spectrum, `0 is
an arbitrary reference point chosen to be 700 in the paper
and A0 is the normalisation.

Since the analytical form of Equation 20 is straightfor-
ward to integrate, we can use Equation 5 to find the cor-
relation functions that correspond to power spectra in the
form of Equation 20 for a range of n and A0 values. These
correlation functions then can be compared to the spurious
shear correlation functions in Figure 9 to determine the best
matched n and A0 values. We calculate for this particular
set of n and A0, the σ2

sys values and compare with the tar-
get set via Equation 19. This process gives us an estimate
of the level of uncertainties in the cosmological parameters
when these forms of systematic errors in the shear correla-
tion function are present. A more accurate estimate of σ2

sys

can be obtained by the full Fisher Matrix calculation using
these measured shear correlation functions.

We explore the parameter space −3 6 n 6 1 and
10−9 6 A0 6 10−5, which is chosen to be consistent with
the ranges tested in AR08. In this range, we find that the
family of functions is not always a good description for the
spurious shear correlation function we measure from simu-
lations. In particular, the sharp rising curve and the oscilla-
tions at small scales when polynomial PSF models are used
cannot be properly modeled by the correlation function cor-
responding to the log-linear power spectra. As a result, we
match scales only larger than ∼ 3′, knowing that in reality
these smaller scales ( < 3′) may not enter in constraining
cosmology. The resulting n and A0 values as well as the
corresponding σ2

sys values are listed in Table 4. Figure 10
shows, for the optimistic case, the two spurious shear cor-
relation functions overlaid by their functional-form counter
parts. Note that these grey curves are not fits – they are

Table 4. For the 10-year combined r- and i-band data of LSST,
the best matched n’s and A0’s to the spurious shear correlation
function under different scenarios are listed. The numbers are
measured with a KSB pipeline and under two different PSF model
assumptions. Two scenarios for effective number of exposures for
each field are assumed: the optimistic case corresponds to Neff =
368 and the pessimistic case corresponds to Neff = 184.

PSF model Neff n log10(A0) σ2
sys

Non-stochastic optimistic 0.7 −5.7 2.17×10−6

pessimistic −5.4 4.34×10−6

Polynomial optimistic 0.7 −6.6 2.74×10−7

pessimistic −6.3 5.46×10−7

Figure 10. The two spurious shear correlation functions in the
optimistic scenario (solid green) overlaid with functional forms
assumed by AR08 that visually match the level and approximate
shapes of the spurious shear correlation (dashed grey). The green
curves are the medians of 20 different realisations under the fidu-
cial observing condition, with the error bars indicating the stan-
dard deviation in the 20 curves divided by

√
20. Negative values

are plotted with open symbols.

matched visually because the shapes of the measured shear
correlation functions are quite different from the assumed
functional forms.

In Table 4 we show that in the canonical weak lens-
ing pipeline (KSB + polynomial PSF model), the spurious
shear power spectrum we have measured from simulations
is approximately 0.9 – 1.8 times the statistical errors. Al-
though the numbers imply that by using the current weak
lensing pipeline, we are already reaching the level of system-
atics in shear measurements required for LSST, it should
be understood thatÊnot all potential effects (such as shear
calibration, galaxy modeling, photo-z estimation, chromatic
PSF effect14 etc.) have yet been included. To ensure that the
cosmic shear measurements from LSST is not systematics-
limited after considering all the other systematic errors, we

14 The PSF shapes measured from the stars is different from the
PSFs of the galaxies due to the differences between the SEDs of
stars and galaxies.
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will need shear measurement methods more sophisticated
than what we used in this study.

We can trace the source of these systematic errors to
improper modelling of the stochastic PSF using polynomial
functions, which needs to be reduced when developing the
next generation of shear measurement algorithms. On the
other hand, if only the non-stochastic errors are modeled,
the spurious shear due to not modelling the stochastic PSF
results in a σ2

sys value one order of magnitude greater than
the target value. This implies that the stochastic PSF com-
ponents do not average out enough by themselves if not
corrected, even when the full dataset is combined. We thus
show the importance of modelling the stochastic as well as
the non-stochastic components of the PSF.

