Direct Comparison of Brookhaven Reflectivity Measurements with Free-Electron Theory

PDF Version Also Available for Download.

Description

The reflectivity at normal incidence of copper and aluminum samples was recently measured over a large frequency range at Brookhaven by one of us (JT). Then using the Kramers-Kroning integrals, and assuming the free-electron model of conductivity, the dependence of conductivity on frequency was obtained. The results seemed to suggest, for example, that the dc conductivities of the copper and evaporated aluminum samples are a factor of 3 lower than expected. We propose in this report, instead, directly fitting the free-electron model to the low frequency end of the reflectivity data. This fitting does not depend on the higher frequency ... continued below

Creation Information

Bane, Karl L.F. December 13, 2010.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The reflectivity at normal incidence of copper and aluminum samples was recently measured over a large frequency range at Brookhaven by one of us (JT). Then using the Kramers-Kroning integrals, and assuming the free-electron model of conductivity, the dependence of conductivity on frequency was obtained. The results seemed to suggest, for example, that the dc conductivities of the copper and evaporated aluminum samples are a factor of 3 lower than expected. We propose in this report, instead, directly fitting the free-electron model to the low frequency end of the reflectivity data. This fitting does not depend on the higher frequency results and on Kramers-Kronig integrations, but it does assume that the data at the low frequency end is sufficiently accurate. Note that for our LCLS wakefield studies, it is only over these (relatively) low frequencies that we need to know the electrical properties of the metals. The equations that relate reflectivity R with the free electron parameters dc conductivity {sigma} and relaxation time {tau} are: (1) {tilde {sigma}} = {sigma}/1-ikc{tau}; (2) {tilde n} = {radical} {tilde {epsilon}} = {radical}(1+4{pi}i{tilde k}c/{omega}); and (3) R = |{tilde n}-1/{tilde n} + 1|{sup 2}. The parameters are ac conductivity {tilde {sigma}}, index of refraction {tilde n}, dielectric constant {tilde {epsilon}}, and wave number k = {omega}/c, with {omega} frequency and c the speed of light. In Fig. 1 we show the ideal behavior of R for a reasonably good conducting metal, where {sigma} = 0.12 x 10{sup 17}/s and {tau} = 0.55 x 10{sup -14} s (solid line); these parameters are, respectively, 2% ({sigma}) and 20% ({tau}) of the nominal values for copper. The parameters were chosen so that the important features of R(k) could be seen easily in one plot. We see 3 distinct regions: (1) for low frequencies, k {approx}< 1/c{tau}, R continually decreases, with positive curvature, and with a low frequency asymptote of (1 - {radical}2kc/{pi}{sigma}); (2) for intermediate frequencies the reflectivity is nearly constant, R {approx} (1 - {radical}1/{pi}{sigma}{tau}); (3) for k {approx}> k{sub p} = {radical}4{pi}{sigma}/c{sup 2}{tau}, the plasma frequency of the metal, R quickly drops to zero. The dashed lines in Fig. 1 give the analytic guideposts for the 3 regions. Note that it is only in the first and part of the second region that we can expect the free electron model to have validity in real metals; at higher frequencies the effects of absorption bands and other physics will distort the R(k) curve. In principle, knowing R accurately in the entire 1st region suffices for obtaining the free-electron parameters {sigma} and {tau}; in practice, however, knowing it also in the 2nd region gives us more confidence in the model and especially in the value of {tau}.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SLAC-TN-10-091
  • Grant Number: AC02-76SF00515
  • DOI: 10.2172/1000387 | External Link
  • Office of Scientific & Technical Information Report Number: 1000387
  • Archival Resource Key: ark:/67531/metadc838038

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 13, 2010

Added to The UNT Digital Library

  • May 19, 2016, 3:16 p.m.

Description Last Updated

  • Nov. 23, 2016, 4 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bane, Karl L.F. Direct Comparison of Brookhaven Reflectivity Measurements with Free-Electron Theory, report, December 13, 2010; United States. (digital.library.unt.edu/ark:/67531/metadc838038/: accessed April 27, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.