We have shown here that given a typical weak lensing
pipeline, the major physical effects in an LSST observation
will not seriously limit LSST, provided that the number of
exposures in the combined dataset and the image quality
are as expected.

8.3 Effect of simplifications

At this point we summarize the major assumptions that
underlie our analysis to provide context for our results:

First, we have deliberately designed our simulations and
the analysis we performed to minimize algorithm-dependent
contributions to the errors. In particular, we used circular
Gaussians as our galaxy models, invoked KSB as our shear
measurement method, and performed an artificial “perfect
calibration” for the KSB pipeline. Thus the results derived
in Sections 8.1 and 8.2 only take account of the algorithm-
independent part of the additive spurious shear correlation
function. In particular, recent work (Hirata & Seljak 2003;
Réfrégier et al. 2012; Melchior & Viola 2012) has shown that
the algorithm-dependent shear errors are strongly affected
by noise (the so called “noise bias”), which arises from us-
ing very low SNR galaxies. In our analyses, this factor is
suppressed through the use of a simplistic galaxy model.
However, given the low SNR (∼8) of our fiducial galaxy,
the noise bias for realistic weak lensing galaxies may not be
negligible.

Second, we have not taken into account more sophis-
ticated schemes for combining shear measurements from
multiple exposures. As suggested by Jain et al. (2006), the
stochastic component in the shear errors can be eliminated
by dividing the full dataset into sub-groups of exposures and
only correlating shear measurements between different sub-
groups. We provide a brief discussion in Appendix E of such
implementations, but have not investigated the full power
of these alternative approaches in this paper.

Third, as mentioned in Section 1, this work is based on
the projected two-point shear correlation function. In a full
weak lensing analyses where lensing tomography and higher-
order statistics are used, additional constraints may arise.
However, the combination of all these different statistics may
also be useful in mitigating certain systematic effects.

Finally, we also note that the applicability of the ex-
tended Fisher Matrix formulae in AR08 and therefore Equa-
tion 19 to our analyses depends on some specific assumptions
regarding the statistical properties of the spurious shear con-
tributions we measure in the simulations. The main assump-
tion in AR08 is that the higher-order statistical properties

of the spurious shear are similar to those of the true shear
– a Gaussian random field – so that the covariance matrix
for the spurious shear power spectrum is close to diagonal.
(This is implicitly assumed when deriving Equation 10 from
Equation 9 in AR08.) Since the statistical properties of the
spurious shear depend on its physical origin, they are not
guaranteed to be Gaussian. However, in our simulations,
the effect of such non-Gaussian spurious shear is likely to
be small compared to the Gaussian component generated
from counting statistics and the various stochastic effects;
therefore the results derived in Section 8.2 should be suffi-
ciently robust.

9 CONCLUSIONS

In this paper, we have carried out a bottom-up, quantita-
tive study of the potential systematic errors in cosmic shear
measurements for future LSST-like surveys using high fi-
delity simulations.

Simulations are generated using PhoSim, a photon-by-
photon Monte Carlo ray-tracing software that models all
major physical effects from the top of the atmosphere down
through the detectors. Specifically, we have generated a suite
of special simulations in order to isolate the systematic errors
in ellipticity and shear measurements caused by different
physical effects, which would have been impossible to achieve
with a real telescope.

We identify the most important physical effects in terms
of their impact on ellipticity measurements and classify them
into two classes: non-stochastic and stochastic. The elliptic-
ity errors and their correlation properties caused by each
individual effect are then quantified in a systematic way.
We find that, in a single LSST exposure:

• Ellipticity errors due to counting statistics dominate
the total ellipticity errors, whereas ellipticity errors due to
atmospheric and instrumental effects dominate the total el-
lipticity error correlation function.
• The ellipticity error correlation function due to non-

stochastic effects is one order of magnitude smaller than
that due to stochastic effects.

For shear measurement, we identify three steps in a
canonical weak lensing pipeline that lead to spurious shear,
two of which are dominated by the specific algorithm chosen
for PSF characterisation and deconvolution, which we have
not investigated in detail. The third step involves modelling
the PSF spatial variation with scattered stars. We carry out
the full analyses with a standard weak lensing algorithm
and quantify the spurious shear correlation under different
assumptions about the PSF model. We draw several conclu-
sions:

• With perfect PSF knowledge, systematics induced by
the algorithm in an idealised KSB implementation are neg-
ligible.
• Not correcting for the stochastic component of the PSF

shape introduces large shear systematics in the correlation
function.
• A conventional PSF modelling scheme using polynomial

interpolation of stars can partially model the stochastic PSF
contribution, but the inflexibility of the functional form of
polynomials limits the power of this method.
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The single-exposure results are then extrapolated to
the full combined 10-year dataset, and finally interpreted in
terms of the constraints on dark energy parameters accord-
ing to an extended Fisher Matrix calculation from AR08.
We draw several conclusions:

• By using a canonical weak lensing analysis pipeline, the
systematic errors in the spurious shear correlation function
induced by the major physical effects, after combining the 10
years of LSST data, is at a level approaching the statistical
errors.
• The errors mainly come from imperfect modelling of

the stochastic PSF, which has not been studied in detail
in the past. This calls for better basis functions that can
characterise structures in the stochastic PSF variation on
all scales.

Finally, this analysis is done under several assumptions
and simplifications, which may need to be taken into account
when interpreting the results:

• We have designed the simulations and analysis to avoid
algorithm-dependence of this analysis. Algorithm errors will
need to be estimated and combined with the results here to
yield the total shear systematic errors.
• A simple scheme is used for combination of shear mea-

surements in multiple exposures. More intelligent use of the
data can potentially give better results.
• Only a projected 2D two-point correlation function is

analysed. By implementing weak lensing tomography or
higher-order statistics, some of the spurious shear can be
mitigated.
• We adopt the results from AR08 to interpret the spuri-

ous shear correlation function in terms of its effect on the un-
certainty in predicting cosmological parameters, which im-
plicitly assume that the spurious shear has statistical prop-
erties similar to the true shear.
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APPENDIX A: PHYSICAL MODELS IN
PHOSIM

A1 Optics and optics perturbations

PhoSim builds in the most up-to-date optics design of the
instrument. This includes detailed specifications of the di-
mensions and wavelength response of each optical element
from the engineering design (the three mirrors, three lenses
and the filter), characteristics of the backside-illuminated
thick CCD detectors, and other telescope components such
as the shutter and spider, scattered light and tracking mech-
anisms. The PhoSim version used in this paper is based
upon the optics baseline design version 3.3.

In addition to the design, PhoSim also models the level
of residual wavefront errors after a typical correction from
the AOS has been made. The effects of these residuals are
modeled using hundreds of parameters that displace or de-
form the different optical components, causing the PSF to
degrade from the design within levels allowed by the engi-
neering requirements on the AOS. This approach is different
from an exact simulation of the AOS, which would have to
take into account the history of the wavefront measurements
over a period of hours as the survey proceeds. The latter
approach would require a vast increase in the number of ex-
posure simulations that are performed, and is thus compu-
tationally impractical. Therefore, the current PhoSim takes
the alternative approach of modelling residuals of the full
control loop instead. Since exposures on the same patch
of sky are usually separated by a few days, which is much
longer than a typical time scale for the AOS updates, the
assumptions involved in this procedure are well justified.

We further classify the residual wavefront errors, or op-
tics errors in PhoSim, into two classes. The first class ac-
counts for errors that originate from fabrication and inte-
gration, or are introduced by gravity and the thermal envi-
ronment of the telescope. The former are permanent func-
tions of the response, while the latter are by nature highly
repeatable, and the zeroth-order corrections will be imple-
mented by the AOS according to a pre-calibrated look-up
table. However, the AOS cannot perfectly compensate for all
distortions given the limited number of degrees of freedom
that are actively controlled; therefore, there will be repeat-
able optics errors, which are “non-stochastic”. The charac-
teristic amplitudes of these perturbations used in PhoSim
are derived from finite element modelling of the telescope
and camera under appropriate gravity and thermal loads.
The second class includes the residual wavefront errors as
well as actuator errors and wind shake. Since these effects

are random in nature and do not show repeated patterns
across exposures, they can be measured only by monitoring
the wavefront errors in real time. The imperfect correction
by the AOS for these effects introduces “stochastic” optics
errors which are uncorrelated from exposure to exposure.
For the purpose of this paper, we deliberately implement
the optics model in PhoSim in a way that allows the two
classes of optics errors to be separated – this is because we
are interested in how they separately enter into the shear
measurements, as discussed in more detail in Section 4.

The typical levels of the two classes of optics errors on
the major optical elements used in this analysis are listed
in Table A1. Note that the numbers corresponding to this
classification scheme are based on the current engineering
specifications (Ivezic et al. 2011, and internal documents),
but the results are easily scalable if different specifications
are eventually adopted..

A2 Tracking errors

Tracking errors in PhoSim are modeled by a Gaussian ran-
dom walk of the telescope pointing in each of the three di-
rections: azimuth, elevation and rotation, where a step is
taken every 0.1 second throughout the exposure. The effect
of the tracking error integrated over 15 seconds is to yield a
root-mean-squared (RMS) error of ∼ 0.02" in the azimuth
and elevation directions, and ∼ 1" in rotation.

A3 The atmospheric model

Due to the short exposure time of LSST, atmospheric ef-
fects on image distortions become more pronounced in a
single exposure than what is usually seen in longer expo-
sures. Since these atmosphere-induced distortions arise from
turbulent structures in the air density, we can also expect
spatial structures in the image shape distortions across the
field which are associated with the turbulent structures. De
Vries et al. (2007) first showed via simulations that the effect
of the atmospheric turbulence on PSF shape distortion aver-
ages out rapidly with exposure time, while Wittman (2005)
and Heymans et al. (2012) measured the correlation of PSF
shape distortions in short exposure data and discuss their
potential effect on weak lensing.

Similar to the pure atmospheric simulations in De Vries
et al. (2007), the atmosphere in PhoSim is modeled by
multiple layers of moving atmospheric screens. The “frozen
screen approximation” is justified since the time scale for
the shapes of turbulent cells to change significantly is much
longer than the time required for turbulence cells to pass
through the field of view, given the typical wind speeds of a
few meters per second (Taylor 1938; Poyneer et al. 2009).

The heart of the atmospheric model is a set of multi-
scale, multi-layer frozen Kolmogorov screens (Kolmogorov
1992). These atmospheric screens are constructed according
to a full 3D Kolmogorov spectrum with assigned parame-
ters including the structure function, inner scale, outer scale,
wind speed and wind direction. All parameters are modeled
from existing atmospheric data taken near the LSST site.
In Peterson et al. (2012), we explain the theoretical justifi-
cation of the approach we have taken, as well as the major
innovations in the PhoSim atmospheric model.
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Table A1. Specifications of the major optics errors modeled in PhoSim. We describe the surface height variations on the mirrors using
2nd- through 5th- order Zernike polynomials, where each polynomial is normalised individually with some amplitude according to typical
values observed in existing systems. We list here only the range for the four amplitudes used.

Source of error Stochastic or not Random sampling Physical parameter RMS values

non-stochastic Gaussian misalignment 1.08× 10−2 (mm)
Solid-body optics errors tip/tilt 2.34× 10−6 (rad)

in the mirrors stochastic Gaussian misalignment 1.89× 10−2 (mm)
tip/tilt 4.09× 10−6 (rad)

Surface height variation non-stochastic Gaussian coefficients of Zernike (0.38 – 2.20) ×10−4 (mm)
in the mirrors stochastic polynomial expansion (0.76 – 4.40) ×10−4 (mm)

non-stochastic Gaussian misalignment 3.24× 10−2 (mm)
Solid-body optics errors tip/tilt 1.58× 10−4 (rad)

in the camera stochastic Gaussian misalignment 5.67× 10−2 (mm)
tip/tilt 3.77× 10−4 (rad)

Sensor surface displacement non-stochastic Zernike expansion based height 5×10−3 (mm)from ideal focal plane on laboratory measurements variation

APPENDIX B: KSB FORMULAS

The following formulas are the foundation for performing a
weak lensing measurement using the KSB algorithm. We use
the Einstein summation convention.

First, stars and galaxies are measured with the “get-
shape” imcat routine, which assigns to each object the
following shape parameters: the complex ellipticity (εα),
the smear polarisability (P smαβ ) and the shear polarisability
(P shαβ), where α, β = 1, 2. εα is defined in Equations 1 and 2,
while P smαβ and P shαβ are calculated through

P smαβ = Xsm
αβ − εαεsmβ , (B1)

P shαβ = Xsh
αβ − εαεshβ . (B2)

Xsm
αβ , X

sh
αβ , ε

sm
β and εshβ are derived through combinations

of weighted second moments of the light profile of the object
f(x1, x2) and derivatives of the weighting functionW (x1, x2)
(see Kaiser et al. 1995, for definitions of these quantities).
Each component εα, P smαβ and P shαβ for the stars is inter-
polated to the galaxys’ locations and recalculated with the
galaxys’ weighting functions. The remeasured quantities will
be used to construct the PSF model for the galaxy.

The anisotropic PSF effects on the galaxy’s ellipticity
are first corrected through

δεα = P smαβ pβ , (B3)

where

pα = (P ∗,sm)−1
αβε
∗
β . (B4)

The superscript “∗” indicates parameters of the PSF model.
Shear gα changes the galaxy’s ellipticity by

δεα = P shαβgβ . (B5)

Finally, we need to correct for the weighting and circular
seeing effects to get the final shear estimate for each galaxy
by replacing P shαβ with the shear susceptibility P γαβ , where

P γαβ = P shαβ − P smαγ (P ∗,sm)−1
γδ P

∗,sh
δβ . (B6)

P γαβ is eventually replaced by 1
2
tr[P γ ] in our approach, sim-

ilar to the “ES2” method in Massey et al. (2007).

APPENDIX C: 1/N SCALING FOR THE
STOCHASTIC SPURIOUS SHEAR
CORRELATION

To demonstrate the 1/N scaling for the stochastic spurious
shear correlation, we use the 20 simulated shear catalogues
used in Section 7.3, where we have argued that most of the
shear errors in these catalogues are stochastic. We then con-
sider averaging shear measurements of the same galaxy in
the first N different frames, and calculate the shear correla-
tion function for the averaged shear catalogue as a function
of N .

The results for N = 1, 5, 20 are shown in Figure C1. We
observe that, although the low statistics causes the data to
be quite noisy, the spurious shear correlation function does
roughly follow the 1/N scaling. This supports our argument
in Section 8.1, where we extrapolate our single-exposure
measurements to the full 10-year LSST dataset.

APPENDIX D: EFFECTIVE NUMBER OF
EXPOSURES

In the 10-year period of observation planned for LSST, ev-
ery patch of sky is imaged approximately 386 times, each
with 15-second exposures (the number doubles to 772 if r
and i bands are combined); however, because of variation
in the observing conditions and the galaxy properties them-
selves, not all galaxies have good shape measurements in all
exposures. The power of combining a multi-epoch dataset is
that one has the freedom to weight the contributions of a
single galaxy shape measurement in each of the different ex-
posures according to the image quality, and thus extract the
maximum information from the noisy dataset. This effec-
tively means that the “stochastic” spurious shear correlation
will not cancel as fast as 1/772 under this framework, be-
cause some of the exposures will be down-weighted due to
their poor image quality. Instead, the spurious shear corre-
lation will decrease only as fast as 1/Neff , where Neff is the
“effective number of exposures” for the entire dataset. Neff
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Figure C1. The spurious shear correlation function for the mean
shear catalogue for N exposures, where N = 1 (solid black),
5 (dotted green) and 20 (dashed red). The shear catalogue is
obtained via standard KSB algorithm and 5th-order polynomial
PSF models. Negative values are plotted with open symbols.

depends on the detailed distribution of the observing con-
ditions, the galaxy distributions (brightness, size, redshift),
as well as the analysis pipeline used. The precise determi-
nation of Neff is complicated and beyond the scope of this
paper; however, we can provide optimistic and pessimistic
estimates for Neff to bound the final results in a reasonable
range.

In this work, we have chosen the fiducial observing con-
ditions (Table 1) to correspond to roughly the median con-
dition of the best 50% of the dataset in terms of image qual-
ity. This gives approximately 184 exposures in the r band
as well as the i band, or ∼368 exposures for the entire weak
lensing dataset for each field. We view this as an optimistic
estimation, since it has been shown (Hirata & Seljak 2003;
Réfrégier et al. 2012; Melchior & Viola 2012) that for PSF
sizes approaching the size of average galaxies (for part of
the 368 exposures), the systematics can grow nonlinearly
and the median spurious shear of these 368 exposures can
be larger than that shown in Figure 8. Furthermore, as men-
tioned in Section 4.1, errors in the 2 exposures in the same
visit may be correlated, effectively lowering Neff for the full
dataset. A more conservative estimation is to use only the
best 25% of the exposures to make cosmic shear measure-
ments. In this case we have a total of 184 exposures and the
results are likely to be pessimistic, since the median spurious
shear correlation of these 184 exposures is likely to be better
than those measured in Figure 8. We can assume that the
optimal outcome of combining the full 10-year data lies in
between these two bounds Neff = 184 and Neff = 368.

APPENDIX E: CORRELATING SHEAR
MEASUREMENTS ACROSS EXPOSURES

In addition to the simple averaging scheme discussed in Sec-
tion 8.1, previous papers (see e.g. Jain et al. 2006) also
have suggested correlating galaxies in different exposures to
eliminate the stochastic systematics in the atmosphere and
instrument. In theory, by correlating shear measurements

across exposures, only the non-stochastic systematics re-
main, which do not scale down further with number of expo-
sures. This, however, comes with the price of decreasing the
statistical power of a dataset, since there will be a smaller
number of pairs that contribute to the correlation function.
The statistical errors are increased by

√
Neff/(Neff − 1).

For LSST, the full 10-year dataset includes Neff =184
– 368, which means that implementing cross correlation will
not degrade the statistical power significantly. However, at
earlier stages of the survey, when Neff is still small, the√
Neff/(Neff − 1) penalty may overcome the benefit of im-

plementing cross correlation. For the purpose of this paper,
we will not discuss the details of optimising the combined
multi-epoch dataset; rather, we show one simple example
for implementation of cross correlation and merely demon-
strate an alternative way of combining multiple exposures
to improve upon our results.

For the 20 simulations in the master set in Section 7, we
take the spurious shear obtained from the 5th-order polyno-
mial PSF models and calculate 10 correlation functions by
correlating shear measurements for galaxies in two different
exposures (the 20 exposures were split into 10 groups of im-
age pairs, for which the shear measurement in each image
is correlated only with shear measurements in the other im-
age). The median of the 10 correlation functions is plotted in
Figure E1, together with the shear correlation functions in
Figure 8, scaled to Neff = 2, so that all curves represent the
spurious shear correlation function for combining a dataset
of two independent exposures. Note that in Figure E1, the
shear correlation function from correlating galaxies in dif-
ferent exposures is essentially consistent with zero at angu-
lar scales larger than ∼ 3′, but rises steeply smaller angular
scales. This may be because the PSF models are consistently
ill behaved on the edges of the CCD sensors from the poly-
nomial PSF model, making some of the PSF model errors
“non-stochastic” between frames. This is likely to be an un-
realistic artifact since no rotation/dithering is used in the
20 images.

This suggests that correlating galaxies across different
exposures can suppress some of the stochastic systematics.
But similar to the auto-correlation technique, the calcula-
tion depends on a good PSF modelling process that does
not create artificial non-stochastic errors. Given the loss of
statistical power by correlating across exposures, a more de-
tailed investigation of these tradeoffs will be needed to es-
tablish the optimal use of LSST’s multi-epoch dataset.
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Figure E1. For two typical LSST exposures combined, the spu-
rious shear correlation function when a standard KSB algorithm
is implemented with 5th-order polynomial PSF models and only
galaxies from different exposures are correlated (black). Com-
pared with the simple average scheme (dashed green), correlat-
ing galaxies from different exposures suppresses mainly spurious
shear correlation on large scales. The error bars for the black
curve indicate the standard deviation in the 10 curves divided by√
10. Negative values are plotted with open symbols.
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